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upper electrode is actuated electrically and the correspond-
ing deformation is detected by measuring the resulting 
capacitive change. In order to increase the actuation effi-
ciency and improve the detection sensitivity, the distance 
between the electrodes should be minimized and the over-
lapping area between them maximized.

However, under such conditions, the air gap between 
the two electrodes results in a significant squeeze-film 
damping effect as the upper electrode deforms toward the 
lower substrate. In practice, this damping effect must be 
taken into account in designing the device and predicting 
its performance under realistic actuation conditions. In 
many previous studies, the squeeze-film damping effect has 
been examined by means of finite element method (FEM) 
simulations (Homentcovschi et al. 2010; Nigro et al. 2010, 
2012). Such methods yield highly accurate solutions. How-
ever, they lack explicit physical meaning and are both time-
consuming and computationally expensive. As a result, 
they are impractical for many design optimization tasks 
(Younis et al. 2003; Nayfeh et al. 2005). Lumped models 
are simple and have explicit physical meaning. However, 
they have a lower accuracy than FEM models. As a result, it 
has been suggested that analytical models represent a more 
suitable method for exploring the physical characteristics 
and nonlinear dynamic behavior of MEMS structures (Liu 
and Chen 2013). Nayfeh and Younis (2004) investigated the 
squeeze-film damping effect in a MEMS device containing 
a rectangular micro-plate. In performing the analysis, the 
damping effect and micro-plate deformation were modeled 
using a linearized Reynolds equation and classical plate 
theory (CPT), respectively. Liu and Wang (2014) proposed 
an analytical model based on a nonlinear deflection equa-
tion and a Reynolds equation for investigating the dynamic 
response of an electrically-actuated clamped–clamped 
micro-beam subject to squeeze-film damping. Younis 

Abstract The analysis of electrostatically-actuated 
MEMS devices is complicated since structural deformation 
alters the nonlinear electrostatic force, which in turn redis-
tributes and modifies the electrostatic coupling effect. The 
analysis is further complicated by the nonlinear squeeze-
film damping effect exerted by the air film between the 
deformable diaphragm and the fixed substrate. Accord-
ingly, the present study performs a numerical investigation 
into the effect of this squeeze-film damping phenomenon 
on the dynamic behavior of a MEMS device incorporat-
ing a circular clamped micro-plate. The deflection behavior 
of the micro-plate is described using an analytical model 
based on a linearized isothermal compressible Reynolds 
equation and a sealed pressure boundary condition. In per-
forming the simulations, the model is solved using a hybrid 
differential transformation and finite difference scheme. 
The simulations focus specifically on the effects of the 
residual stress, actuation voltage and excitation frequency 
on the dynamic response of the membrane.

1 Introduction

Electrostatically-actuated microelectromechanical systems 
(MEMS) devices are used widely throughout industry for 
such applications as microphones (Liu et al. 2008) and 
micro-pumps (Jiankang and Lijun 2006). Typical MEMS 
devices feature a parallel-plate capacitor, in which the 
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(2004) presented a hybrid numerical/analytical method for 
simulating MEMS systems subject to squeeze-film damp-
ing effects in multi-physics fields.

The present study performs a numerical investigation 
into the effect of the squeeze-film damping phenomenon 
on the dynamic behavior of a MEMS device incorporating 
a circular clamped micro-plate. In performing the simula-
tions, the nonlinear governing equation of motion of the 
micro-plate is solved using a hybrid differential transfor-
mation and finite difference method.

2  Problem formulation

2.1  Governing equation for circular micro‑plate

Figure 1 presents a schematic illustration of the MEMS 
device considered in the present study. As shown, the 
device comprises a lower fixed electrode, a dielectric 
spacer, and an upper deformable circular micro-plate. The 
governing equation of the micro-plate subject to both a 
residual stress force within the plate and a squeeze-film 
damping effect between the plate and the lower electrode 
has the form (Chen et al. 2009)

where ε0, h, υ, E and G are the permittivity of free space, 
the thickness of the micro-plate, the Poisson ratio of the 
micro-plate material, the Young’s modulus of the micro-
plate material and the initial gap height between the micro-
plate and the lower electrode, respectively. In addition, ρ is 
the density of the micro-plate material, and u is the trans-
verse deflection of the micro-plate at a radial distance r 
from the center. Note that u is a function only of the posi-
tion r and the time t, i.e., u = u(r, t). In other words, for a 
given value of r and t, the transverse deflection of the plate 
is independent of the polar coordinate, θ. Finally, Tr is the 
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residual stress within the plate, Pp is the net pressure within 
the air gap, and V(t) is the actuation voltage. In the present 
study, the micro-plate is actuated by a hybrid DC/AC volt-
age scheme, i.e., V(t) = VDC + VAC sin(ωt), where VDC is 
the DC polarization voltage, VAC is the magnitude of the 
AC voltage, and ω is the excitation frequency.

The boundary conditions for the governing equation of 
motion of the micro-plate are given as follows:

where R is the radius of the micro-plate.
Meanwhile, the initial condition is given as

In the present study, the squeeze-film damping effect 
within the air gap is modeled using the linearized com-
pressible gas-film Reynolds equation (Liu and Wang 2014), 
which has the form

where hp and µ represent the variable distance between the 
two electrodes (i.e., hp = G− u) and the effective viscosity 
of the air in the air gap, respectively. Based on the Knud-
sen number (Kn), defined as the ratio of the mean free path 
of the air particles to the film thickness (�

/

hp) (note that � 
is the molecular mean free path length and has a value of 
� = 0.064 µm for air.), air flows can be divided into four 
regimes, namely continuum flow when (Kn < 0.01), slip 
flow (0.01 < Kn < 0.1), transitional flow (0.1 < Kn < 10)  
and free molecular flow (Kn > 10) (Nayfeh and Younis 
2004). In many MEMS devices, Kn is close to the non-con-
tinuum regime. To take account of the correction required 
for the slip boundary condition, the effective viscosity of 
the air should be computed as µ = µ0/(1+ 6Kn), where 
µ0 is the absolute air viscosity (Krylov 2007). Further-
more, the net pressure in the air gap can be expressed as 
Pp = P − Pa, where P is the absolute pressure in the gap 
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Fig. 1  Schematic illustration 
showing electrostatic actuation 
of circular micro-plate
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and Pa is the ambient pressure. Finally, the pressure bound-
ary conditions are given as follows:

2.2  Dimensionless governing equation 
and decomposition by hybrid method

For analytical convenience, let the following non-dimen-
sional variables (denoted by a hat) be introduced:

As shown, the transverse displacement u of the mem-
brane is normalized with respect to the initial gap between 
the electrodes, the radial distance quantity r is normalized 
with respect to the radius of the circular micro-plate, and 
the time t is normalized with respect to the constant T̄ , 
where T̄  is defined as T̄ =

√

ρhR4
/

D (note that D is the 
flexural rigidity of the plate, i.e., D = Eh3

/

12(1− υ2)). 
Finally, the excitation frequency ω is normalized by taking 
the product of ω and the time constant T̄ .

Let the following parameters be additionally defined:

Substituting Eqs. (6) and (7) into Eqs. (1), (2) and (3), 
the dimensionless governing equation of motion for the cir-
cular micro-plate is obtained as

The corresponding dimensionless boundary conditions are 
given as follows:

Finally, the initial condition is equal to

Substituting Eq. (6) into Eqs. (4) and (5), the dimen-
sionless linearized one-dimensional Reynolds equation is 
obtained as follows:

where σ = 12µR2
/

PaG
2T̄  is the well-known squeeze 

number.
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In the present study, the nonlinear governing equation 
of motion for the circular micro-plate [Eq. (8)] is solved 
using the hybrid differential transformation and finite dif-
ference method described in Liu and Wang (2014). The 
solution procedure commences by discretizing the equation 
of motion with respect to the time domain t using the dif-
ferential transformation method, i.e.,

Having applied the differential transformation method to 
the governing equation, associated boundary conditions 
and initial condition of the circular micro-plate, the trans-
verse displacement of the micro-plate is then discretized 
spatially in the radial direction using the finite difference 
approximation method based on fourth-order and second-
order accurate central difference formulae.

3  Results and discussion

Table 1 summarizes the material and geometry parameters 
considered in the present simulations. Figure 2 shows the 
variation of the dimensionless center-point deflection of 
the circular micro-plate with the applied actuation voltage 
for three different values of the residual stress. Note that 
the micro-plate is actuated by a DC voltage only (i.e., the 
AC driving voltage is not applied). As the residual stress 
increased from a negative value to positive values, the pull-
in voltage increased at the same time. Furthermore, the 
pull-in voltage of the blue line with negative residual stress 
(Tr = −10 MPa) was 13.7 V, the pull-in voltage of the red 
line without residual stress (Tr = 0 MPa) was 19.3 V and 
the pull-in voltage of the green line with positive residual 
stress (Tr = 10 MPa) was 23.5 V. It is seen that for all three 
values of the residual stress, the center-point of the plate 
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Table 1  Material and geometry parameters considered in present 
simulations

Parameters/symbol/unit Value

Young’s modulus (E) (GPa) 130

Poisson’s Ratio (ν) 0.23

Density (ρ) (Kg/m3) 2.33 × 103

Permittivity of free space (ε0) (F/m) 8.8541878 × 10−12

Thickness of circular micro-plate (h) (μm) 1

Initial gap (G) (μm) 1

Radius of circular micro-plate (R) (μm) 100

Ambient pressure (Pa) (bar) 1
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progressively deflects toward the lower substrate as the 
actuation voltage is increased. However, at a certain critical 
value of the actuation voltage, the micro-plate collapses, 
causing the center-point to make transient contact with the 

lower substrate. It is further noted, that the critical voltage 
at which this “pull-event” occurs increases as the residual 
stress changes from a negative (i.e., Tr = −10 MPa) value 
to a positive (i.e., Tr = 10 MPa) value.

Figure 3 shows the variation of the center-point deflec-
tion of the micro-plate over time given a constant DC volt-
age of 19 V and AC voltages ranging from 2.0 to 2.7 V. It is 
seen that for all values of the AC voltage, the center-point 
deflection increases irregularly over the first 0–800 dimen-
sionless time units. Hence, it is inferred that the DC driving 
voltage is unstable during the initial stages of the actuation 
period. In addition, it is observed that as the applied AC 
voltage increases, the center-point deflection of the micro-
beam increases nonlinearly due to an electrostatic coupling 
effect. For AC voltages of less than 2.6 V, the micro-plate 
oscillates in a stable manner about the deflection point. 
However, for an AC voltage of 2.7 V, the pull-in phenom-
enon occurs and the micro-plate collapses, causing the 
center-point of the plate to make transient contact with the 
lower electrode.

Figure 4 shows the phase portraits of the circular micro-
plate for a constant DC voltage of 19 V and AC voltages of 
2.6 and 2.7 V, respectively. The results show that for an AC 
voltage of 2.6 V, the system exhibits a stable behavior, i.e., 
the size of the orbit remains approximately constant over 
time. However, for an actuating voltage of 2.7 V, the size 

Fig. 2  Variation of dimensionless center-point displacement with DC 
voltage (note that AC voltage is not applied)

Fig. 3  Variation of dimension-
less center-point displacement 
over time for constant DC volt-
age and AC voltages ranging 
from 2.0–2.7 V (note that the 
DC voltage is assumed to have 
19 V, and ω̄ = 1)
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Fig. 4  Phase portraits for cir-
cular micro-plate given constant 
DC voltage of 19 V and AC 
voltages of 2.6 and 2.7 V (note 
that the ω̄ = 1)

Fig. 5  Phase portraits for cir-
cular micro-plate given constant 
DV voltage of 23 V, constant 
AC voltage of 2 V and dimen-
sionless excitation frequencies 
ranging from 0.5 to 2.0
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of the orbit gradually increases until the system becomes 
unstable and the pull-in event occurs.

Figure 5 presents the phase portraits of the oscillating 
micro-plate given constant DC and AC voltages of 23 and 
2 V, respectively, and dimensionless excitation frequen-
cies ranging from 0.5 to 2.0. It is seen that for dimension-
less excitation frequencies of 1.0 and 2.0, the micro-plate 
exhibits a stable periodic response. However, for the lowest 
excitation frequency of 0.5, the system gradually loses sta-
bility and the circular micro-plate collapses onto the lower 
substrate.

4  Conclusions

The present study has used a hybrid numerical scheme 
comprising the differential transformation method and 
the finite difference method to investigate the nonlinear 
dynamic behavior of an electrostatically-actuated circular 
micro-plate subject to a squeeze-film damping effect. The 
results have shown that given a DC driving voltage, the 
pull-in voltage increases as the residual stress within the 
micro-plate changes from a compressive stress to a tensile 
stress. Furthermore, it has been shown that the use of an AC 
actuating voltage in addition to the DC driving voltage pro-
vides an effective means of tuning the dynamic response of 
the circular micro-plate. Finally, it has been shown that the 
stability of the circular micro-plate reduces as the magni-
tude of the AC voltage increases or the excitation frequency 
reduces.
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Appendix

Elementary symbol table

Symbol Parameters

A∗ Dimensionless parameter

b Width of beam

D Flexural rigidity of the plate

E Young’s modulus

G Initial gap

H Time interval

H̄ Dimensionless distance between 
the gap

h Thickness of the micro-plate

Symbol Parameters

hp Variable distance between the gap 
(hp = G− u)

Kn Knudsen number (�
/

hp)

P Absolute pressure

Pa Ambient pressure

Pp Net pressure (Pp = P − Pa)

P̄ Dimensionless pressure

Q∗ Dimensionless parameter

R Radius of the micro-plate

r̄ Dimensionless radial distance

T Differential transformation opera-
tion

T Differential transformation opera-
tion

T̄ Dimensionless time

T∗
r Dimensionless parameter

t Time

U Differential transformed function 
of ū

u Transverse deflection

ū Dimensionless deflection

VDC The DC voltage

VAC The AC voltage

Greek symbols

 θ Polar coordinate

 ω Excitation frequency

 ω̄ Dimensionless frequency

 � The molecular mean free path 
length

 µ Effective viscosity

 µ0 Absolute viscosity

 υ Poisson’s Ration

 ρ Density

 ε0 Permittivity of free space

 σ Squeeze number
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