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between the slider and the disk approaches the molecular 
mean-free path of the gas medium, continuum theory can-
not be used anymore (Burgdorfer 1959; Hsia and Domoto 
1983; Juang et al. 2007; Liu et al. 2007). In present hard 
disk drives (HDDs), the minimum spacing under the slider 
has decreased to the order of several nanometers (<5 nm) 
(Liu and Zheng 2011; Zheng et al. 2012; Salas and Talke 
2013). Under such conditions, gaseous rarefaction effects 
cannot be neglected and must be taken into account.

In order to account for rarefaction effects, several 
researchers introduced slip correction models for use in 
conjunction with the generalized Reynolds equation. 
Burgdorfer (1959) applied a first-order slip-flow correc-
tion to the non-slip continuum boundary condition. Hsia 
and Domoto (1983) derived a modified Reynolds equa-
tion that considers both first and second order slip flow 
for the velocity boundary conditions. Mitsuya (1993) 
introduced a 1.5-order slip flow model that uses differ-
ent order slip boundary conditions for the integration of 
the isothermal compressible Navier–Stokes equations. 
The three slip-flow models proposed by Burgdorfer, 
Hsia and Domoto, and Mitsuya are only valid for large 
inverse Knudsen numbers, where the Knudsen num-
ber is defined as λ/h (λ is the molecular mean-free path 
of the gas medium and h is the head/disk interface spac-
ing). Gans (1985) derived a lubrication equation using a 
linearized Boltzmann equation similar to Burgdorfer’s 
modified first-order Reynolds equation and claimed that 
the linearized equation is valid for all inverse Knudsen 
numbers. Fukui and Kaneko (1988) derived a general-
ized Reynolds equation that includes thermal creep flow. 
This equation is based on a linearized Boltzmann equa-
tion similar to Gans’ equation but implements a different 
solution method. Fukui and Kaneko (1990) proposed a 
cubic polynomial curve fitting procedure which creates a 

Abstract In order to increase the recording density of 
magnetic disk drives, the spacing between the flying head 
and the rotating disk must be as small as possible. When 
the spacing between the flying head and the rotating disk 
approaches the mean-free path of the gas, rarefaction 
effects must be taken into account. The authors propose a 
simplified precise second order (PSO) model that imple-
ments a Poiseuille flow rate database to simulate ultra-thin 
gas film lubrication. The PSO model is evaluated using 
the finite volume method. Numerical results obtained 
using the PSO model are presented and compared with 
the results from simulations that implement four formerly 
and currently employed lubrication models including the 
first-order, the second-order, the 1.5-order, and the widely 
used FK (Fukui and Kaneko) models. The PSO model’s 
key advantages are validated in three aspects: mathemati-
cal formulation, simulation accuracy, and computational 
efficiency.

1 Introduction

In order to increase the storage density of magnetic disk 
drives, the reduction of the spacing between the slider 
and the rotating disk is of great importance. If the spacing 
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function that explicitly expresses the Poseuille flow rate 
as a function of the inverse Knudsen number. From this 
expression they developed a Poiseuille flow rate data-
base. Fukui and Kaneko’ model will be referred to as 
the FK model in this paper. In order to overcome com-
plicated and time-consuming difficulties found in solving 
the linearized Boltzmann equation, Hwang et al. (1996) 
proposed an adjustable slip model based on a modi-
fied high-order slip-flow velocity distribution. The slip 
model has three adjustable coefficients which are corre-
lated to the Boltzman model. Li (2002, 2003) developed 
a complete database of Poiseuille flow rates and Couette 
flow rates by solving the linearized Boltzmann equation. 
Peng et al. (2004) investigated the unidirectional flow of 
rarefied gas between two parallel plates and proposed a 
nanoscale effect function that describes the influence of 
space restriction on gas lubrication between the slider and 
the disk. Using a linearized flow rate model (LFR), Shi 
and Yang (2010) derived a simplified Reynolds equation 
for ultra-thin gas film lubrication in HDDs.

In the following two sections, the authors will derive a 
simplified model of the Reynolds equation. Then the new 
model will be used to perform error analysis and numeri-
cal simulation to validate its accuracy and efficiency. In the 
second section, based on a Poiseuille flow rate database 
introduced in the FK model (Fukui and Kaneko 1990), a 
simplified precise second order (PSO) model is proposed 
and used to simulate ultra-thin gas film lubrication at the 
head/disk interface in HDDs. In the third section, the PSO 
model is evaluated using the finite volume method and 
the resultant numerical solutions are compared with other 
models, including the FK model.

2  Reynolds equation and simplified model

For a two dimension (2D) plane air bearing slider as shown 
in Fig. 1, the generalized non-dimensional 2D-Reynolds 
equation based on the FK model (Fukui and Kaneko 1990) 
is as follows:

where P and H are the non-dimensional pressure and spac-
ing, respectively. P is normalized by the ambient pressure 
(pa) and H is normalized by the minimum spacing at the 
trailing edge of the slider (h1). X is the coordinate along 
the length of the slider and Y is the coordinate along the 
width of the slider. L and B are the length and width of the 
slider, respectively. Λx and Λy are the bearing numbers in 
the X and Y directions, respectively. The dynamic viscosity 
of the gas is given by μ. θ is the pitch angle of the slider, 
and U and V are the disk velocity in the X and Y direction, 
respectively. Q is the flow factor accounting for difference 
between different rarefaction and slip models. Qp(D, α) 
is the Poiseuille flow rate coefficient, and Qcon(D) is the 
coefficient of continuum flow. Quantities D and α are the 
inverse Knudsen number and the surface accommodation 
coefficient, respectively. The definition of D and Qcon is as 
follows:

where, D0 denotes the inverse Knudsen number of the gas 
film at the minimum spacing, T is the characteristic tem-
perature, and R is the gas constant.

The flow factor can be calculated from flow rate coef-
ficients that are expressed in the form of a power series. For 
small inverse Knudsen numbers (D), where the slip flow 
assumption is reasonably valid, an asymptotic expression 
for Kn ≫ 1 can be employed. Power series representations 
for 0.15 ≤ D ≤ 5 and 0.01 ≤ D < 0.15 can be calculated 
using the least squares method. The Poiseuille flow rate 
coefficient (Qp) of the FK model are as follows (Fukui and 
Kaneko 1990):
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Fig. 1  Geometry of two dimensional inclined plane slider bearing 
and coordinate system employed

(4)







Qp = D/6+ 1.0162+ 1.0653/D− 2.1354/D2 (5 ≤ D)

Qp = 0.13852D+ 1.25087+ 0.15653/D− 0.00969/D2 (0.15 ≤ D ≤ 5)

Qp = −2.22919D+ 2.10673+ 0.01653/D− 0.0000694/D2 (0.01 ≤ D ≤ 0.15)
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Then, the flow factor (Q) can be obtained by using 
Eqs. 3, 4, and the second equation of Eq. 1:

The corresponding coefficients for various inverse 
Knudsen numbers are shown in Table 1.

Substituting Eq. 5 into the first equation of Eq. 1, one 
can obtain the following equation:

Equation (6) is a non-linear differential equation. It is 
difficult and time-consuming to solve this equation using 
numerical methods.

The Poiseuille flow rate coefficients can be calculated 
numerically for various inverse Knudsen numbers (D) 
and accommodation coefficients (α). In this paper we will 
only consider the case of α = 1. This corresponds to a 
case where gas molecules diffusely reflect at all surfaces. 
A database of the flow rate coefficients corresponding to 
α = 1 are shown in Table 2 (Fukui and Kaneko 1990).

In order to further simplify the FK model of the Reyn-
olds equation, the Poiseuille flow rate database is divided 

(5)

Q =
Qp(D,α)

Qcon(D)
= K1 + K2(PH)−1 + K3(PH)−2 − K4(PH)−3
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into eight intervals. Within each interval ([di, dj]) the fol-
lowing continuous function (Q̄p) is implemented:

where a, b, and c are unknown coefficients. At each inter-
val, the values of a, b, and c are calculated as shown in 
Table 3 using the least squares method. Equation 7 has the 
same mathematical form in the other models including the 
first-order, second-order, and 1.5-order model.

Figure 2 compares Poiseuille flow rates calculated 
using different models. The flow rate calculated from 
the Boltzmann equation is included for reference. When 
compared to the flow rate calculated from the Boltzmann 
equation over a regime where the inverse Knudsen num-
ber varies from D = 0.01 to D = 100, the first-order slip-
flow approximation under-estimates the flow rate while 
the second-order and 1.5th-order slip-flow approxima-
tions overestimate the flow rate. Using the model pre-
sented in this paper, we find a good approximation that 
is close to the flow rate calculated from the Boltzmann 
equation.

The flow factor Q of the simplified model is as follows 
and can be obtained by using Eqs. 3, 7, and the second 
equation of Eq. 1:

(7)Q̄p = a+ bD+ cD−1 di ≤ D ≤ dj

(8)Q = A1 + A2

Kn

PH
+ A3

(

Kn

PH

)2

Table 1  FK model coefficients 
for various inverse Knudsen 
numbers in the FK model

D K1 K2 K3 K4

0.15 ≤ D < 5 0.83112 7.50522/D0 0.93918/D0
2 0.05814/D0

3

5 ≤ D 1 6.0972/D0 6.3918/D0
2 12.8124/D0

3

0.01 ≤ D < 0.15 −13.37514 12.64038/D0 0.09918/D0
2 0.0004164/D0

Table 2  Poiseuille flow database for α = 1

Inverse Knudsen 
no. D

Flow rate Qp Inverse Knudsen 
no. D

Flow rate Qp Inverse Knudsen 
no. D

Flow rate Qp Inverse Knudsen 
no. D

Flow rate Qp

100.0 17.693 9.0 2.608 0.8 1.548 0.07 2.167

90.0 16.028 8.0 2.449 0.7 1.559 0.06 2.228

80.0 14.363 7.0 2.292 0.6 1.576 0.05 2.302

70.0 12.698 6.0 2.134 0.5 1.602 0.04 2.397

60.0 11.033 5.0 1.991 0.4 1.641 0.035 1.454

50.0 9.370 4.0 1.846 0.35 1.668 0.03 2.522

40.0 7.708 3.5 1.777 0.3 1.703 0.025 2.604

35.0 6.878 3.0 1.711 0.25 1.748 0.02 2.707

30.0 6.049 2.5 1.649 0.2 1.808 0.015 2.846

25.0 5.222 2.0 1.595 0.15 1.895 0.01 3.060

20.0 4.398 1.5 1.554 0.1 2.033

15.0 3.578 1.0 1.539 0.09 2.071

10.0 2.768 0.9 1.542 0.08 2.115
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where A1, A2 and A3 are coefficients based on a, b and c in 
Eq. 7. Kn is the Knudsen number. The values of A1, A2, and 
A3 are shown in Table 4.

Substituting Eq. 8 into Eq. 1, one obtains:

(9)
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This simplified model is called the “precise second order 
model”, or PSO model. It is easy to see that the mathemati-
cal formulation of the PSO model is simpler than that of 
the FK model.

3  Error analysis and numerical examples

3.1  Error analysis

In order to compare the accuracy of the PSO model with 
the FK model, the relative errors of the two models are 
compared. The relative error E is defined as:

where X1 is the Poiseuille flow rate calculated using the 
FK model and X2 is the flow rate calculated using the PSO 
model. Y is the corresponding flow rate from the database.

Figure 3 shows the relative errors of the Poiseuille flow 
rate for the two models versus the inverse Knudsen number. 
From Fig. 3, we observe that the relative error of the PSO 
model is less than that of the FK model and is very small 
across the whole domain. This indicates that the accuracy 
of the PSO model is better than that of the FK model.

3.2  Numerical examples

The two models, the PSO and FK models, were solved 
using the finite volume method in order to further compare 
their accuracy and computational efficiency.

Figure 4 shows pressure distributions for an infinitely 
long air bearing slider calculated using the PSO and FK 
models. For the calculation in Fig. 4, a film-thickness ratio 
H1 = h2/h1 = 2, a Knudsen number Kn = 1.25, and bear-
ing numbers of Λx = 61.6 and Λx = 123.2 were used. It is 
easy to see that the pressure distributions of the two models 
are in very good agreement with each other. The maximum 

(10)Ei = (Xi − Y)/Y × 100 % (i = 1, 2)

Fig. 2  Flow rate Qp as function of inverse Knudsen number

Table 4  Coefficients used in Eqs. 8 and 9 for various inverse Knud-
sen numbers

D A1 A2 A3

0.01 ≤ D < 0.035 −58.4929 17.9108 0.0390

0.035 ≤ D < 0.09 −17.3621 14.7931 0.0993

0.09 ≤ D < 0.35 −2.7816 11.6943 0.2674

0.35 ≤ D < 0.9 0.2568 9.5197 0.6631

0.9 ≤ D < 3.5 0.8059 8.6287 0.9893

3.5 ≤ D < 9.0 0.9881 7.2875 3.3545

9.0 ≤ D < 35.0 0.9972 7.0553 4.8488

35.0 ≤ D 0.9999 6.9070 6.7594

Fig. 3  Relative error of Poiseuille flow rate versus inverse Knudsen 
number for the PSO and FK model

Table 3  PSO model coefficients for various inverse Knudsen numbers

D A B C

0.01 ≤ D < 0.035 2.6455 −9.7488 0.0051

0.035 ≤ D < 0.09 2.1850 −2.8937 0.0130

0.09 ≤ D < 0.35 1.7273 −0.4636 0.0350

0.35 ≤ D < 0.9 1.4061 0.0428 0.0868

0.9 ≤ D < 3.5 1.2745 0.1343 0.1295

3.5 ≤ D < 9.0 1.0764 0.1647 0.4391

9.0 ≤ D < 35.0 1.0421 0.1662 0.6347

35.0 ≤ D 1.0202 0.1667 0.8848
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relative errors of the PSO and FK models are 0.0486 and 
0.0492 %, respectively.

The pressure distribution of a tri-pad slider is shown in 
Fig. 5. Figure 6 shows the relative errors of the pressure pro-
files calculated using the PSO and FK models for the tri-pad 
slider. The flying attitude parameters of the tri-pad slider are 
listed in Table 5. The parameters α and β represent the pitch 
and roll angles, respectively, of the slider about the pivot 
point where the suspension is attached. δ denotes the skew 
angle at the radial position and is considered to be fixed.

Figure 6 shows that the relative errors of the pressure 
profiles calculated using the two models are very small for 
most of the air bearing surface. For the two models, the 
maximum relative error of the tri-pad slider is less than 3 %.

The computation times of the PSO and FK model for the 
tri-pad slider are listed in Table 6 for comparison. We can 
see that the computation time for the PSO model is a little 

less than that of the FK model. In other words, the PSO 
model is slightly more computational efficient than the FK 
model.

4  Summary and conclusions

Starting from a Poiseuille flow rate database, we have 
proposed a simplified precise second order (PSO) model 
to simulate ultra-thin gas film lubrication at the head/disk 
interface in hard disk drives (HDDs). The PSO model is 
solved using the finite volume method. The numerical 
results are compared with other models, including the first-
order model, the second-order model, and the widely used 
FK model. Numerical results show that the PSO model not 

Fig. 4  Comparison of pressure distribution for an infinitely long air 
bearing slider for the PSO and FK model

Fig. 5  Non-dimensional pressure profile for typical tri-pad slider

Fig. 6  Relative error of pressure for the PSO and FK model for typi-
cal tri-pad slider

Table 5  Flying attitude parameters of tri-pad slider

Minimum fling height (h1) 40 × 10−9 m

Pitch angle (α) 300 × 10−6 rad

Roll angle (β) 0 rad

Skew angle (δ) 0 rad

Radial position 18 × 10−3 m

Rotate speed of the disk, RPM 7200

Table 6  Comparison of computation time for tri-pad slider using 
PSO and FK model

Slider type Model type Computation  
time (s)

Tri-pad slider FK model 2194.241

PSO model 2078.893
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only has a simple mathematical formulation, but also pos-
sesses good accuracy and is computationally efficient.

Acknowledgments The authors sincerely thank Professor Frank E. 
Talke and Mr. Benjamin Y. Suen of the University of California, San 
Diego, for helpful corrections and suggestions. This work was jointly 
supported by the National Natural Science Foundation of China 
(Grand No. 51275279), the Natural Science Foundation of Shandong 
Province (Grand No. ZR2012EEM015) and the China Scholarship 
Council (Grand No. 201208370088).

References

Burgdorfer A (1959) The influence of the molecular mean free path 
on the performance of hydrodynamic gas lubricated bearings. 
ASME J Basic Eng 81:94–100

Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication 
based on linearized Boltzmann equation: first report-derivation 
of a generalized lubrication equation including thermal creep 
flow. ASME J Tribol 110:253–262

Fukui S, Kaneko R (1990) A database for interpolation of Poiseuille 
flow rates for high Knudsen number lubrication problems. 
ASME J Tribol 112:78–83

Gans RF (1985) Lubrication theory at arbitrary Knudsen number. 
ASME J Tribol 107:431–433

Hsia YT, Domoto GA (1983) An experimental investigation of molec-
ular rarefaction effects in gas lubricated bearings at ultra-low 
clearances. ASME J Tribol 105:120–130

Hwang CC, Fung RF, Yang RF, Weng CI, Li WL (1996) A new modi-
fied Reynolds equation for ultrathin film gas lubrication. IEEE 
Trans Magn 32(2):344–347

Juang JY, Bogy DB, Bhatia CS (2006) Alternate air bearing slider 
designs for areal density of 1 Tbit/in2. IEEE Trans Magn 
42(2):241–246

Li WL (2002) A database for Couette flow rate considering the 
effects of non-symmetric molecular interactions. ASME J Tribol 
124:869–873

Li WL (2003) A database for interpolation of Poiseuille flow rate for 
arbitrary Knudsen number lubrication problems. J Chin Inst Eng 
26:455–466

Liu B, Yu S, Zhang M, Gonzaga L, Li H, Liu J, Ma Y (2007) Air-bear-
ing design towards highly stable head-disk interface at ultra-low 
flying height. IEEE Trans Magn 43(2):715–720

Liu N, Zheng J, Bogy DB (2011) Thermal flying-height control slid-
ers in air-helium gas mixtures. IEEE Trans Magn 47:100–104

Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas 
lubrication using 1.5-order slip-flow model and considering sur-
face accommodation coefficient. ASME J Tribol 115:289–294

Peng Y, Lu X, Luo J (2004) Nanoscale effect on ultrathin gas film 
lubrication in hard disk drive. ASME J Tribol 126:347–352

Salas PA, Talke FE (2013) Numerical simulation of thermal flying-
height control sliders to dynamically minimize flying height var-
iations. IEEE Trans Magn 49:1337–1342

Shi BJ, Yang TY (2010) Simplified model of Reynolds equation with 
linearized flow rate for ultra-thin gas film lubrication in hard disk 
drives. Microsyst Technol 16:1727–1734

Zheng H, Li H, Talke FE (2012) Numerical simulation of thermal fly-
ing height control sliders in heat-assisted magnetic recording. 
Microsyst Technol 18(9-10):1731–1739


	Simplified precise model of Reynolds equation for simulating ultra-thin gas film lubrication in hard disk drives
	Abstract 
	1 Introduction
	2 Reynolds equation and simplified model
	3 Error analysis and numerical examples
	3.1 Error analysis
	3.2 Numerical examples

	4 Summary and conclusions
	Acknowledgments 
	References




