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2007; Zhan and Lu 2008; Nguyen-Chung et  al. 2011). 
Eder and Janeschitz-Kriegl (1997) found that the crystal-
lization temperature decreases with increasing cooling 
rates, thus for a PP the crystallization temperature would 
be 0 °C when the cooling rate is about 270 K min−1 (Stern 
et al. 2005). In addition, the viscosity increases too which 
affects the filling behaviour negatively and thus the rep-
lication of micro-structured surfaces (Giboz et  al. 2007; 
Meister and Drummer 2013a). To counteract this effect, 
different strategies were developed and investigated to 
modify and optimize the process parameters. An increas-
ing injection velocity can also favour the transcription of 
surface structures in the mould (Yokoi et  al. 2006; Attia 
et al. 2009; Kayano et al. 2011). Also an increasing pres-
sure (Karl 1979; Moneke 2001; Attia and Alcock 2009; 
Rudolph et  al. 2011) or a high shear rate (Stern et  al. 
2005; Janeschitz-Kriegl and Ratajski 2005; Zhu et  al. 
2006) can affect the crystallization process of the polymer 
melt: a higher pressure shifts the crystallization tempera-
ture to a higher value, whereas a higher shear rate favours 
the nucleation and thus the crystallization of the material. 
Zhu et al. (2006) stated that in the shear region the chain 
tend to be locked or frozen like a quasi-quenching. Not-
withstanding, the most important process parameters that 
are discussed to influence the cavity filling are the temper-
atures of the mould and the melt, whereas the mould tem-
perature appears to be the key parameter (Martyn et  al. 
2004; Giboz et  al. 2007; Sha et  al. 2007; Bekesi et  al. 
2010; Tosello et al. 2010; Meister and Drummer 2013b): 
in general, with increasing mould or melt temperature the 
filling behaviour is favoured and an increasing aspect ratio 
can be reached. Kim and Kim (2014) revealed that the 
temperature is the most important factor to influence the 
replication of micro structures due to the impact on the 
melt viscosity. In addition, using thermal low conductive 

Abstract  Injection moulding of micro structured poly-
mer parts is often limited due to the replication quality of 
the structured surfaces. To enhance the replication quality 
process parameters, e.g., pressure, temperature or injection 
velocity, are adapted. Here, the mould temperature is the 
most important factor. This paper investigates the influ-
ence of the mould temperature on the replication of micro 
structured surfaces using amorphous and semi-crystalline 
polymers. Using rapid tooling moulds and a dynamic tem-
pering system allows mould temperatures about the solidi-
fication temperatures during injection and a sufficient 
cooling for save ejection of the part. The results reveal that 
for amorphous polymers the mould temperature should be 
above the glass transition temperature for high replication 
quality. For semi-crystalline polymers the high cooling 
velocity seems to inhibit the crystallization process and 
this leads to a sufficiently low viscosity to achieve high 
replication quality.

1  Introduction

A reduction of part dimensions causes an increasing cool-
ing that affects the process and filling behaviour and also 
the replication quality of a micro part. In a conventional 
injection moulding process the mould surface tempera-
ture is far below the melt temperature. This leads to a high 
cooling velocity and results in a frozen layer close to the 
mould surface (Gornik 2004; Tom et al. 2006; Sha et al. 
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mould materials (Schmiederer and Schmachtenberg 2006; 
Lurz et al. 2008) or a dynamic temperature control of the 
cavity (Walter et al. 1999; Giessauf et al. 2008; Drummer 
et al. 2011; Chen et al. 2013; Xie et al. 2013) can influ-
ence the cooling velocity of the melt.

2 � Experimental

2.1 � Materials

In the investigations different thermoplastic polymers 
were used: a polypropylene homopolymer (PP, 505P, 
Sabic  Europe) as semicrystalline polymers and an amor-
phous polycarbonate (PC, Makrolon OD2015, Bayer Mate-
rialScience AG) were investigated. Characteristic values of 
these materials are shown in Table 1.

These materials are used due to their solidification tem-
perature (glass transition or crystallization temperature). 

This allows for a mould temperature below and also above 
the solidification temperature.

Furthermore, the materials show a different shear thin-
ning behaviour, Fig.  1. However, the PP material reveals 
already at lower shear rates (101  s−1) a reduction of the 
viscosity, whereas the PC reveals a shear thinning at a 
shear rate of (103  s−1). In addition, the shear thinning of 
the PP is more evident. The viscosity curves show also for 
the PC a more distinct dependence of the temperature as 
for the PP material. The difference of the viscous behav-
iour of the materials is more evident in a linear plot Fig. 1 
(right).

2.2 � Mould and specimen

The mould consists of a master mould and rapid tooling 
inserts: the master mould and rapid tooling inserts with the 
cavity. These cavity inserts are built up layer by layer from 
a steel powder using the rapid tooling process LaserCusing 
which was developed by Concept Laser GmbH. This manu-
facturing process allows for a complex design of cooling 
channels whereby an optimized tempering of the cavity can 
be ensured. The combination of insulation from the mas-
ter mould and conformal cooling channels are conductive 
to particularly rapid temperature changes in the cavity. 
The micro-structured mould insert is shown Fig.  2, left.  
Figure 2 (right) demonstrates exemplarily the rapid tooling 
mould with cavity near cooling channels.

The injection moulded specimen is a thin wall plate with 
a thickness of 0.5  mm and a square-based shape with a 
length of 35 mm. On one side the plate is micro structured 
with two alternating types of a lamellar microstructure, 
Fig. 3.

Table 1   Characteristics of the investigated materials

a  Manufacturer’s data

Parameter Standard PP PC

Densitya ρ (kg m−3) ISO 1183 905 1,190

Melting temperature (10 K s−1) (°C) ISO 11357 159 –

Crystallization temperature  
(10 K s−1) (°C)

ISO 11357 116 –

Glass transition temperature  
(10 K s−1) (°C)

ISO 11357 15 144

Thermal conductivitya k (W m−1 K−1) ISO 8302 0.22 0.2

Specific heat capacitya cp (J kg−1 K−1) ISO 11357 1,700 1,170

Fig. 1   Viscosity curves (left plotted logarithmically, right potted linearly) of the used materials (ISO 11443, manufacturer’s data)
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2.3 � Processing

For injection moulding an Arburg Allrounder 370U 700–
30/30 injection moulding machine was utilized, equipped 
with a position controlled screw with a diameter of 15 mm. 
Relevant process parameters shows Table  2. To vary the 
mould temperature a variothermal process was realized. 
For tempering the cavity inserts a variothermal temperature 
control system (type: SWTS 200, Single Temperiertechnik 
GmbH) was used. The system employs water as the circu-
lating fluid and has a heating and a cooling circuit-switch-
ing device. It allows a fluid temperature up to 200 °C. The 
mould is maintained at a constant temperature for the pur-
pose of process stability, and only the temperature of cavity 

inserts is actively controlled. The combination of insulation 
from the master mould and conformal cooling channels 
conduces to particularly rapid temperature changes in the 
cavity. The mould temperature is measured by cavity near 
temperature sensors.

Fig. 2   Rapid Tooling mould insert with lamellar microstructures (left picture of the assembled insert, right CAD drawing of the insert with illus-
tration of the cavity near cooling channel geometry)

Fig. 3   Lamellar structured thin plate (left dimensions of structures and right injection moulded specimen)

Table 2   Relevant process parameters

a  See Fig. 4

Parameter PP PC

Melt temperature (°C) 240 300

Injection velocity (cm3 s−1) 18 18

Mould temperaturea (°C) 40/160 80/160
Fig. 4   Mould temperature of the variothermal injection moulding 
process with different mould temperature for injection moulding
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In the investigations the lowest mould temperature of 40 °C 
for PP and 80 °C for PC was applied with a sufficient filling 
of the cavity. For the high value 160 °C was used. Hence, with 
the used variothermal tempering process, the temperature of 
the mould can be above the crystallisation temperature of the 
PP or rather above the glass transition temperature of the PC 
during the injection of the melt. Afterwards the mould and the 
melt is cooled down and a save ejection can be achieved. The 
curves of the temperature for the different mould temperatures 
during injection are shown in Fig. 4.

2.4 � Analytic approach of the melt‑mould contact 
temperature

The cooling velocity in the surface area of the part (area 
with direct contact between mould and part) can be deter-
mined only by approximation. Due to the local and rapid 
effect a safe measurement is restricted, especially in thin 
wall and micro injection moulding processes. However, in 
the literature several estimations were carried out (Fig. 5): 
Wuebken (1974) calculated the cooling behaviour for 
polycarbonate and polystyrene in plates with 3 and 2 mm 
respectively. Here, a cooling velocity in the surface area 
(0.2 mm distance to the mould) between 60 and 100 K s−1 
can be determined. Hoffmann (2003) revealed the same 
dimensions for a polypropylene with a cooling velocity 
35 K s−1 in a distance of 0.1 mm to the surface. Jungmeier 
(2010) has simulated the cooling of a 0.5  mm PA66  part 
and revealed a cooling velocity of more than 600 K s−1.

These calculated or simulated cooling velocities are 
iterations of a particular cooling phase. Thus, the real 
maximum cooling velocity can be expected at 500  K  s−1 
or higher, especially in thin wall injection moulding pro-
cesses. A distinct and accurate assessment of the occurring 
cooling velocity and the temperature in the surface area is 
currently not feasibly.

An analytical approach to calculate the contact temper-
ature of the polymer melt with the cold mould surface is 
shown in Drummer et al. (2012). The contact temperature 
Tcontact is dependent on the temperature of the mould Tmould, 
the temperature of the polymer melt Tpolymer and the ther-
mal diffusivity e:

with k the thermal conductivity, ρ the density and the spe-
cific heat capacity cp of the materials. The values for the 
investigated polymers are shown in Table 1. For the mould 
material a density of 7,850  kg  m  −3, a thermal conduc-
tivity of 29  W  m−1  K−1 and a specific heat capacity of 
460 J kg−1 K−1 was used.

(1)Tcontact=
Tmould · emould+Tpolymer · epolymer

emould · epolymer

(2)e=
√

k · ρ · cp

2.5 � Characterization

The investigation of temperature dependent viscosity with 
overlapping shear rate of the material measurements with a 
rotational viscometer (ARES 2000, TA Instruments) were 
carried out with an oscillating deformation. An increasing 
complex viscosity n* gives information about the solidifi-
cation of the material and the resistance to flow. To vary 
the shear rate of the material frequencies of 1 and 50 Hz 
were applied. A circular blank with a diameter of 25 mm 
with a thickness of 2 mm fixed between two parallel plates 
(diameter 25 mm) and heated up to a starting temperature 
of 200 °C (PP) and 260 °C (PC) and cooled down during 
measurement with a cooling rate of 2 K min−1. The result-
ing shear rate is about 10−5 s−1 and 10−3 s−1 respectively. 
According to Zhao et  al. (2003) the shear rate in micro 
injection moulding processes is significantly higher with 
rates between 104 s−1 and 107 s−1. In addition, Jungmeier 
(2010) revealed a shear rate above 106 s−1 for micro injec-
tion moulding processes. Despite the applied low shear 
rates a temperature and shear rate dependent behaviour can 
be expected.

The cooling velocity affects the solidification (crystal-
lization or glass transition) of the polymer melt. For this, 
high speed differential scanning calorimetric (DSC) meas-
urements were carried out using a Flash-DSC 1 (Mettler-
Toledo GmbH). It allows an investigation of the material 
behaviour using a weighted sample of approx. 10 µg at dif-
ferent cooling velocities between 10 K min−1 (0.17 K s−1; 

Fig. 5   Calculated cooling conditions for exemplarily three materials, 
according to Wuebken (1974) and Hoffmann (2003)
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cooling velocity for most standard DSC measurements) and 
60,000  K  min−1 (1,000 K  s−1). These high cooling rates 
correlate to typical process conditions (see Fig. 4).

An optical analysis of the replicated microstructures 
was carried out with a sub-µ computer tomograph (Fraun-
hofer IIS-EZRT, Erlangen). This allows a non-destructive 
3D-analysis of the lamellae with a resolution up to 5 µm. 
Based on these measurements the cross section in the spec-
imen centre can be investigated. A further characterization 
of the lamellae of the mould and the replicated specimens 
was carried out by SEM images (SEM Ultra Plus type, sup-
plier: Zeiss). These investigations allow a precise investiga-
tion of the replication of the microstructures with a resolu-
tion up to 1 µm and better.

A tactile characterization was carried out using a Hom-
mel-ETAMIC T1000 (Jenoptic AG) with a probe tip of 5 
µm with a radius of 90°. On the specimens three measuring 
sections are investigated in dependence of distance to the 
ingate, Fig. 6.

3 � Results and discussion

3.1 � Analytical calculated contact temperature

Figure  7 shows the analytically calculated contact tem-
perature of the polymers in dependence of the mould tem-
perature. Due to the high thermal diffusivity of the metal 
mould the contact temperature approaches always a mar-
ginal higher value as the deployed mould temperature. 
Thus, the surface area of the part which has direct contact 

Fig. 6   Positions of the measuring section for tactile characterization 
of the height of the lamellar structures

Fig. 7   Analytically calculated contact temperature in dependence of 
the mould temperature
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to the mould is cooled down immediately. This can affect 
the flow behaviour (due to an increasing viscosity) espe-
cially in thin mould elements and hence the replication of 
microstructures.

Consequently, to achieve a defined contact temperature 
the mould has to be tempered at this temperature. With the 
used dynamic tempering system the mould can be heated 
above the crystallization or the glass transition temperature, 
as mentioned above.

3.2 � Rheological behaviour

In Fig.  8 can be seen the complex viscosity of the two 
materials. As expected, the materials reveal a low viscosity 
(between 200 and 3,500 Pa s) at higher temperatures which 
allows good flow behaviour. However, under real process 
the viscosity must be significant lower due to the overlap-
ping shear thinning effect. The PP shows almost a constant 
viscosity up to a temperature with incipient crystallization of 

Fig. 9   Crystallization peak temperature (PP) and glass transition temperature (PC) in dependence of the cooling velocity

Fig. 10   Tactile measurements of the lamellae of the PP specimens in dependence of process conditions and position
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the material below 130 °C. Recognizable is also the decreas-
ing viscosity with higher shear rate of the material at a fre-
quency of 50 Hz. This suggests that the higher shear leads to 
a significant shear thinning of the material which counteracts 

the increasing viscosity due to the crystallisation. This can 
be seen that rotational measurements with higher shear rates 
can be carried out up to the crystallization peak temperature 
whereas with lower shear rates the viscosity increases already 

Fig. 11   Tactile measurements of the lamellae of the PC specimens in dependence of process conditions and position

Fig. 12   Tactile measurements of the lamellae of the PC specimens in dependence of process conditions and position
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with the crystallization onset. In a real process the shear rate 
is significant higher which can result in a higher shift.

The shear thinning effect can also be found by the PC 
material. A higher shear rate of the material leads to a lower 
viscosity due to the shear thinning effect. Furthermore, at a 
low deformation rate (1 Hz) the material reveals an increas-
ing viscosity below a temperature of approx. 195 °C. This 
temperature range might be defined as flow temperature or 
melting point equal to semi-crystalline polymers (Rudolph 
et  al. 2009). Above this temperature the material exhibits 
a nearly constant low viscosity. A higher shear rate seems 
to shift this temperature range to a lower value which can 
be seen in a slight increasing viscosity at 165 °C or rather 
the subsequent abort of the measurement. Thus, below this 
temperature an ongoing measurement is not possible due 
to the fast increasing viscosity of the material which can 
be go along with the initiating glass transition of the mate-
rial. However, DSC measurements at 2 K s−1 reveal a glass 
transition temperature at 140 °C with an onset at 147 °C. 
This is slight below the values obtained at standard cooling 

rates of 10 K s−1. Furthermore, a significant increase of the 
viscosity occurs already approx. 20 K above the glass tran-
sition temperature.

In general, the semi-crystalline PP material reveals a 
lower viscosity even at lower temperatures below the used 
160 °C whereas the amorphous PC material has an approx-
imately ten times higher viscosity which increases already 
at the maximum applied mould temperature of 160 °C.

3.3 � Cooling behaviour

The cooling velocity affects the solidification of the mate-
rial, i.e., the crystallization behaviour and the glass transi-
tion respectively. For the PP material (Fig.  9, left) a sig-
nificant shift of the crystallization peak temperature is 
obviously with increasing cooling rate. For a cooling rate 
of 0.17 K s−1 (10 K min−1) the crystallization peak reveals 
at 114 °C which correlates with the crystallization tempera-
ture range according to the manufacturer’s data. An increas-
ing cooling rate reduces the peak temperature. Already at 
a cooling rate of 200 K s−1 the peak temperature is below 
70 °C. An increasing cooling rate suggests a further decreas-
ing peak temperature, but there is no more a crystallization 
peak identifiable. Thus, a very high cooling rate seems to 
inhibit an immediately crystallization of PP, which decel-
erates the solidification of the material. Consequently, this 
effect allows for the material sufficient flow behaviour espe-
cially in the contact area. This effect can be intensified by 
the overlapping shear thinning of the material.

The glass transition temperature of the PC material in 
dependence of the cooling rate is shown in Fig. 7 (right). 
In contrast to the PP material, the PC is less affected by 
the cooling rate. The PC shows quite in contrast a slight Fig. 13   CT-recording of PC specimens

Fig. 14   SEM-recording of the lamellae of the mould (left) and an exemplary specimen (left)
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increase of the glass transition temperature. This is at 
a low cooling rate (0.17 K  s−1) at approx. 145  °C and at 
higher cooling rates up to 1,000  K s−1 nearly constant at 
approx. 154 °C. This is according to Rudolph (2009) due 
to a reduced time for relocation processes of the molecu-
lar chains and a resulting increase of the free volume. Con-
sequently, a fast cooling of the material impairs the flow 
behaviour. This effect occurs especially in the surface area 
of the part which has direct contact to the cold mould.

3.4 � Tactile measurements

The tactile measurements allow a quantitative discussion 
of the replicated micro structures. Figure 10 shows the tac-
tile measurements of the PP material in dependence of the 
process conditions and the distance to the ingate. A slight 

deviation of several micrometers is within the resolution 
of the testing method. The results show that the replication 
of the microstructure is not affected from the distance to 
the ingate and the flow length respectively. This is the same 
for both investigated process conditions. The height of the 
lamellar structures correlate with the dimensions of the 
mould, thus with the PP material a good replication of the 
microstructures is possible. This is relatively independent 
of the mould temperature.

For the PC material the measurements (Fig.  11) also 
reveal no difference between the investigated positions. 
However, the PC material reveals a significant influence 
of the applied mould temperature that means a degreasing 
mould temperature reduces the replication of microstruc-
tures. This is due to increasing viscosity with reaching the 
glass transition temperature range during melt cooling.

Fig. 15   SEM-recording of PP specimens with focus on the large and small lamellae in dependence of the process conditions
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The different behaviour of PP and PC is compared in 
Fig. 12 on one exemplary lamellar peak. This emphasises 
the good microstructure replication of the PP material inde-
pendent of the process conditions. Only the peak replica-
tion shows a slight difference which is better for a mould 
temperature of 160 °C. This can be also due to the deviation 
of the tactile measurement. The PC reveals a significant 
difference of the replication of the lamellar peak. While 
with a mould temperature of 80 °C a height of the lamel-
lae reaches only 100 µm; a mould temperature of 160 °C 
allows a nearly complete replication of the lamellae.

3.5 � Optical characterization

The PC specimens are exemplarily investigated with 
computer tomographic (CT) measurements. Figure  13 

represents the different quality of the replication of the 
micro structure. The specimen injection moulded at 80 °C 
reveals rounded edges which is a result of an insufficient 
mould filling due to the fast cooling of the material. The 
increased mould temperature of 160 °C and the exceeding 
of the glass transition temperature favours the replication 
of the micro structures. This can be observed in a sharp 
moulded top of the lamellar micro structure which corre-
lates with the tactile measurements.

The precise geometry of the lamellae in the mould sur-
face is shown in Fig. 14 (left). However, small impurities 
can be found on the bottom of the lamellar peaks. This 
can be due to a contamination during preparation for SEM 
analysis. On Fig. 14 (right) a specimen (PP) with the repli-
cated lamellar structures is shown. Besides the good repli-
cation is also the alternating lamellar structure of large and 

Fig. 16   SEM-recording of PC specimens with focus on the large and small lamellae in dependence of the process conditions
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small lamellae visible. The small impurities found on the 
mould surface cannot be identified on the specimen.

The replicated lamellae for the PP material are shown in 
Fig. 15. Generally, the replication of the small and the large 
lamellae is comparable. Furthermore, different process 
conditions (i.e., mould temperatures) have minor effect on 
the replication of the micro structures. Only a slight round-
ing on the peak of the lamellae of the specimen injection 
moulded at 40 °C can be found. However, the dimensions 
are in the range of microns, thus with tactile measurements 
(see Fig.  12) cannot resolve the differences. Futhermore, 
the specimen injection moulded at 160 °C reveal artefacts 
on the peaks. These can be small deformations occurring 
during the ejection of the part due the good replication and 
the resulting form closure.

For the PC material a significant higher dependence of 
the process conditions to the replication of the lamellae 
can be observed, Fig. 16. As already identified with tactile 
measurements a mould temperature of 80  °C leads to an 
insufficient replication of the mirco-structures. This is evi-
dent in the rounded edges of both the small and the large 
lamellae. The specimens injection moulded at 160  °C are 
replicated with sharp peaks. The small deformations in the 
peak are visible similar to the PP specimens which can be 
attributed to the form closure due to the good replication.

4 � Conclusion

The results have revealed that the mould temperature is a 
key process parameter to achieve high replication quality 
of micro structured polymer parts. Analytical calculations 
have shown that the contact temperature (the temperature 
in the contact area of melt and mould) is slight above the 
mould temperature. Consequently, a fast cooling occur 
which increases the melt viscosity. For this, a rapid tool-
ing mould with cavity near cooling channels and a dynamic 
tempering system allows a mould temperature above the 
solidification temperature during injection of the melt and a 
subsequently cooling of the part for save ejection.

Rotational viscosity measurements have revealed that 
a higher melt shear rate reduces the viscosity due to the 
shear thinning effect. For the semi-crystalline PP the solidi-
fication temperature (crystallization temperature) reduces 
slightly to a lower temperature thus higher shear rate sup-
ports the flow behaviour of semi-crystalline polymers. For 
the amorphous PC material a higher shear rate increases 
slightly the onset-temperature of the glass-transition tem-
perature worsen the flow behaviour. A fast cooling of the 
melt, which occurs in the contact area particularly, inhibits 
the crystallization of semi-crystalline polymers, whereas 
for amorphous polymers a slight increase of the glass tran-
sition temperature was observed.

Consequently, the investigations to the replication of 
micro structured polymer parts allow for the following 
statements:

–– Mould temperatures about the solidification tempera-
tures (i.e., glass transition temperature or crystallization 
temperature) lead a sufficient low melt viscosity delay-
ing the solidification of the melt which allows a suffi-
cient high replication quality.

–– For semi-crystalline polymers the fast cooling inhibits 
the crystallization process. As a consequence, the vis-
cosity remains at a low value which allows a good repli-
cation also at a mould temperature below the solidifica-
tion temperature. The shear rate of the melt favours this 
effect as it reduces the melt viscosity due to the shear 
thinning effect.

–– For amorphous polymers the fast cooling increases 
slightly the glass transition temperature to a higher 
value. This impairs the replication with moult temper-
atures below the solidification temperature. A higher 
shear rate of the melt lead to a reduced viscosity, too, 
but also the glass transition temperature is shifted to a 
slight higher value. This lead to significant limited repli-
cation quality at low mould temperatures.

–– Contrary to the expectation, no dependence of the repli-
cation quality of the flow length was observed.

Futher studies should investigate the influence of the 
mould temperature on other polymers with higher solidifi-
cation temperatures. Also, the influence of the flow length 
to the replication quality should be investigated with speci-
mens with longer flow paths.
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