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combined with a shooting technique simulation, which is 
capable of tracing the resonant frequency branches under 
very-low damping conditions.

1  Introduction

Clamped–clamped microbeams are used numerously in 
MEMS as solo components in devices or as spring com-
ponents to support and add stiffness to other microstruc-
tures (Senturia 2001; Younis 2011; Tilmans and Legtenberg 
1994; Ghayesh et al. 2013; Bhushana et al. 2014). They are 
commonly fabricated with unavoidable initial curvature 
due to stress gradients and other imperfections. For exam-
ple, depositing material layers of different thermal expan-
sion coefficients leads to thermal stress gradient among the 
layers that cause bimorph-like effect. The outcome of this 
is an initial curvature of the beam, which becomes in the 
shape of a shallow arch. Despite the fact that this initial 
curvature and initial deflection can be very small compared 
to the beam length; it has significant effect on its static and 
dynamic behavior. This is even more critical in the case 
of electrostatic excitation and capacitive detection, which 
have strong dependence on the gap separating the beam 
from the lower electrode.

Interest in the dynamic behavior of arches has started 
since the sixties (Humphreys 1966; Hsu et al. 1969). For 
example, Humphreys (1966) studied the dynamic snap-
through of arch structures and defined the arch character-
istics. Hsu et al. (1969) studied the stability of clamped–
clamped arches due to time-wise step loads. At the Micro 
scale, arched and buckled beam structures have received 
significant attention due to their large stroke and snap-
through behavior, which is promising for sensing and actua-
tion applications. Sulfridge et al. (2004) presented a study 
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that showed the different types of actuation that can be 
used in arch beams, such as electrostatic actuation, thermal 
actuation, piezoelectric actuation, and mechanical actuation. 
Xi and Shirong (2008) studied the stability of clamped–
clamped arches due to mechanical and thermal actuation. 
Poon et al. (2002) used the Runge–Kutta method to study 
the response of a curved clamped–clamped beam excited 
by a sinusoidal signal, and found softening and hardening 
behaviors. Zhang et al. (2007) conducted some experimental 
and theoretical investigations of initially curved clamped–
clamped beams when excited by a DC load and examined 
how this was affected by the level of curvature of the micro-
beams and the electrostatic load. Buchaillot et al. (2007) 
also conducted experimental and theoretical investigation 
of the dynamic of snap through motion for initially curved 
clamped–clamped beams when subjected to vibration.

Krylov et al. (2008, 2010, 2011) examined experi-
mentally and theoretically the various scenarios of snap-
through motion and pull-in instability in deliberately fab-
ricated MEMS arches of deep capacitive gaps. They used 
the Galerkin procedure to solve for the dynamic response 
including geometric and electric nonlinearities. In Krylov 
and Dick (2010), they used the phase portrait method to 
understand the dynamics of an arch beam when actuated 
by a step voltage. They also studied the transient response 
and escape from one potential well to the other one. In Kry-
lov et al. (2011) demonstrated the actuation of clamped–
clamped arches using fringing effect of the electrostatic 
forces.

Das and Batra (2009) used finite and boundary element 
methods to study the transient analysis of arch beams, 
and showed that arch beams might face a softening effect 
before having a snap through motion. Sarı and Pakdemirli 
(2013) investigated the forced vibration response of curved 
microbeam due to the small AC loads using the perturba-
tion method, the method of multiple scales. They examined 
effects of the nonlinear elastic foundation as well as the 
effect of curvature on the vibrations of the microbeams.

Ansari et al. (2014) investigated by means of an exact 
solution method and using modified coupled stress the-
ory the postbuckling behavior of the functionally graded 
microbeams.

Younis et al. (2010) used the Galerkin procedure to dis-
cretize the equation of motion for the shallow arch. They 
studied both the dynamic and static responses for the micro 
arch, and also compared their results to experimental ones 
to validate their model. Ouakad and Younis (2010) studied 
the non-linear behavior of the shallow arch when actuated 
by both DC and AC load, used Galerkin to simulate the 
static response and to solve the Eigen value problem under 
DC load, and used the perturbation method of multiple 
scales to simulate the forced vibration under both AC and 
DC loads. Experimental investigation and reduced-order 

modeling of imperfect microbeams in the form of shallow 
arches have been presented in (Ruzziconi et al. 2013a, b). 
The effect of axial forces of MEMS arches has been inves-
tigated in (Alkharabsheh and Younis 2013a) whereas the 
influence of non-ideal boundary conditions on the dynamic 
response has been presented in (Alkharabsheh and Younis 
2013b). The dynamical integrity of imperfect beams and 
arches have been investigated thoroughly in (Ruzziconi et 
al. 2013c, d). The use of dynamic-snap through of MEMS 
arches for filtering applications has been proposed in (You-
nis et al. 2010; Ouakad and Younis 2014).

While comparing the theoretical predictions to experi-
mental data in (Ruzziconi et al. 2013a), large deviation was 
found at first, which was attributed to the uncertainty in the 
measured dimensions of the beam, particularly its thickness 
and initial curvature. The beam was assumed symmetrically 
curved up with a classical sinusoidal signal. In this work, 
we show that this classical assumption of the initial shape 
can lead to inaccurate predictions. Instead, we use the exact 
shape as acquired from the experiment in the reduced order 
model. This combined with the shooting technique should 
lead to more accurate results and better agreement with 
experiments.

2 � The micro structure

The microstructure considered here is an imperfect poly-
silicon microbeam fabricated using surface micro machin-
ing procedure (Ruzziconi et al. 2013a). The beam is of a 
rectangular cross section forming one side of a capacitor, 
which can be approximated to act as a parallel plate capaci-
tor. An SEM picture of the fabricated microbeam is shown 
in Fig.  1a. The lower electrode is placed underneath it a 
distance d with a gap filled with air. To acquire the beam’s 
dimensions and its exact shape, an optical interferometer 
profilometer is utilized. The profilometer reveals the topog-
raphy of the beam by reflecting a light from a reference 
mirror that is then combined with a light reflected from the 
sample to produce interference fringes. The contrast of the 
fringes affects the focus of the image. The measured lon-
gitudinal profile of the beam is shown in Fig. 1b. From the 
figure, one can see that the microbeam is not straight, but 
has a configuration that is curled up a few microns at its 
midpoint. Figure 1c shows the 3D profile indicating clearly 
the curvature of the beam as a shallow arch.

The experimental set-up used for testing the MEMS 
device is shown in Fig.  2. It consists of a micro system 
analyzer (MSA), under which the microchip is mounted 
horizontally inside a special vacuum chamber. The cham-
ber is designed to fit directly underneath it. The chamber is 
equipped with a viewport window located on the top that is 
made of glass, which enables the laser to penetrate without 
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any distortion. It has some ports placed in the lateral sides, 
which are for the pressure gauge and electrical connections. 
Also, the chamber is hooked up to a high vacuum pump. 
The AC and DC power sources are provided either by the 
MSA itself, which generates different type of signals that 
can be used to excite the microbeam, or by generating an 
electrical signal using the software LabVIEW. Then, this 
generated signal is passed through a data acquisition card, 
an amplifier, and a multimeter (to ensure the exact voltage) 
before reaching the micro-chip.

As clear from Fig. 1a and the screen picture in Fig. 2, 
one can see the actuation pads at the edges of the micro-
beam, which are used to connect the beam with the elec-
trostatic force to excite it. The force is composed of a DC 
voltage load VDC superimposed to an AC harmonic load of 
amplitude VAC and frequency Ω.

Next, we excite the beam using a weak random signal, 
white noise, with a very small voltage load. This is to reveal 
its natural frequencies while staying in the linear regime, 
i.e., without the influence of the geometric or electrostatic 
nonlinearities. The results are shown in Fig. 3. Note that the 
first resonance frequency is near 148.32 kHz.

After revealing the natural frequencies of the beam, 
we next examine the nonlinear response of the beam 
through frequency sweep tests. Toward this, we applied 
a signal from the LabVIEW program, and varied the 
voltages to get more controlled response around the 
main resonance. Next, we fixed the DC voltage at 0.7 V 
and varied the AC voltage. Figure 4a shows, as expected, 
that the first natural frequency of the beam is around 
148 kHz. Then we fixed the DC load at 0.7 V and started 
increasing the AC load, such that we notice the soften-
ing behavior in our results, as shown in Fig. 4b through 
Fig. 4e. Notice that as the strength of the softening effect 
increases with the increase of the AC load, the differ-
ence in the response between the forward and back-
ward sweep increases leading to considerable hysteresis 
regimes.

Fig. 1   The microbeam under study: a an SEM picture, b the beam profile along its length showing, in microns, the length of the microbeam and 
the curled up configuration, c 3-D view of the beam profile

Fig. 2   Experimental set-up used for testing the device: the MSA ana-
lyzer (up right), the vacuum chamber (down right) and the monitor 
showing wire-bonded beams (left)
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3 � Theoretical study

In this section, we investigate the response of the 
micromachined arch theoretically when actuated by both 
DC electrostatic load and AC harmonic loads. We use 
reduced order model ROM to solve the force vibration 
response due to the DC and AC load (Younis 2011). We 
use two modes of a straight beam in the ROM, two arch 
mode shapes, and then we compare the results among 
them. To account for the moving actuation pads of the 
microbeam, due to under itching, one can assume flex-
ible anchors as in (Alkharabsheh and Younis 2013b). 
Another approach is to assume a new effective length of 
the beam (since effectively parts of the pads are moving 

with the beam as if they are part of it). This effective 
length of the beam can be chosen by matching the 
measured linear natural frequency of the beam to the 
experimental value. We also use a curve fitted function 
to represent the initial curvature of the beam, and com-
pare the response by using a classical function from the 
literature.

3.1 � Problem formulation

Consider a clamped–clamped micro arch as seen sche-
matically in Fig.  5a. The expression governing the initial  

shape is taken typically as ⌢
wo(

⌢
x) = bo

2
[1− cos

(

2πx
L

)

], 

Fig. 3   First four measured 
natural frequencies when the 
beam is excited by white noise 
at VDC = 1 V and VAC = 1 V

(a) (b) (c)

(d) (e)

Fig. 4   Experimental measured frequency response curves at a VAC = 0.75 V, b VAC = 1 V, c VAC = 2 V, d VAC = 3 V, e VAC = 4 V. The forward 
and backward sweep are, respectively, in red stars and blue circles
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where bo is the initial rise from the straight position. The 
micro-arch is actuated by an electrostatic force applied 
between the upper and the lower electrodes, and acts like 
a parallel plate capacitor. This electrostatic force is com-
posed of a DC component VDC superimposed to an AC har-
monic load of amplitude VAC and a frequency 

⌢

Ω. The gap 
distance between the two electrodes is d, the length of the 
microbeam forming the upper electrode is L, and its width 
is b and thickness is h. We assume a shallow arch where 
(d

⌢
wo/dx)

2 ≪ 1 (Dawe 1971), so the parallel plate assump-
tion will be valid. Thus, the nonlinear equation of motion 
for the transverse deflection of the arch (Nayfeh 2000) is 
expressed as

where E is the Young’s modulus; I is the moment of inertia, 
considering a rectangular cross section I = bh3/12; ρ is the 
material density; A is the cross sectional area A = bh; ⌢c is 
the viscous damping coefficient; and ε is the dielectric con-
stant of the gap medium (here is assumed air).

From Fig.  5 the boundary conditions of the clamped–
clamped arch are clamped at the boundaries, that is

Next, we introduce nondimensional variables:

where; T =
√

ρAL4

EI
.

Next, we plug Eq. (3) into Eqs. (1) and (2), which yields 
the following nondimensional equation of motion and non-
dimensional boundary conditions:
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where

and the nondimensional parameters are:

3.2 � The Eigen value problem

We solve the Eigen value problem to get the natural fre-
quencies and mode shapes at different initial rises. Thus, 
we solve the linearized undamped unforced equation of 
Eq. (4) (Nayfeh 2000), which can be written as

We plug Eq. (6) into Eq. (8) and use the separation of vari-
ables technique as

where ω is the eigenvalue and Φ is the eigenfunction. 
Hence, we end up with:

Equation  (10) has a solution consisting of two parts, the 
homogeneous part Φh (x) and the particular part Φp (x), that is
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Fig. 5   a Electrically actuated 
clamped–clamped arch, b 3-D 
schematic for the arch
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ẑ̂z

b h

L
(a) (b)



2430	 Microsyst Technol (2015) 21:2425–2434

1 3

The homogeneous part is the same as the mode shape of a 
straight beam:

Next, we solve for the particular part by assuming

Substituting Eq. (13) into Eq. (10) gives the constant c5

Thus, c5 is function of the unknowns A, B, C, and D. 
Accordingly, Eq. (11) can be written as

Equation (15) is subjected to the boundary conditions

To solve the Eigen value problem, we apply the boundary 
conditions Eq. (16). We end up with 4 algebraic equations 
in the following form:

Each element in the M matrix is a function of the natural 
frequency ω. The determinant of this matrix will give the 
natural frequency (nondimensional). Then, we can get the 
values of the unknowns A, B, C and D, and calculate the 
unknown C5. Finally, we solve for the mode shape that is 
associated with each frequency.

3.3 � Reduced order model

To get the response of the beam w(x, t) we use the Galerkin 
procedure to discretize the equation of the beam, Eq.  (4), 
(Nayfeh et al. 1995; Younis et al. 2003). So the deflection 
of the arch is approximated as:

where Φi(x) is the trial function that satisfies the boundary 
conditions of the arch, and ui(t) is the modal coordinate.

For Φi(x), we can substitute any function that satisfies 
the boundary conditions, but most of the functions used in 
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n
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the literature are either the mode shapes of a straight beam 
(bo = 0), or the exact mode shapes of the arch itself.

The mode shapes of a straight clamped–clamped beam 
from can be expressed as:

where; σ1 =  0.982502, σ2 =  1.00078, σ3 =  0.999966, σ4 
= 1; and ω1,non = 22.3733, ω2,non = 61.6728, ω3,non = 120.
903, ω4,non = 199.859.

The exact mode shapes for the arch beam are obtained 
as discussed in Sect.  3.2. To solve Eq.  (4) and derive the 
ROM., we follow the below procedure:

 Multiply Eq. (4) by the denominator (1 + wo + w)2, to 
avoid the computationally expensive spatial numerical inte-
gration in the course of the solution due to the electrostatic 
force term (Nayfeh et al. 2005). Hence, Eq. (4) becomes:

Plug Eq. (18) into Eq. (20), which yields the following 
equation:

–– Multiply Eq.  (21) by Φi(x) and integrate from 0 to 1, 
and we end up with a differential equation in terms of 
the modal coordinate ui(t).

–– We solve for ui(t) and multiply it with Φi(x) to get the 
whole response w(x, t) from Eq. (18).

Next, we address the issue of how many modes should 
be used in the ROM and of which kind (of straight beam or 
of an arch). Toward this, we solve for the natural frequency 
of the microbeam arch for various values of initial rise and 
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compare among the ROM results and the exact analytical 
solution. Figure  6 shows the results for the ROM when 
using one and two symmetric modes of a straight beam and 
also using one and two symmetric modes of the arch and 
compare the results to the analytical results of Sect. 3.2. We 
can note that using one or two arch modes or two straight 

modes should lead to good results. In this paper we use the 
first and the third mode of the arch as basis functions in the 
ROM to generate the frequency response curves in the fol-
lowing sections.

4 � Comparison between theory and experiment

In this section, we attempt to match experimental data of 
the obtained frequency–response curves with results gener-
ated from long time integration of the modal equations of 
the ROM.

0 1 2 3 4 5 6 7
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120

initial rise bo

ω n
on

exact (eigen value)
ROM one mode straight
ROM two modes straight
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5.5

Fig. 6   Comparison between the exact solution of the eigenvalue 
problem of an arch and the results of the ROM when using straight 
beam mode shapes and the arch mode shapes for various values of 
initial rise of the arch. Shown also in the vertical straight line is the 
initial rise of the fabricated imperfect beam of the studied case

Fig. 7   The first mode of the arch

(a) (b) (c)

(d) (e)

Fig. 8   The measured frequency response curve and the simulated one using long-time integration L–T I of the ROM, a VAC = 1 V, b VAC = 2 V, 
c VAC = 3 V, d VAC = 4 V, e VAC = 5 V
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One should note that the arch of this study is con-
nected from both sides with actuation pads that are flex-
ible due to under etching (Alkharabsheh and Younis 
2013b). Hence, it is noticed that part of the pads are mov-
ing when exciting the arch with the electrostatic force as 
if they are part of the arch. As discussed in (Alkharab-
sheh and Younis 2013b), these flexible pads or anchors 
reduce the stiffness of the arch considerably. One 
approach to deal with this is to assume soft springs at the 
boundaries of the arch. Another approach is to assume 

an effective length, which is longer than the measured 
length from the profilometer of Fig. 1. We follow here the 
second approach.

First, we solve the Eigen value problem for the theo-
retical natural frequency to match it with the experimental 
one. This yields a nondimensional first natural frequency 
of ωn =  67.77 and the mode shape of Fig. 7. We convert 
this nondimensional frequency to the dimensional one 
as ωHz = ωn

2π

√

EI/ρAL4. Substituting the numerical val-
ues of the arch with the length measured in Fig.  1 gives 
ωHz =  288,  716  kHz, which is far from the experimental 
one (148.250 kHz). Using an effective length Leff = 1.395 
original length matches the theoretical prediction with the 
experimental value.

To simulate the forced vibration using the ROM, we 
calculate the damping term, the quality factor Q based on 
Fig. 3 and obtain Q = 974. Using this value in the model, 
the effective length, and the other measured parameters of 
the each, we simulate the forced response for the electric 
loads of Fig.  4 by integrating the modal equations of the 
ROM over long period of time L–T I until reaching steady 
state. Figure 8 compares both the simulation and the exper-
imental results. Figure  8 shows qualitative matching with 
the experiment, showing softening behavior, but not quan-
titative matching.

Fig. 9   Plot of the discretized points of the measured arch profile 
along its length

Fig. 10   The measured frequency response curve and the simulated one of an arch a VAC = 1 V, b VAC = 2 V, c VAC = 3 V, d VAC = 4 V, e 
VAC = 5 V, using the curve fitted function. The abbreviation L–T I C–F stands for (long-time integration using curve fitted function)
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In order to improve the quantitative matching between 
theory and experiment, we implement next the exact pro-
file of the arch in the ROM instead of the idealized shape, 
which traditionally used in such cases, of Eq. (6). Toward 
this we curve-fit the exact initial profile, which is shown in 
Figs. 9 as discretized points, into a fifth-order polynomial 
and obtain the new initial profile wo(x) as

Figure 10 compares the experimental results to the sim-
ulation using long-time integration with Eq.  (6) and the 
curve-fitted function of Eq. (22). Figure 10 shows improve-
ment due to the use of Eq. (22); the upper curves become 
closer to the experimental ones. However, the agreement is 
mostly qualitative with the experiment and the discrepancy 
is still considerable.

5 � The shooting technique

In the previous simulations, we used long-time integration to 
solve the differential equations of the ROM. This technique 

(22)

wo(x) = −0.0940438 + 3.94325 x + 40.1152 x
2

+ 15.9357 x
3 − 254.592 x

4 + 280.601 x
5 − 85.9134 x

6
.

depends on the basin of the attraction (Younis 2011). To 
capture a solution, the basin of attraction should be big and 
robust; otherwise, this technique will not capture a solution 
implying that no stable solution exists, which is not nec-
essary true. In order to predict the entirety of the solutions, 
we need to use another numerical technique to solve the 
differential equations. One of the most robust techniques is 
the shooting technique, which can capture the periodic solu-
tion more accurately than long-time integration. In addition, 
it is capable of capturing both stable and unstable solutions, 
if needed, for bifurcation analysis. Following the procedure 
outlined in (Younis 2011), we show next results of the shoot-
ing technique using the classical shape of the initial curvature, 
Eq.  (6), and then compare to the results obtained using the 
exact shape of Eq. (22). The results are depicted in Fig. 11.

Figure  11 shows much better match with the experi-
ments using the shooting technique. The figures also show 
the difference between using the curve-fitted function to the 
classical one, and how the results were improved signifi-
cantly by using the fitted one. This indicates the importance 
of accounting for the exact shape of the arch in the model.

It may also be noted that there is still a difference 
between the simulated results and the experimental ones; 
the upper simulated curves extend more than the experi-
mental ones. This is expected since shooting keeps 

Fig. 11   The measured frequency response curve and the simulated one of an arch using the shooting technique for a VAC = 1 V, b VAC = 2 V, c 
VAC = 3 V, d VAC = 4 V, and e VAC = 5 V



2434	 Microsyst Technol (2015) 21:2425–2434

1 3

capturing periodic solutions even when their basin of 
attractions shrink too much to the extent that they cannot 
exist experimentally due to the presence of disturbance 
and noise. For more improvements in the theoretical pre-
dictions, analyzes of the basin of attraction of these upper 
curves needs to be conducted (Nayfeh et al. 1995).

6 � Summary and conclusions

In this study we investigated the dynamic behavior of an 
imperfect microbeam (arch) theoretically and experimen-
tally. We used several analytical techniques to match the 
theoretical results with the experimental measurements of 
the frequency–response curves of the arch. We found that 
using an effective length of the arch, to account for the flex-
ible pads, the shooting technique, to capture most of the 
resonant curves especially near bifurcation points, and the 
exact shape of the arch, as captured through measurements, 
lead to improved matching with the experiments.
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