
1 3

Microsyst Technol (2015) 21:1325–1335
DOI 10.1007/s00542-014-2336-z

TECHNICAL PAPER

Robust control of the electrostatic torsional micromirrors

Guangping He · Zhiyong Geng 

Received: 1 April 2014 / Accepted: 18 September 2014 / Published online: 9 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

parallel-plate or comb electrostatic actuators, the ETMs 
systems show the so-called “Pull-In” or “Snap-Through” 
bifurcation phenomena (Degani et  al. 1998) due to the 
nonlinear characteristics of the dynamics of the systems. 
In order to overcome the Pull-In limits such that the travel 
range of electrostatic actuators can exceed the bifurcation 
point, some research reports can be found in the literatures 
(Dean et al. 2005; Pons-Nin et al. 2002; Tee and Ge 2009; 
Maithripala et al. 2005; Zhu et al. 2007, 2008; Li and Liu 
2009; Piyabongkarn et al. 2005; Chen et al. 2004; Agudelo 
et  al. 2009; Ma et  al. 2011; Pu et  al. 2004), of which the 
parallel-plate electrostatic actuators are in the majority 
(Pons-Nin et al. 2002; Tee and Ge 2009; Maithripala et al. 
2005; Zhu et al. 2007, 2008; Li and Liu 2009), while the 
researches about the comb electrostatic actuators (Piya-
bongkarn et  al. 2005; He and Geng 2012) or the ETMs 
are relatively less due to the complexity of the nonlinear 
dynamics.

The topics with respect to the design (Pu et  al. 2004), 
modeling (Degani et al. 1998) and stability analysis (Zhao 
et al. 2005; Guo and Zhao 2004, 2006) of the dynamics of 
the ETMs have been extensively investigated in the past 
decade. To improve the performances of the ETMs from 
different aspects, some different design methods were pre-
sented in the literatures. For instance, the torsional beam 
type (Pan et  al. 2008), comb drive type (Borovic et  al. 
2004; Owusu et al. 2006) and sidewall electrodes type (Pu 
et  al. 2004) etc. Although the specific designs have their 
different merits, such as the comb drive electrostatic actua-
tors can considerably reduce the source voltage since they 
can provide the relative larger capacitance, the sidewall 
electrodes type provides a perfect approach for design-
ing multi-degrees of freedom micromirrors, the torsional 
beam type ETMs are still the primary selection because of 
the simple structure. For the modeling of the micromirror 

Abstract  In order to simplify the sensors subsystems of 
the electrostatic torsional micromirrors (ETMs), the output 
feedback control for the ETM systems is investigated in 
this paper. The dynamics of the systems is established by 
combining the dynamics of both the mechanical and elec-
tronic subsystems, and it is proved that the dynamics of the 
overall system with uncertainties in electrical parameters 
can be exactly transformed into the third order linear sys-
tem. Then an output feedback finite-time stabilizing (FTS) 
controller is presented by composing of a full state FTS 
observer and a state feedback FTS controller for the third 
order linear systems, such that the ETM systems can be sta-
bilized in its full travel range by merely measuring the tilt 
angle. Some numerical simulations demonstrate the stabil-
ity of the proposed output feedback FTS controller.

1  Introduction

The importance of the control techniques for the Microe-
lectromechanical systems (MEMS) is recognized gradually 
in recently years. The electrostatic torsional micromirrors 
(ETMs) have extensive applications in MEMS, such as the 
projection systems, optical network switches, and opti-
cal crossconnects (Bryzek et al. 2003; Borovic et al. 2004; 
Owusu et al. 2006; Pan et al. 2008) etc. It is similar to the 
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systems, Degani et al. (1998) and his coworkers gave a fun-
damental contribution. As to the dynamics analysis of the 
micromirror systems, Zhao et al. (2005) and Guo and Zhao 
(2004, 2006) had given some efforts for investigating the 
complex effects of van der waals force and Casimer force 
acting on the micro-systems. Comparatively, there are quite 
a few of researches in literatures with regarding to the con-
trol problems of the ETMs. For instance, Chen et al. (2004) 
proposed a linear voltage control law to enable the opera-
tion of the ETMs beyond the pull-in angle. The main prob-
lem of the control method is the inferior transient response. 
Agudelo et  al. (2009) proposed a differential flat motion 
planning method that permits one to design the transient 
response of the ETMs and had been verified by their exper-
iment system, whereas the suggested control method use 
a smooth feedbacks such that the settling time of the con-
troller is actually infinite, therefore the bandwidth of the 
ETMs is not optimized. Similar results are also shown in 
(Ma et al. 2011), of which two active control methods are 
proposed based on the simple proportional and derivative 
(PD) controller.

Motivated by the works (Zhu et al. 2008; Piyabongkarn 
et al. 2005; Agudelo et al. 2009; Degani et al. 1998), we are 
interested in the output feedback control and the finite-time 
stabilization for the ETMs. Finite-time control is based on 
the finite-time differential equations and Lyapunov’s sta-
bility theory, and had been given continuous researches by 
several scientists for developing this technique in the past 
last two-decade years. To date, there are two classes of 
methods can be chosen to design a finite-time control for 
some classes of nonlinear systems. The first class method 
is the high order sliding mode control, which had been pro-
posed by Levant (1998, 2001, 2003). This technique utilize 
the time derivates of the actual inputs to be the virtual input 
by artificially enhancing the relative degrees of a system, 
such that the discontinuity only occurs in the virtual input 
while the actual input is continuous. The main obstacles of 
applying this kind of finite-time controller design method 
in practice are the necessary of using faster actuators and 
the stability of the controller cannot be easily proved. 
Another class of finite-time controls adopts non-smooth 
but Hölder continuous feedback. Bhat and Bernstein (1998, 
2000), Qian and Lin (2001), Huang and Lin (2005) and 
Hong et al. (2001) had contributed some important results 
in this field. The finite-time controllers based on the Hölder 
continuous feedback preserve the robust stability of the 
discontinuous feedback control while avoiding the “Chat-
tering” defect of them, and showing appealing transient 
response from the point of view of engineering since the 
naturally time-optimal control effect. For the electrostatic 
microactuators, the uncertainties could be caused by the 
layout, parastics, structure deformations, and damping sys-
tem etc., at the same time the microactuators should hold 

accurate and stable positioning capability and high sensitiv-
ity in response. These features of microactuators provide a 
perfect field for applying the Hölder continuous feedback 
controller with robust and finite-time stability. Neverthe-
less, designing a finite-time control is generally a difficult 
work because of the limited mathematical tools that can 
be utilized to deal with non-smooth differential equations. 
Designing an explicit finite-time controller for the general 
high order nonlinear systems is still an open problem.

In this paper, it is firstly shown that the nonlinear 
dynamics of the ETMs with electrical uncertain param-
eters can be exactly transformed into the third order linear 
systems, and then an output feedback FTS controller is 
presented for the third order linear system with consider-
ing bounded uncertainties by combining a full state FTS 
observer and a state feedback FTS controller. Even though 
both the FTS observer and the FTS controller are nonlinear, 
it is shown that output feedback FTS controller presented 
in this paper is globally stable. The stability of the pre-
sented output feedback controller is directly proved without 
using the separation principle. Thus the control scheme can 
considerably reduce the complexity of sensing subsystem, 
which commonly needs the on-chip implementation for the 
MEMS devices.

2 � The dynamics of the ETM

A schematic representation of the ETMs is illustrated in the 
Fig.  1, where the tilt angle of the micromirror is denoted 
by θ, d the air gap of the electrostatic microactuator, and 
k the torsional stiffness of the mechanical system. Assume 
the top movable electrode is positive and the bottom fixed 
electrode is connected to the electrical ground, both the 
two electrodes of the ETMs are rectangular and the length 
and width of them are L and W respectively. Then one 
can establish a cylindrical coordinate system denoted by 
o− (r,φ, z), where the origin o of the coordinate system 
is at the cross point of the two nonparallel-plates, and the 
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Fig. 1   A schematic representation of the ETM
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direction with φ = 0 is along the length direction L of the 
fixed electrode.

When the source voltage of the microactuator is not 
zero, in the cylindrical coordinate system o− (r,ϕ, z) the 
electrostatic potential approximately satisfies the Laplacian 
(Dean et al. 2005)

where the single variable is ϕ for any point in the air gap of 
the microactuator, thus Eq. (1) can be simplified as

and the boundary conditions of (2) satisfy Φ(ϕ)|ϕ=0 = 0 
and Φ(ϕ)|ϕ=θ = Va, where Va is the actuation voltage of 
the capacitor of the ETMs. It is obvious that the solution of 
the second order partial differential Eq. (2) is given by

Then the electrostatic field can be expressed as the nega-
tive gradient of the electrostatic potential Φ(ϕ), and it can 
be expressed as

where er, eϕ and ez denote the identity vectors of coordi-
nates r,ϕ and z respectively. Since both the coordinates r 
and z are constants at any point in the air gap of the ETMs, 
the Eq. (4) can be simplified to

In the electric field E, the electric displacement can be 
calculated by

where ε0 = 8.8542× 10−12 (F/m) and εr are the permit-
tivity in free-space and the relative dielectric permittivity 
respectively, and the density of surface charge on the top 
palate is

Thus the total charge on the top plate can be computed 
by the surface integral

(1)∇2Φ(ϕ) = 1

r

∂

∂r

(

r
∂Φ

∂r

)

+ 1

r2

∂2Φ

∂ϕ2
+ ∂2Φ

∂z2
= 0

(2)∇2Φ(ϕ) = ∂2Φ

∂ϕ2
= 0

(3)Φ(ϕ) = Va

θ
ϕ.

(4)E = −∇Φ = −
(

er
∂Φ

∂r
+ eϕ

1

r

∂Φ

∂ϕ
+ ez

∂Φ

∂z

)

(5)E = −eϕ
1

r

∂Φ

∂ϕ
= −eϕ

Va

rθ
.

(6)D = εrε0 E = −eϕ
εrε0Va

rθ

(7)ρ = −|D| = εrε0Va

rθ
.

(8)Qa =
∫ W

0

∫ r1+L

r1

ρdrdz = εrε0W

θ
ln

(

r1 + L

r1

)

Va

and the capacitance of the electrostatic microactuator is

Then the electric energy of the electrostatic microactua-
tor can be given by

By the principle of virtual work (Senturia 2002), the 
electrostatic torque acting on the micromirror can be cal-
culated by

By the assumption of small tilt angle, then the electro-
static torque (11) can be simplified to

The electrostatic torque (12) is expressed as a function of 
the tilt angle θ and the actuated voltage Va. This expression 
is generally used to analyze the pull-in voltage and pull-in 
angle of micromirrors (Degani et al. 1998). Since the rela-
tionship between the charge and the voltage Qa = CaVa

, the electrostatic torque (12) can also be expressed by a 
function of the tilt angle θ and the charge Qa, and it is easy 
to show that

Therefore, the dynamics of the ETM can be given by

where J the inertia of the movable electrode, b the viscous 
damping coefficient, and k the stiffness of the mechanical 
torsional spring. In reference (Chen et al. 2004), the motion 
control for the ETMs is investigated by using the dynam-
ics (14) with electrostatic torque formed as (12). Since the 
electrical subsystem of the ETM is not considered in (Chen 
et al. 2004), the uncertainties caused by the electrical sub-
system could not be considered in designing the controller. 
Similar imperfections also occurred in (Ma et al. 2011).

Refer to (He and Geng 2012), the equivalent circuit of 
the electrostatic microactuators is illustrated in the Fig. 2, 
where R is the resistance of the circuit, Ca is the capaci-
tance of the actuated capacitor, Va is the actuated voltage 
acting on the microactuators, Vs is the source voltage of the 
system, and Is is the source current, Cpp denote the paral-
lel parasitic capacitor and Csp denote the serial parasitic 
capacitor.

(9)Ca =
Qa

Va

= εrε0W

θ
ln

(

d

d − L sin θ

)

.

(10)Ec =
1

2
CaV

2
a .

(11)Me =
∂Ec

∂θ
= εrε0W

2θ2

[

Lθ cos θ

d − L sin θ
+ ln

(

d − L sin θ

d

)]

V
2
a

(12)Me =
εrε0W

2θ2

[

Lθ

d − Lθ
+ ln

(

1− Lθ

d

)]

V2
a

(13)Me =

[

Lθ
d−Lθ

+ ln
(

1− Lθ
d

)

]

2εrε0W ln2
(

1− Lθ
d

) Q2
a

(14)J θ̈ + bθ̇ + kθ = Me
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According to the equivalent circuit, some electrical 
equations can be given by

The current in the microactuator can be deduced from 
the Eqs. 15–18, and can be written as

To describe the relative magnitude of the parasitic 
capacitances, define

where C0 is the capacitance of the ETM’s normal capaci-
tance at the balance position, and it is given by

If one defines the state vector x =
[

x1 x2 x3
]T, where 

the variables are defined by

then using the Eqs. 13, 14 and 19–22, the nonlinear dynam-
ics of the ETMs in state space can be expressed as

(15)Vs = IsR+ V0

(16)Is = Q̇a + Q̇pp

(17)Qa = CaVa

(18)V0 =
Qpp

Cpp

= Qa

Ca

+ Qa

Csp

(19)Q̇a =
Vs −

(

1
Ca

+ 1
Csp

− R
Cpp

C2
a
Ċa

)

Qa

R
(

1+ Cpp

Csp
+ Cpp

Ca

)

(20)

ρp =
Cpp

C0

ρs =
C0

Csp

(21)C0 = εrε0WL/d

(22)

x1 = θ

x2 = θ̇

x3 = Q2

(23)ẋ1 = f1(x1)+ g1(x1)x2

ẋ2 = f2(x1, x2)+ g2(x1, x2)x3

ẋ3 = f3(x)+ g3(x)Vs

where 

As the special cascade structure in state variables, the 
nonlinear system (23) belongs to a class of special non-
linear systems with strict feedback normal forms (Krstić 
et al. 1995). It was proved that a Single Input Single Output 
(SISO) nonlinear system with strict feedback normal form 
is differentially flat (Sira-Ramírez and Agrawal 2004). Both 
in Zhu et al. (2008) and Agudelo et al. (2009) the differen-
tially flat property was utilized for solving the control prob-
lem of electrostatic parallel-plate microactuators (Zhu et al. 
2008) or torsional micromirrors (Agudelo et  al. 2009). 
Even though a speed observer was integrated in the control-
ler of (Agudelo et al. 2009), charge or voltage sensors were 
necessary for stabilizing the ETMs. In this paper we aim to 
design an output feedback finite-time stabilizing controller 
such that the sensing subsystem of the ETMs can be further 
simplified. To this end, the Brunovsky’s canonical form of 
the dynamics of ETM is introduced in the next section for 
the purpose of simplifying the control design.

3 � The normal form of the dynamics of the ETMs

The input–output system of the system (23) can be written 
as

where u = Vs the input of the system, y = x1 is defined to 
be the output, the vector fields f (x) and g(x) are given by, 

f (x) =







f1(x1)+ g1(x1)x2

f2(x1, x2)+ g2(x1, x2)x3

f3(x)






, g(x) =





0

0

g3(x)





f1(x1) = 0, g1(x1) = 1

f2(x1, x2) = − k

J
x1 −

b

J
x2

g2(x1, x2) =
1

2Jεrε0W

[

Lx1

d − Lx1
ln
−2

(

1− Lx1

d

)

+ ln
−1

(

1− Lx1

d

)]

,

f3(x) = −2x3h1(x)
/

h2(x),

g3(x) = 2
√
x3
/

h2(x),

h1(x) =
x1

εrε0W
ln

−1

(

d

d − L sin x1

)

+ ρsd

εrε0WL

+ RρpL
2x2

2

(

d − Lx1

d

)

ln
−2

(

d

d − L sin x1

),

h2(x) = R

[

1+ ρsρp + Rρp
Lx1

d
ln−1

(

d

d − L sin x1

)]

.

(24)
ẋ = f (x)+ g(x)u

y = x1

aC

R

sV

+

−

0V

sI

spC

aV

ppC

Fig. 2   The ideal equivalent circuit of the ETM
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Then the third order Brunovsky’s canonical form for the 
nonlinear system (24) can be given by the Proposition 1 on 
the basis of the exact linearization theory (Isidori 1995, Ch 4).

Proposition 1  (Bronovsky’s canonical form) Suppose 
x3 �= 0, and define z =

[

z1 z2 z3
]

 to be a new state vector, 
then by the coordinates transformation

and the input transformation

the nonlinear system (24) can be transformed into a linear 
system with the third order Brunovsky’s canonical form

Proof  Calculating the first to the third order time deri-
vates of the output y = x1, then it can be shown that 

ẏ = Lf y +
(

Lgy
)

u, ÿ = L2f y +
(

LgLf y
)

u and 
...
y = L3f y+ 

(

LgL
2

f y
)

u where Lf y = x2, Lgy = 0, L2f y = f2 + g2x3,  

LgLf y = 0, L3f y = ∂
∂x
(f2 + g2x3)f (x) �= 0, and LgL

2

f y =

∂
∂x
(f2 + g2x3)g(x) �= 0.Thus the Proposition 1 is proved.  □

Remark 1  As to the linear systems (27), there exist many 
different controllers, such as poles point placement (Agudelo 
et  al. 2009), dynamic sliding modes and H2

/

H∞ robust 
controls (Li and Liu 2009) etc. Nevertheless, most of the 
controllers presented for stabilizing the ETMs in literatures 
applied full/partial state feedback, where still require a com-
plex sensing subsystem. Although the charge and position 
sensing are realizable (Anderson et al. 2005), the measure-
ment of the angular speed of the ETMs is intractable (Zhu 
et al. 2008; Agudelo et al. 2009). In the next section, an out-
put feedback controller is presented for stabilizing the linear 
system (27) with considering some bounded uncertainties.

4 � Output feedback finite‑time stabilizing controller

Designing an output feedback controller depends on the 
real-time robust estimations of the higher-order time deriv-
atives of the outputs. Therefore, designing a high perfor-
mance observer is important for implementing this task. 
The popular high-gain observer (Atassi and Khalil 1999) 
can be used in any continuous feedback systems. Whereas, 
in order to realize the finite-time stabilization in output 
feedback control, an observer with finite settling time is 
necessary.

(25)
[

z1 z2 z3
]

=
[

y ẏ ÿ
]

(26)v = L3f y +
(

LgL
2
f y
)

u

(27)

ż1 = z2

ż2 = z3

ż3 = v

.

Let’s consider the third order linear system (27), sup-
pose the variable z1 is measureable and the measured value 
is ẑ1, but the variables z2 and z3 are not measurable, and the 
estimated values are ẑ2 and ẑ3 respectively. Define the error 
variables e1 = ẑ1 − z1, e2 = ẑ2 − z2 and e3 = ẑ3 − z3, then 
the error systems of (27) can be written as

For the errors system (28), a FTS observer can be given 
by the following Proposition 2.

Proposition 2   (FTS observer) For the third order Bru-
novsky’s canonical form system (28), there exists positive 
real numbers �i > 0, i = 1, 2, 3, such that the observer

˙̂z3 = β3, β3 = −�3

(

ẑ
7/ 3
3 − β

7/ 3
2

)1/ 7
, be globally finite-

time stable.

Proof  In reference (He and Geng 2012), a detailed proof 
was presented for the finite-time stabilizing controller of 
the third order linear system. The proof of the observer (29) 
is similar to that for the finite-time stabilizing controller. 
Thus the proof is not presented here. Whereas, refer to the 
proof of Proposition 3 in the sequel, the proposition 2 can 
also be proved without any difficulties. 		       □

Remark 2  The finite-time observer (29) is actually a sec-
ond order accurate differentiator. If the observer is stable, 
then after a finite-time transient process, ẑ1 = z1, ˙̂z1 = ż1 
and ¨̂z1 = z̈1 are accurately satisfied. Therefore, let z1 = y(t) 
be a known function of time, then the time derivatives 
˙̂z1 = ẏ(t) and ¨̂z1 = ÿ(t) can be accurately obtained by the 
observer (29) after a finite settling time.

Remark 3  In references (Levant 2001, 2003), arbitrary order 
exact robust differentiators were presented on the basis of high 
order sliding modes. The author proved that the input noises 
are stable under certain conditions. It is worth noting that 
the sliding mode controllers are discontinuous, such that the 
input noises will be considerably enlarged in the higher order 
time derivatives [higher than the fifth order (Levant 2003)]. 
Whereas, the differentiators (observers) given by Proposition 2 
are continuous, and the order of the differentiators (29) is only 
three, thus the sensitivity to the input noise is not a problem.

(28)

ė1 = ˙̂z1 − ż1 = e2

ė2 = ˙̂z2 − ż2 = e3

ė3 = ˙̂z3 − ż3 = w

˙̂z1 = β1, β1 = −�1

(

ẑ1 − z1
)5/ 7 + ẑ2

(29)˙̂z2 = β2, β2 = −�2

(

ẑ
7/ 5
2 − β

7/ 5
1

)3/ 7 + ẑ3
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Remark 4  For the purpose of intuition, consider the 
function y(t) = 2 sin t+ 0.5cos(1.5t), by the second order 
differentiator (29) and let the tunable parameters of it be 
(�1, �2, �3) = (3, 3, 5), the numerical simulation result is 
shown in Fig. 3. One can find that the second order differ-
entiator is finite-time stable, and both the first order differ-
ential ẏ(t) and the second order differential ÿ(t) are accu-
rately recovered by the outputs ẑ2 and ẑ3 of the observer 
(29) respectively.

Let’s further consider the robust controller design prob-
lem for the system (27) with bounded uncertainties. Sup-
pose zd1, zd2 and zd3 are the desired states of the system (27), 
and let ξ1 = z1 − zd1 , ξ2 = z2 − zd2, and ξ3 = z3 − zd3 be the 
errors of the state variables. Then the errors system of (27) 
can be written as

where µi(ξ), i = 1, 2, 3 be the uncertain terms. For the 
ETMs systems, the uncertainties could come from the un-
modeled errors of the mechanical systems and/or the dis-
turbances of the working circumstance. To stabilize the 
uncertain linear system (30), the following Proposition 3 
can be proved.

Proposition 3   (State feedback FTS controller) For 
the uncertain linear system (30), suppose |µi(ξ)| ≤ µ0
∑i

j=1

∣

∣ξj
∣

∣, where µ0 > 0 be a constant, then there exists a 
set of positive real number ki > 0, i = 1, 2, 3, the following 
controller

(30)

ξ̇1 = ξ2 + µ1(ξ)

ξ̇2 = ξ3 + µ2(ξ)

ξ̇3 = v+ µ3(ξ)

(31)
v = −k3sign

(

ξ
7/ 3
3 − α

7/ 3
2

)∣

∣

∣
ξ
7/ 3
3 − α

7/ 3
2

∣

∣

∣

1/ 7

where α1 = −k1sign(ξ1)|ξ1|5/ 7 and α2 =

−k2sign(ξ
7/ 5
2

− α
7/ 5
1

)

∣

∣

∣
ξ
7/ 5
2

− α
7/ 5
1

∣

∣

∣

3/ 7
, renders the origin 

of the system (30) to globally stabilize in finite settling time.

Proof  By the “adding a power integrator” method pre-
sented in (Qian and Lin 2001; Huang and Lin 2005), and 
following the standard backstepping procedure (Krstić 
et al. 1995), the proposition 3 can be proved step by step.

Consider the subsystem ξ1 of (30), define a positive defi-
nite function V1 = 1

2
ξ21 , the time derivate of the function V1 

is given by

Let the virtual input α1 be

where k̂1 > 0 is a constant. Since 
∣

∣ξ21µ1(ξ)
∣

∣ ≤ ξ
12/ 7
1 |µ̃1(ξ)|,  

then (32) satisfies

where δ0 > |µ̃1(ξ)| > 0 is a constant. Further consider the 
subsystem (ξ1, ξ2), define

where

Due to the Lemma 3 presented in the Appendix of the 
paper, the positive definite property of (36) is guaranteed. 
Then the time-derivate of (35) is given by

By the Lemma 1 and Lemma 2 that are presented in the 
Appendix of the paper, it is not difficult to show that the 
second term of the right hand side of (37) satisfies

(32)V̇1 = ξ1α1 + ξ1(ξ2 − α1)+ ξ21µ1(ξ)

(33)α1 = −k̂1ξ
5/ 7
1

(34)V̇1 ≤ −
(

k̂1 − δ0

)

ξ
12/ 7
1 + ξ1(ξ2 − α1)

(35)V2 = V1 +W1

(36)W1 =
∫ ξ2

α1

(

s7/ 5 − α
7/ 5
1

)9/ 7
ds

(37)
V̇2 = −(k1 − δ0)ξ

12/ 7
1 + ξ1(ξ2 − α1)
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where δ1 > 0 and δ2 > 0 are constants.
The third term of the right hand side of (37) is given by

The fourth term of the right hand side of (37) can be 
written as

Using the Lemma 1 and Lemma 2 of the Appendix once 
more, the inequality (40) follows that

where δ3 > 0 and δ4 > 0 are constants. Substitute (38), 
(39) and (41) into (37), then (37) can be written as

Note that α1 = −k̂1ξ
5/ 7
1  and

Thus the last term of (42) satisfies

Then using the Lemma 1 and Lemma 2 of the Appendix, 
it is not difficult to show that

where δ5 > 0 and δ6 > 0 are two constants. Therefore (42) 
satisfies

(39)
∂W1

∂ξ2
ξ̇2 =

(

ξ
7/ 5
2 − α

7/ 5
1

)9/ 7
[ξ3 + µ2(ξ)]

(40)
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∣
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∣
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∣
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∣

∣

∣
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∣

∣
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∣
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∣

∣
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1
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(
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(
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∣
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If define the virtual input α2 to be

where k̂2 > 0 is a constant, then (46) follows that

Along a similar line of the derivations of above, for the 
system (30), one can define positive definite function

where

Then the controller

where k̂3 > 0 and δ∗1 > 0 are constants, renders the time 
derivate of (49) to satisfy

On the other hand, since the function V3 in (49) is 
defined to be

Thus, there exists a sufficiently large constant k > 0, 
such that V̇3 ≤ −kV

6/ 7
3 . Then according to the Lemma 

4 of the Appendix in this paper, the Propostion 3 can be 
proved. 						          □
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Remark 5  In this paper, we extend the controller design 
method presented in (Qian and Lin 2001; Huang and Lin 
2005; Hong et al. 2001; He and Geng 2012) to a class of 
uncertain nonlinear systems, and the results presented in 
this paper clearly demonstrate the robust stability of the 
finite-time controllers based on the Hölder continuous non-
smooth feedback. For the general nth order uncertain linear 
systems, the corresponding finite-time controller can also 
be given as that shown in the Remark 3 of the reference 
(He and Geng 2012).

Remark 6  Refer to the state Eq.  (23), one can find that 
x3 = Q2 = 0 is a singular point, where g3 = 0 is satisfied 
and the system is not controllable at that point. In practice, 
the singular point can be avoided by applying a small bias 
voltage to keep the operational point away from the uncon-
trollable point (Agudelo et al. 2009).

Now let’s consider the output feedback control problem 
for the ETMs. On the basis of the FTS observer (29) and 
the FTS controller (31), the following proposition can be 
proved.

Propostion 4  (Output feedback FTS controller) The out-
put feedback controller that is composed of the finite-time 
stabilizing observer (29) and the state feedback finite-
time stabilizing control (31), globally stabilize the uncer-
tain linear system (30) in finite settling time if the param-
eters �i > 0, i = 1, 2, 3 and ki > 0, i = 1, 2, 3 are properly 
chosen.

Proof  Using the outputs of the observer (29), then the 
errors variables of the uncertain linear system (30) can be 
redefined to be

According to the Proposition 2, the observer (29) is sta-
ble in finite settling time, thus there exists a constant e0 > 0,  
such that for all t ∈ [0,+∞), the errors variables of the 
observer (29) are bounded, namely

and one can define a positive definite function as follows 
for the errors dynamics of the observer

(54)

ξ1 = z1 −
(

ẑ1 − e1
)

ξ2 = z2 −
(

ẑ2 − e2
)

ξ3 = z3 −
(

ẑ3 − e3
)

(55)max{|ei(t)|, i = 1, 2, 3} ≤ e0

(56)

U(e) = 1

2
e
2

1
+

∫

e2

β1

(

s
7/ 5 − β̂

7/ 5
1

)9/ 7
ds+

∫

e3

β2

(

s
7/ 3 − β̂

7/ 3
2

)11/ 7
ds

where β̂1 = −�1e
5/ 7
1 ,β̂2 = −�2

(

e
7/ 5
2 − β̂

7/ 5
1

)3/ 7
 

and the feedback of the FTS observer is given by 

β̂3 = −�3

(

e
7/ 3
3 − β̂

7/ 3
2

)1/ 7
, and �̂i > 0, i = 1, 2, 3 are 

constants,then there exist a constant � ≥ max{�i, i = 1, 2, 3},  
such that the time derivate of (56) satisfies

On the other hand, according to the Proposition 3, for any 
bounded errors µi(ξ , e), i = 1, 2, 3, there exist sufficiently 
large constant k > 0, such that (52) satisfies the inequality

Then, if one defines a positive definite function as fol-
lows for the closed-loop system

there always exist a sufficiently large constant η > 0, such 
that the time derivate of (59) satisfies the inequality

According to the Lemma 4 of the Appendix in this 
paper, then the Proposition 4 can be proved. 		      □

Remark 7  Both of the observer (29) and the controller 
(31) are continuous in Hölder sense, thus the outputs of the 
observer are bounded, and then the conditions of the sepa-
ration principle presented in (Atassi and Khalil 1999) are 
satisfied. The separation principle means that a controller 
and an observer can be designed separately under certain 
conditions, and the output feedback combined observer-
controller preserve the main properties of the full state 
feedback controllers (Levant 2003). In reference (Atassi 
and Khalil 1999), the separation principle was proved for 
the autonomous systems with high-gain observers and 
asymptotic continuous feedback. The output feedback 
controller given by (31) with observer (29) is Hölder con-
tinuous, thus the stability of the presented output feedback 
controller is also ensured by the separation principle even 
though the stability of the Proposition is directly proved in 
this paper.

5 � Numerical simulations

In the simulations of this section, the physical param-
eters of the ETMs are listed in the Table 1. One can find 
that the tilt angle of the movable electrode is limited to 
θmax = asin(d

/

L) ≈0.05(rad) ≈ 2.85(deg), which is 
rather small for the purpose of reducing the source voltage 

(57)

U̇(e) ≤ −�

[

e
12/ 7

1
+

(

e
7/ 5

2
− β̂

7/ 5

1

)12/ 7 +
(

e
7/ 3

3
− β̂

7/ 3

2

)12/ 7
]

(58)V̇3 ≤ −kξ
12/ 7
1

− k

(

ξ
7/ 5
2

− α
7/ 5
1

)12/ 7 − k

(

ξ
7/ 3
3

− α
7/ 3
2

)12/ 7

(59)V = V3(ξ)+ U(e)

(60)V̇ = V̇3(ξ)+ U̇(e) ≤ −ηV6/ 7
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as commonly do in the relative literatures (Chen et  al. 
2004; Agudelo et al. 2009; Ma et al. 2011).

When the target positions are set to 0.5°, 1.5° and 2.5° 
respectively, using the output feedback controller given by 
(31)–(29) with the definition of errors variables (54). The 
stabilization results are shown in Fig. 4, of which the same 
set of tunable parameters is used and the coefficients of the 
parasitic capacitances are given to be ρp = ρs = 0.5. One 
can find that the source voltage holds the maximum from 
the Fig. 4d. If the tilt angle is larger than a given value, the 
source voltage in the stable state is smaller than that for a 
smaller stable tilt angle. This phenomenon is caused by the 
existence of the well-known pull-in bifurcation point in the 
travel range of the electrostatic microactuators.

The Fig. 5 illustrates the curves of electrostatic torques 
with different source voltages and the mechanical torque 

Table 1   The physical parameters of the ETM

Symbols Quantity Unit Normal value

J Inertia of mass kg m2 1.0 × 10−15

b Damping coefficient N m s/rad 7.0711 × 10−11

k Stiffness of spring N m/rad 5.0 × 10−7

L Length of electrode m 200 × 10−6

W Width of electrode m 400 × 10−6

d Air gap m 10 × 10−6

ε0 Permittivity in free 
space

F/m 8.85 × 10−12

εr Relative permittivity 1.0

R Resistance of circuit Ω 10.0

ω0 =

√

k
/

J
Inherent angular  

frequency
rad/s 7.0711 × 104

ς = b
/

(2Jω0) Damping ratio 0.5
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Fig. 4   The responses of the ETM for different positions control. a The response of the tilt angle. b The responses of the electrostatic torques and 
mechanical torques. c The variations of the charges. d The variations of the source voltages
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about the variations of the tilt angle. Since the electrostatic 
torque should balance the mechanical torque at the stable 
state of the system (Fig.  4b), it is obvious that the maxi-
mum of source voltage happens to be the pull-in voltage 
when the overshoot is absent in the transient response.

6 � Conclusions

For the purpose of simplifying the sensing subsystem of 
the ETMs, it is shown that the output feedback controllers 
can be applied to realize this end in this paper. It is the first 
time find that the highly nonlinear dynamics of the ETMs 
with considering the uncertainties of the electrical param-
eters can be exactly transformed into the third order linear 
system. For the uncertain linear systems, an output feed-
back control scheme that is composed of a FTS observer 
and a state feedback FTS controller for the third order 
Brunovsky’s canonical form systems is proposed in this 
paper. Both the controller and the observer are proved to 
be globally stable in finite settling time, thus the angular 
speed and angular acceleration of the ETMs can be accu-
rately estimated by the observer. The stability of the output 
feedback controller based on the nonlinear observer is also 
directly proved. Therefore, the proposed controller permits 
the least necessary to stabilize the ETMs in its full opera-
tional range, and can be applied to control many nonlinear 
systems that are exactly linearizable or linear systems with 
bounded uncertainties, such as the full-actuated nonlinear 
systems and the underactuated systems with differentially 
flat property.
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Appendix

Lemma 1   (Qian and Lin 2001; Huang and Lin 2005; He 
and Geng 2012) For any real numbers ai, i = 1, 2, . . . , n 
and 0 < γ ≤ 1, the following inequality holds

For x ∈ R, y ∈ R, when 0 < γ = p
/

q ≤ 1, where p > 0 
and q > 0 are odd integers, then

When γ > 1 is a constant, then

Lemma 2   (Qian and Lin 2001; Huang and Lin 2005; 
He and Geng 2012) Let a, b be positive real numbers and 
β(x, y) > 0 be a real-valued function, then

Remark 8  Lemma 2 can be proved by the Young’s ine-
quality |xy| ≤ |x|m

m
+ |y|n

n
, where 1

m
+ 1

n
= 1, and m > 1, 

n > 1.

Lemma 3  Given 0 < γ = p
/

q ≤ 1, where p > 0 and 
q > 0 are odd integers, and ξ �= α, then the following ine-
quality holds:

Remark 9  Lemma 3 can be proved by (62) and the equal-
ity (x)γ = sign(x)|x|γ.

Lemma 4  (Bhat and Bernstein 2000) For the non-Lip-
schitz autonomous system ẋ = f (x), suppose there exists 
a continuous function V(x) : D → R defined on a neigh-
borhood N ⊆ D of the origin, such that the following 
conditions hold: (a) V(x) is positive definite on D ⊂ Rn;  
(b) There exist real numbers c > 0 and γ ∈ (0, 1), such 
that V̇(x)+ cVγ (x) ≤ 0, x ∈ N/{0}. Then the origin of 

(61)

(

n
∑
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|ai|
)γ

≤
n

∑

i=1

|ai|γ .

(62)
∣

∣xγ − yγ
∣

∣ ≤ 21−γ |x − y|γ ≤ 2|x − y|γ .

(63)|x − y|γ ≤ 2γ−1
∣

∣xγ − yγ
∣

∣.

(64)|x|a|y|b ≤ aβ(x, y)

a+ b
|x|a+b + bβ−a/ b(x, y)

a+ b
|y|a+b

(65)

∫ ξ

α

(s1/ γ − α1/ γ )2−γ ds > 0
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system ẋ = f (x) is locally finite-time stable. The setting 
time, depending on the initial state x(0) = x0, satisfies 
Tx(x0) ≤ V(x0)

1−γ
/[

c(1− γ )
]

 for all x0 in some open 
neighborhood of the origin. If D = Rn and V(x) is also 
unbounded, then the origin of system ẋ = f (x) is globally 
finite-time stable.
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