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which studied in (Bi et al. 2006, 1997), the fabrication tol-
erance of spindle motor parts should be controlled in order 
to minimum RRO and NRRO. As it is known, the vibration 
of spindle motor is mainly caused by unreasonable Unbal-
anced Magnet Pulls (UMPs). Different motor parts faults 
(tolerance is out of the control) will generate different types 
of UMPs which lead to different vibration and acoustic 
noise signals pattern. Though studying different vibration 
signals and acoustic noise pattern, the types of UMPs or 
other faults can be detected and classified. Then, the related 
imprecise parts (out of tolerance controlled) can be known. 
Although researchers have studied years (Guo et al. 2002; 
Krysinski and Malburt 2007; “Ninth International Confer-
ence on Vibrations in Rotating Machinery volume two, 
University of Exeter, UK September 8–10 2008”), none 
of which has classified UMPs and Mechanical Unbal-
ance (MU). In this paper, four types of UMPs related and 
MU related faulty motors are designed. Fuzzy Mathemat-
ics Classification (FMC) is proposed to classify the motor 
faults. The motor used in the study is a surface mounted 
PMSM with 12 slots and 5 pole-pairs. This paper can be a 
guideline of design high performance motor; it also can be 
the reference of general motor fault diagnosis.

Abstract  Thanks for the precision engineering technol-
ogy, motor, especially Permanent Magnet Synchronous 
Motor can be made as Micro-motor. However, any impre-
cise rotor parts of this meticulous motor could lead to 
undesirable vibration and acoustic noise (Yu et  al. in 3D 
influence of unbalanced magnetic pull induced by mis-
alignment rotor in PMSM, APMRC2012, 2012; Bi et al. in 
Influence of axial asymmetrical rotor in PMAC motor oper-
ation, ICEMS, 2011; Bi et al. in Influence of rotor eccen-
tricity to unbalanced-magnetic-pull in pm synchronous 
motor, ICEMS06, 2006). This paper presents five types of 
rotor faults design and vibration study of these five types 
of faults in motor is conducted. Based on the vibration pat-
tern, fuzzy mathematics is employed to classify these five 
types of rotor faults.

1  Introduction

Both radial and axial direction Repeatable Run-Out (RRO) 
and none repeatable Run-Out (NRRO) of spindle motor 
in HDD is a big concern in high area density requirement. 
Besides the reasonable spindle motor structure design 
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2 � Approach

2.1 �E xperimental specimen design

An oriental motor is modified as M1. One pair of new rear 
side and load side covers of motor is made to generate vari-
ous types of eccentricity faults. The modified M1 is used 
with parameters as given in Table  1 to simulate different 
eccentricity condition.

Figure  1 shows the structure of modified M1 which is 
used in the vibration measurement experiment. Two outer 
rings were purposely press-fitted between the ball bearing 

and bearing cover at both ends of the shaft. Similarly, two 
inner rings were press-fitted between the ball bearing and 
the shaft at both ends. Figure 2 illustrated the rotor struc-
ture of M1, and a datum line was marked.

When the inner ring is symmetrical and the outer rings 
were purposely made unsymmetrical while both were in 
line with the locating pin, as shown in Fig. 3, static eccen-
tricity (SE) was produced. When the outer ring is symmet-
rical and the inner one is not, as shown in Fig. 4, dynamic 
eccentricity (DE) is generated. In this case, the locat-
ing marks of the inner rings at both ends had to be in line 
with the datum line on the shaft (refers to Fig.  2) so that 

Table 1   PMSM Specifications

Power 50 W

Rated voltage 24VDC

Pole pairs P = 5

Phase 3

Speed Nmax = 3,000 rpm; Nrated = 2,500 rpm

Torque Mmax = 0.24 N M; Mrated = 0.2 N M

Current Imax = 5.4 A; Irated = 3.1 A

Rotor inertia J = 2.34e−5 kg m2

Rear side
 cover

Magnet

Stator

Wire

Case

Load side
 cover

Outer rings 
(e=0~0.4mm)

Ball Bearing

Inner rings
 (e=0~0.4mm)

Rotor 

Fig. 1   Modified M1 with difference type of eccentricity

Fig. 2   Rotor structure with datum line on rotor shaft

Fig. 3   Structure design to simulate motor SE fault

Fig. 4   Structure design to simulate motor DE fault

Fig. 5   Structure design to simulate motor IE fault
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the dynamic eccentricity at both sides is in phase. A more 
complicated case, with both the outer rings at both ends 
made unsymmetrical and opposite in press-fitting direction, 
an incline eccentricity (IE) was produced, as illustrated in 
Fig. 5. The grade of eccentricities in SE, DE and IE could 
be adjusted since the ring thickness range was 0–0.4 mm. 
Yet another eccentricity case, axial eccentricity (AE), 
could be created by adding different pieces of thin washers 
between two bearings and bearing covers in axial direction, 
as shown in Fig. 6.

Mechanical unbalance in this study was simulated by 
attaching an unbalance disk to the motor rotor shaft. There 
were six Ø3.1 holes symmetrically made at the both side of 
aluminum disk as shown in Fig. 7, where M3 screw and nut 
could be mounted to produce unbalanced mass. Based on 
the weight and position of the mounted screw and nut, dif-
ferent mass unbalance force under different running speed 
can be calculated.

2.2 � Vibration measurement

Figure  8 shows the experimental setup for measuring 
the vibration induced by MU fault and UMPs related 
faults such as SE, DE, IE, and AE faults on the anti-
vibration table. The modified M1 is mounted on a rigid 
motor fixture. With the motor was driven at difference 

rotating speeds, a rotary encoder was used to measure 
motor speed. A hysteresis brake was used to add differ-
ent loads. Two Laser Doppler Vibrometers (LDVs) were 
employed to measure the velocity from points on both 
the motor stationary horizontal and vertical direction, 
respectively.

The real time vibration data of the motor running at 
3,000  rpm in normal state (no eccentricity), SE state, DE 
state, IE state, and AE state were respectively captured, the 
FFT resulted calculated, and the frequency components of 
interest (1×, 10×, 11× and 60×) listed in Table 2 as fault 
features for eccentricity classification.

When the motor has same pole-pairs and slots con-
figuration as M1, the main faulty frequency of the motor 
on the SE and IE state is 10× (Yu et  al. 2012). On the 
other hand, the main faulty frequencies of the motor on 
DE state are 1× and 11× (Bi et  al. 2006). Other than 
on SE, DE, and IE states, the main faulty frequency of 
the motor on AE state is 60× (Bi et al. 2011). The main 
faulty frequency of MU is well-known as 1× (Sudhakar 
and Sekhar 2011; Huang 2007; Concari et al. 2010; Jalan 
and Mohanty 2009; Kim 2009). So, these four orders fre-
quencies are selected as fault features to classify faulty 
motor with different types of mechanical and UMPs 
related eccentricity faults.

In Table 2, vibrating amplitudes at x (axial), y (lateral) 
and z (vertical) directions with different fault grades 
were listed versus different frequencies. The contents 
(e0–e4) in first column of Table  2 stand for 0–0.4  mm 
eccentricity faults, respectively. The columns with bold 
font are the dominant fault features for different eccen-
tricities, since the variations of values in bold font col-
umns are much larger than those in other columns when 
the fault grade is changed. It was also noted that the fre-
quencies of faulty features are different when the motor 

Fig. 6   Motor Structure which has axial eccentricity fault

Fig. 7   Mechanical unbalance disk

Fig. 8   Rotor eccentricity-induction measurement setup
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has different types of eccentricities. Such obviously 
distributed fault feature patterns provide strong sup-
port for the application of fuzzy mathematics for fault 
classification.

2.3 � Faults classification by fuzzy mathematics

2.3.1 � Introduction of fuzzy mathematics

Fuzzy mathematics is a multi-targets decision making 
mathematics model. Fuzzy mathematics for faults diag-
nosis and classification consists of two main steps, first 
of which is to build fuzzy transformation matrix [Eq. 

(3)] between feature vector [Eq. (1)] and fault vector 
[Eq. (2)].

Raw data of different fault features may have differ-
ent measuring units or different value levels. In order to 

(1)V = [v1, v1, . . . , vm]

(2)U = [u1, u1, . . . , um]

(3)R =









r11 r12 · · · r13

r21 r22 · · · r23

· · · · · · · · · · · ·

rn1 rn2 · · · rnm









Table 2   Extracted signals of normal and faulty motor

Bold values indicate the dominant frequency of vibration induced by each type of UMPs faults

Fault 
grades

x (m/s) y (m/s) z (m/s)

50 Hz 500 Hz 550 Hz 3,000 Hz 50 Hz 500 Hz 550 Hz 3,000 Hz 50 Hz 500 Hz 550 Hz 3,000 Hz

(a) Normal motor

 No fault 0.016604 0.205243 0.024461 0.018985 0.028978 0.161224 0.022174 0.018481 0.034774 0.193543 0.026484 0.022185

(b) MU result with different fault grades

 e0 0.016600 0.205200 0.024460 0.018980 0.028980 0.161200 0.022170 0.018480 0.034770 0.193500 0.026480 0.022180

 el 0.016623 0.205234 0.024498 0.019010 0.029965 0.161233 0.022189 0.018512 0.037000 0.193519 0.026513 0.022219

 e2 0.016638 0.205239 0.024483 0.019014 0.030330 0.161222 0.022206 0.018507 0.038330 0.193536 0.026484 0.022208

 e3 0.016623 0.205235 0.024502 0.019045 0.031500 0.161219 0.022197 0.018522 0.039690 0.193526 0.026515 0.022212

 e4 0.016625 0.205226 0.024498 0.019009 0.033820 0.161212 0.022218 0.018499 0.044620 0.193534 0.026529 0.022212

(c) SE result with different fault grades

 e0 0.016600 0.205200 0.024460 0.018980 0.028980 0.161200 0.022170 0.018480 0.034770 0.193500 0.026480 0.022180

 el 0.016622 0.205255 0.024504 0.019021 0.028991 0.161657 0.022212 0.018514 0.034798 0.194342 0.026505 0.022202

 e2 0.016626 0.205217 0.024473 0.019011 0.029006 0.162148 0.022205 0.018507 0.034803 0.195244 0.026529 0.022200

 e3 0.016628 0.205231 0.024509 0.019033 0.029002 0.162625 0.022210 0.018501 0.034810 0.196455 0.026508 0.022214

 e4 0.016625 0.205216 0.024479 0.019038 0.029002 0.163222 0.022209 0.018516 0.034804 0.198356 0.026508 0.022226

(d) DE result with different fault grades

 e0 0.016600 0.205200 0.024460 0.018980 0.028980 0.161200 0.022170 0.018480 0.034770 0.193500 0.026480 0.022180

 el 0.016639 0.205237 0.024496 0.019026 0.030511 0.161242 0.023701 0.018507 0.034790 0.038013 0.029723 0.022201

 e2 0.016643 0.205217 0.024480 0.018995 0.031675 0.161222 0.024865 0.018528 0.034797 0.041140 0.032850 0.022212

 e3 0.016605 0.205220 0.024474 0.018997 0.033013 0.161217 0.026203 0.018519 0.034814 0.044440 0.036150 0.022226

 e4 0.016628 0.205238 0.024498 0.018995 0.034479 0.161229 0.027669 0.018509 0.034815 0.048080 0.039790 0.022211

(e) IE result with different fault grades

 e0 0.016600 0.205200 0.024460 0.018980 0.028980 0.161200 0.022170 0.018480 0.034770 0.193500 0.026480 0.022180

 el 0.016635 0.205948 0.024486 0.019016 0.029009 0.161429 0.022194 0.018504 0.034789 0.193866 0.026503 0.022203

 e2 0.016627 0.209270 0.024492 0.019013 0.029003 0.161625 0.022205 0.018510 0.034810 0.194233 0.026507 0.022201

 e3 0.016634 0.214970 0.024482 0.019014 0.029013 0.161861 0.022200 0.018537 0.034803 0.195034 0.026495 0.022206

 e4 0.016629 0.227510 0.024477 0.019001 0.029034 0.162219 0.022200 0.018499 0.034807 0.196220 0.026501 0.022201

(f) AE result with different fault grades

 e0 0.016600 0.205200 0.024460 0.018980 0.028980 0.161200 0.022170 0.018480 0.034770 0.193500 0.026480 0.022180

 el 0.016622 0.205255 0.024504 0.028925 0.028991 0.161231 0.022212 0.018514 0.034798 0.193533 0.026505 0.022202

 e2 0.016626 0.205217 0.024473 0.039770 0.029006 0.161251 0.022205 0.018507 0.034803 0.193531 0.026529 0.022200

 e3 0.016628 0.205231 0.024509 0.058460 0.029002 0.161223 0.022210 0.018501 0.034810 0.193522 0.026508 0.022214

 e4 0.016625 0.205216 0.024479 0.097040 0.029002 0.161227 0.022209 0.018516 0.034804 0.193538 0.026508 0.022226
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improve classification performance, the fuzzy matrix has to 
be standardized as:

where,

Fault data classification used in fuzzy mathematics is 
hierarchical clustering method, and it can be described by 
three main steps,

(1)	E ach known sample data is assumed to belong to one 
type of fault. The distance between any two sample 
data is calculated, and two samples which have shortest 
distance will be combined into a new class (new type 
of fault).

(2)	R epeat step one until all samples are combined to one 
class.

(3)	 Select the threshold and decide the number of fault 
type.

Figure 9 shows that the motor can be classified as five 
types of faults if the value of selected threshold T is larger 

(4)r
′

ik
=

rik − r̄k

Sk

, i = 1, 2 . . . n, k = 1, 2 . . . m

(5)r̄k =
1

n

n
∑

i=1

rik , Sk =

[

1

n − 1

n
∑

i=1

(rik − r̄k)
2

]
1
2

than any of V1–V5 but less than any of V6–V8. S1–S9 pre-
sents samples of faulty PMSM.

2.3.2 � Applying fuzzy mathematics for motor fault 
classification

The motor fault transformation matrix will be built using 
collected experimental data of no fault condition (NF), 
MU, SE, DE, IE, and AE conditions. The fault vector can 
thus be built as:

(6)U =
[

NF MU SE DE IE AE
]

Fig. 9   The fault classification 
structure

Fig. 10   The standardized fuzzy 
matrix

Fig. 11   Clustering tree structure generated by different known types 
of motor faults
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The motor fault feature vector can be built based on the 
signals pattern in Table 2 and expressed as,

Base on the fault features and fault types shown in 
Table  2, a standardized fuzzy matrix is built by applying 
Eq. (4), as shown in Fig. 10.

3 � Results and discussion

The largest eccentricity fault (e4) data under different 
types of eccentricities were selected to develop the fuzzy 
clustering tree and the result is shown in Fig.  11. Other 
three eccentricity fault grades were then used to verify the 

(7)V =
[

1X 10X 11X 60X 1Y 10Y . . . . . . 1Z . . . . . .
]T

classification algorithm and the classification results with 
different types of motor faults are shown in Fig. 12. TM in 
Fig. 12 presents the testing motor which fault is unknown.

(a) (b)

(c)

(e)

(d)

Fig. 12   Cluster tree structure with different types of motor faults: a testing motor has a SE fault. b Testing motor has an IE fault. c Testing 
motor has an AE fault. d Testing motor has a MU fault. e Testing motor has a DE fault

Fig. 13   Classification results by fuzzy cluster tree
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Figure 12 shows the cluster tree structure with a motor 
under monitoring, has the mass eccentricity and four types 
of UMPs-related faults of M1, respectively. The classifica-
tion correction ratio is 100 % as shown in Fig. 13.

4 � Conclusions

In this paper, a motor with designed mechanical eccentric-
ity (ME), SE, DE, IE, and AE faults were respectively ana-
lyzed and tested at no load condition. Fuzzy mathematics 
classification was employed to do fault classification. The 
1×, 10×, 11×, and 60× order of vibration signals in x, y, 
and z directions were selected as the fault feature variables, 
ME, SE, DE, IE, and AE fault were selected as the fault 
type variables, and all original vibration data were used 
to form the standardized fuzzy matrix. The experimen-
tal results showed that the classification correction ratio is 
100 % for MU, SE, DE, IE, and AE fault, respectively. The 
results proved the effectiveness of the classification algo-
rithm and the future fault detection could thus be faster and 
more accurate. The limitation of fuzzy mathematic classifi-
cation is that the fault grade cannot be identified precisely. 
This problem may be solved by employing genetic pro-
gramming (GP) in future.
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