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1  Introduction

MEMS vibrational gyroscopes operate based on a transfer 
of energy between two of the gyro’s modes of vibration 
caused by the Coriolis effect (Shkel 2006). Compared with 
the traditional mechanical gyros, optical fiber gyros and 
laser gyros and so on, MEMS gyros are widely used in the 
fields of consumer electronics, automobile, inertial navi-
gation, other military and civilian areas, due to their small 
size, low cost, low power consumption, and batch produc-
tion. With the improvement of the performance of the gyros 
characteristic such as the resolution, sensitivity, and band-
width (Prikhodko et al. 2011; Cho et al. 2012; Zotov et al. 
2012), the vibration (acceleration) applied to the gyros has 
a prominent impact on the reliability and robustness of the 
gyroscope because of the high quality factor ranging from 
45 in air to tens of thousands in vaccum (Geen et al. 2002; 
Zaman et al. 2006), which causes an output error, referred 
as ‘acceleration sensitivity’ or ‘acceleration output’. As the 
acceleration output errors are unpredictable and very hard 
to compensate using electronics, the short-term errors and 
systemic problems can be induced (Kazinczi et  al. 2002). 
MEMS vibrational gyros can be divided into the sin-
gle mass gyro, dual mass gyro, and quadruple mass gyro 
according to the types of structure (Alper and Akin 2004; 
Azgin et  al. 2007; Prikhodko et  al. 2012). For the single 
mass gyro, the response caused by the Coriolis force can-
not be distinguished from the vibration along the sense 
direction (Palaniapan et al. 2003). For the quadruple mass 
gyro, it is hard to realize a higher performance owing to the 
more complex structure and higher technological require-
ments. Therefore, more and more researches focus on the 
acceleration sensitivity of the dual mass gyro.

To cancel the vibration-induced output errors, TFG oper-
ates differentially and employs two identical masses that 
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vibrate out of phase, which is believed to be insensitive to 
vibrations due to countering the common-mode noise (Xie 
and Fedder 2003; Geen 2004; Schofield et  al. 2007). How-
ever, Schofield et al. (2007) and Yoon et al. (2007) found that 
TFGs could still experience an output error caused by apply-
ing the linear acceleration along the sense axis to the gyros. 
The reason why the error occurred was not yet to be under-
stood. Yoon et al. (2012) identified three major error sources 
causing the acceleration output in ideal fabricated TFGs 
that arise from (1) the asymmetric electrostatic force along 
the sense direction of the drive electrodes, (2) the asymmet-
ric electrostatic force along the drive direction of the drive 
electrodes, and (3) the capacitive nonlinearity of the parallel 
plate sense electrodes. The most significant error source was 
caused by the acceleration along the sense direction. How-
ever, the analysis was based on the ideal fabricated TFG with-
out considering the mismatch during fabrication. Due to the 
limitation of the technology, there does not exist any perfectly 
ideal TFGs. Singh et al. (2012, 2013) investigated the accel-
eration sensitivity of MEMS TFGs using FEM simulations 
and experimental verification. They assumed the central point 
of the coupled spring is steady, established a single DOF 
model, and studied on the effect of stiffness imbalance on 
the acceleration sensitivity. And they reported that increasing 
the decoupled ratio and anti-phase frequency can reduce the 
acceleration output. In fact, the central point of the coupled 
spring is unsteady caused by the stiffness imbalance. There-
fore, a new model needs to be established to quantitatively 
analyze the common-mode acceleration output errors

In this paper, we design the fully decoupled symmetric 
TFG operating the linearly coupled, anti-phase oscillation as 
the sense mode. Since the acceleration output along the drive 
direction can be eliminated effectively by the related elec-
tronics, we focus on the acceleration output along the sense 
direction. Therefore, besides simplifying the TFG structure 
into the two linearly coupled sense tines, we assume the cen-
tral point of the coupled spring is unsteady and establish the 
two DOFs coupled model. The matrix perturbation technique 
is used to approximately calculate the acceleration output 
caused by the fabrication defects. And the FEM simulations 
are carried out to compare with the theoretical calculations. 
Meanwhile, the analytical expressions coincide with the 
experimental results from the other researches. Our results 
reveal that the stiffness imbalance leads to the in-phase and 
anti-phase displacement and phase differences between two 
tines. This paper is organized as follows: Sect. 2 describes the 
theoretical study on the acceleration output of the ideal sym-
metric TFG. The frequency response caused by the stiffness 
imbalance is calculated using the matrix perturbation tech-
nique in Sect. 3. In Sects. 4, 5, and 6 we carry out the FEM 
simulations by intentional changing the sense beams widths 
and coupled springs stiffness, and experimentally verify the 
analytical expressions. Conclusions are given in Sect. 7.

2 � Theoretical study on the frequency response of the 
ideal TFG

The TFG structure is simplified into the two DOFs coupled 
model, as shown in Fig. 1.

The dynamics of the sense tines of the left and right 
gyroscopes are governed by: 

Left gyroscope:

Right gyroscope:

The Eq. (1) can be expressed as matrix form:

where m, k and c denote the mass, stiffness and damping 
of the left and right sense tines, respectively, k′ denotes 
the coupled stiffness, c′ denotes the coupled damping, x1 
and x2 denote the displacement of the left and right sense 
tines, respectively, F0  sin  wt denotes the external force 
induced by the acceleration applied to the TFG, which can 
be expressed as 

 

(1)

m
••

x1+c
•

x1+c
′

(

•

x1−
•

x2

)

+ kx1 + k
′(x1 − x2) = F sinwt

m
••

x2 +c
•

x2 +c
′

(

•

x2 −
•

x1

)

+ kx2 + k
′(x2 − x1) = F sinwt

(2)M
••

x +C
•

x+Kx = F0 sinwt

M =

[

m 0

0 m

]

,

C =

[

c + c′ −c′

−c′ c+ c′

]

,

K =

[

k + k′ −k′

−k′ k + k′

]

,

F0 =

[

F

F

]

,

x =

[

x1
x2

]

.

Fig. 1   Two DOFs model of the ideal TFG
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 We take advantage of the mode superposition method to 
solve Eq. (2). And we obtain the steady-state response 
induced by the common-mode acceleration:

Substituting F = ma, Eq. (3) can be rewritten as:

where, w1 denotes the first-order (in-phase) angular fre-

quency (w1 =

√

k
m

), Q1 denotes the in-phase mode quality 

factor. Therefore,

The Eq. (5) shows that the amplitude and phase of the left 
and right sense tines are completely identical, so the ideal 
TFG can resist the common-mode acceleration. Mean-
while, the single DOF model is proved right and we iden-
tify the required condition of using the single DOF model 
is that the TFG structure is totally symmetric.

3 � Theoretical study on the frequency response of the 
non‑ideal TFG using the matrix perturbation 
technique

Due to limitations of the current fabrication technology, the 
mass, stiffness and damping of two sense tines are not identi-
cal (Walther et al. 2013). Considering the actual deviation is 
tiny and the analytical solution of the second-order vibration 
system is so tedious, we take advantage of the matrix per-
turbation technique to approximately calculate the dynamic 
responses of the two DOFs vibration system. This paper 
focuses on the dynamic responses caused by the stiffness 
imbalance. The two DOFs model with stiffness imbalance is 
shown in Fig. 2. The governing equation may be expressed as:

(3)x(t) =
Q1

k

[

F

F

]

sin

(

w1t −
π

2

)

(4)x(t) =
aQ1

w2

1

[

1

1

]

sin

(

w1t −
π

2

)

(5)x1(t) = x2(t)

(6)M0

••

x +C0

•

x+K0x + εK1x = F0 sinwt

where, ε is a small parameter representing the deviations 
between the actual and original value of the stiffness,the 
other parameters can be expressed as

 The structural vibration eignproblems of discrete systems 
may be written as:

where, [K] and [M] denote the stiffness matrix and the 
mass matrix, respectively. {u} denotes the modal vector, λ 
denotes the eigenvalue, and λ = w2, w denotes the modal 
frequency.

The mass matrix and the stiffness matrix of the updated 
structure (Chen and Wada 1977) can be expressed as:

where, ε is a small parameter representing the deviations 
between the updated and the original system, and when 
ε = 0, the system is the original one. Here, [M0] and [K0] 
denote the original mass and stiffness matrices, ε[M1] and 
ε[K1] are the corresponding changes. As the deviations 
approach zero, the updated values approach the original 
values, [M] → [M0], [K] → [K0].

If ε[M1] and ε[K1] are tiny, the eigenvalues and the 
eigenvectors (modal vectors) only have small changes. 
According to the perturbation theory, the updated eigenval-
ues λ and eigenvectors {u} can be expressed as the analyti-
cal function of ε,

M0 =

[

m 0

0 m

]

,

C0 =

[

c + c′ −c′

−c′ c+ c′

]

,

K0 =

[

k + k′ −k′

−k′ k + k′

]

,

K1 =

[

k 0

0 0

]

,

F0 =

[

F

F

]

,

x =

[

x1
x2

]

.

(7)[K]{u} = �[M]{u}

(8)[M] = [M0]+ ε[M1], [K] = [K0]+ ε[K1]

(9)�
(i)

= �
(i)
0

+ ε�
(i)
1

+ · · · · · ·

{

u(i)
}

=

{

u
(i)
0

}

+ ε

{

u
(i)
1

}

+ · · · · · ·

Fig. 2   Two DOFs model of the non-ideal TFG
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Since the parameter change is very small, we calculate the 
updated eigenvalues and eigenvectors using the first-order 
perturbation method (Chen et al. 1984). That is

The mass matrices have no any change, so [M1] is zero. 
Upon substitution, the Eq. (10) can be rewritten as

 

Using the Eq. (7), one obtains

where, λ0
(1)and λ0

(2) denote the original eigenvalues, {u0
(1)} 

and {u0
2} denote the original regular modal vectors.

Substituting Eq. (12) and [K1] into Eq. (11), one obtains

Upon substitution of the Eqs. (12) and (13) into Eq. (9), 
one obtains

Using Eq. (14), one obtains
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where Λ denotes the spectral matrix and u denotes the 
modal shape matrix.

Using the model analysis method, the principal mass 
matrix Mp, the principal stiffness matrix Kp, and the princi-
pal damping matrix Cp can be expressed as

Substituting Eq. (15) into Eq. (16) and ignoring the second-
order and above terms, one obtains

Considering the non-diagonal damping coefficient is far 
less than the main diagonal damping coefficient, the non-
diagonal one can be ignored, so Cp becomes decoupled.

From Eq. (17) and the new Cp, the damping ratios ξ1 and ξ2 
can be expressed as 

We obtain the steady-state response using the mode super-
position method. That is 

where, the amplitude amplification factor 

βi =
1

√

(

1−l2i

)2
+(2ξi li)

2

, the phase angle ψi = arctan
2ξi li
1−l2i

, 

and the angular frequency ratio li = w
wi

.
Upon substitution, the final solution will be

When w = w1 (the excitation frequency is equal to the in-
phase frequency), from Eq. (20)

(15)u =
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Substituting F = ma, c = mw1

Q1
 into the Eq. (21), we obtain 

where, a denotes the amplitude of the common-mode accel-
eration, Q1 denotes the first-order modal quality factor.

(21)

x1(t) =
β1F

Kp1m

(

1− ε
k

4k′

)

sin (wt − ψ1),

x2(t) =
β1F

Kp1m

(

1+ ε
k

4k′

)

sin (wt − ψ1)

(22)
x1(t)− x2(t) =

εF
√

m
(

k+ε k
2

)

2c
×

k

k′
cosw1t

= −
aQ1

w2

1

×
ε

2
×

k

k′
cosw1t

When w = w2 (the excitation frequency is equal to the 
anti-phase frequency), from Eq. (20) 

Substituting F = ma, c+ 2c′ = mw2

Q2
 into the Eq. (23), we 

obtain:

where, Q2 denotes the second-order modal quality factor.
The ratio of the coupled stiffness k′ to the sense stiff-

ness k is termed the coupled stiffness ratio (CSR), which 
is given by:

From Eq. (22), we conclude that increasing the CSR, 
square of the in-phase frequency, and decreasing the 
stiffness imbalance and the acceleration amplitude and 
the quality factor can improve the synchronism of two 
tines.

The Eq. (23) shows that the two tines operate out of 
phase and double the acceleration output error.

(23)

x1(t) =
β2F

4Kp2m
ε
k

k′
sin (wt − ψ2),

x1(t) =
β2F

4Kp2m
ε
k

k′
sin (wt − ψ2 − π)

(24)

x1(t)− x2(t) =

εF
√

m
(

k+2k′+ε k
2

)

2× (c + 2c′)
×

k

k′
cosw2t

= −
aQ2

w2

2

×
ε

2
×

k

k′
cosw2t

(25)CSR =
k′

k

Fig. 3   Schematic of the 
designed TFG

Fig. 4   Sense beam (a) and coupled beam (b)

Table 1   Model parameters 
used in the simulation model 
shown in Fig. 3

Parameters Value Parameters Value

Sense-mode mass 1.3738 × 10−6 kg Coupled stiffness ratio 0.038/0.075/0.15

Sense springs stiffness 748.5 N/m Structural thickness 60 μm

Coupled springs stiffness k × CSR Sense-mode Q 200

Stiffness imbalance 0.97/1.83/4.0 % Common acceleration 9.8 m/s2
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Fig. 5   Modal analysis of the in-phase mode (a) and anti-phase mode (b)
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From Eq. (24), we obtain that increasing the CSR, square 
of the anti-phase frequency, and decreasing the stiffness 
imbalance and the acceleration amplitude and the quality 
factor can reduce the anti-phase movement of two tines.

4 � Structural design and FEM simulations

4.1 � Structural design

We design the symmetrically fully decoupled structure 
based on the published TFG from Trusov et al. (2011), two 
tines are coupled with a linearly coupled spring. The sche-
matic of the design is shown in Fig. 3.

The linearly coupled direction is the sense mode direc-
tion and the sense electrodes are lateral comb capacitance. 

We decouple the drive mode and sense mode by the cen-
tral sensitive mass, and the structural type of the elastic 
beams is identical to ensure the symmetry and mode-match 
of TFG. The lever can improve the anti-phase motion syn-
chronism of the drive mode, and increase the frequency 
of the spurious drive mode. The designed sense beam and 
coupled beam are shown in Fig. 4

The sense spring ks and coupled spring kc are given by:

where, E is 169  GPa and h, w, and l are the thickness, 
width, and length of the spring beam.

We design the structures of three different CSR val-
ues (which are 0.038, 0.075, and 0.15) by the cascade 

(26)ks = E × h×

(

ws

ls

)3

, kc = E × h×

(

wc

lc

)3

Fig. 6   Frequency response of 
0.075 CSR symmetric coupled 
tines (a), frequency response of 
0.075 CSR asymmetric coupled 
tines of 4.0 % stiffness imbal-
ance (b)
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of the coupled spring, which comprises three identical 
springs, two identical springs and one spring, respec-
tively. The stiffness imbalance is varied by intentional 

changing the left tine sense spring width, to realize 
three different values, respectively (which are 0.97, 
1.83, and 4.0 %).

Fig. 7   a Displacement difference and b phase difference of 4.0  % 
stiffness imbalanced coupled tines; c Displacement difference and 
d phase difference of 1.83  % stiffness imbalanced coupled tines; e 

Displacement difference and f phase difference of 0.97  % stiffness 
imbalanced coupled tines
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4.2 � FEM simulations

In this study, the harmonic responses simulations are car-
ried out using the finite element software Ansys. The cen-
tral sensitive masses are meshed with triangular elements; 
larger linear elements are used for the frames while smaller 
quadratic elements are used to form the suspension springs. 
The amplitude of the acceleration applied to the model is 
1 g (g = 9.8 m/s2) and the Q-factor is 200. To reduce the 
calculation time and ensure the calculation accuracy, we 
sweep frequency of 3,600–4,000, 3,600–4,200, and 3,600–
4,500 Hz for 0.038, 0.075, and 0.15 CSR structures, respec-
tively. The simulation parameters are listed in Table 1.

We simulate the modals of 0.075 CSR TFG, as shown in 
Fig. 5. And we compare the simulated frequency response of 
0.075 CSR symmetric TFG with the 0.075 CSR asymmetric 
TFG of 4.0 % stiffness imbalance, as shown in Fig. 6.

The simulation results in Fig. 6a show that simulations 
coincide with the theoretical analysis, which reveals that 
two tines have a completely synchronized movement to 
suppress the common-mode acceleration. The accelera-
tion output will appear when the stiffness is imbalanced 
(Fig. 6b), which demonstrates that two tines displacement 
difference is large in the in- and anti-phase modal frequen-
cies while the phases of two tines have an out of phase 
trend in the anti-phase modal frequency.

From Fig. 7a, c and e, we obtain that as the coupled stiff-
ness ratio increases the two tines in-phase and anti-phase 
displacement difference decreases, and as the stiffness 
imbalance decreases the displacement difference decreases. 
Fig.  7b, d and f demonstrate increasing CSR may reduce 
the phase difference and decreasing the stiffness imbal-
ance may have a smaller phase difference and narrower 
bandwidth.

5 � Simulations and analytical comparisons

To achieve a fair comparison, we use the same parameters 
with the simulation models. The in-phase and anti-phase 
modal frequencies of all designed structures are listed in 
Table 2.

We compute the two tines displacement difference 
using the previous theoretical formulas, Eqs. (22) and (24) 
(described in Sect. 3), and compare with the simulation 
results. The error rates are calculated, as shown in Table 3.

Table 3 clearly shows that theoretical values are in line 
with simulation results within a small stiffness imbalance 
verifying the theoretical model. We conclude the in-phase 
and anti-phase displacement differences between two tines 
are inversely proportional to CSR and proportional to the 
stiffness imbalance.

Table 2   In-phase and anti-
phase modal frequencies of all 
designed models

ε (%) CSR

In-phase modal frequency Anti-phase modal frequency

0.038 0.075 0.15 0.038 0.075 0.15

0.97 3,721.3 3,725.1 3,727.0 3,861.6 3,994.0 4,249.4

1.83 3,728.0 3,732.6 3,734.9 3,871.0 4,002.4 4,256.9

4.0 3,742.0 3,750.5 3,755.1 3,900.5 4,027.6 4,278.7

Table 3   Simulations and analytical comparisons

ε (%) CSR

0.038 0.075 0.15

Theoretical 
value

Simulation 
value

Error  
rate (%)

Theoretical 
value

Simulation 
value

Error  
rate (%)

Theoretical 
value

Simulation 
value

Error  
rate (%)

In-phase displacement difference (μm)

 0.97 0.4576 0.4637 1.32 0.2314 0.2374 2.53 0.1156 0.1179 1.95

 1.83 0.8602 0.8550 0.61 0.4347 0.4459 2.51 0.2171 0.2219 0.48

 4.0 1.8661 1.7395 7.28 0.9412 0.9790 3.86 0.4695 0.5005 3.1

Anti-phase displacement difference (μm)

 0.97 0.4249 0.4311 1.44 0.2013 0.2066 2.57 0.0889 0.0907 0.18

 1.83 0.7978 0.7944 0.43 0.3781 0.3882 2.60 0.1671 0.1714 2.51

 4.0 1.7175 1.6060 6.94 0.8161 0.8499 3.98 0.3616 0.3863 6.39
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To describe the phenomenal more clearly, the displace-
ment difference of 0.97 and 4.0 % stiffness imbalance are 
plotted against the different CSR, as shown in Fig. 8.

The effect of the coupled stiffness ratio and stiffness 
imbalance on the acceleration output is clearly demon-
strated. In the case of 4.0 % stiffness imbalance, the error 
rate between the theoretical values and simulation results 
is a little large. The reason is that as the stiffness imbal-
ance increases the accuracy of the first-order perturbation 
method decreases. But we believe that the accuracy can be 
guaranteed in the case of small stiffness imbalance caused 
by the practical fabrication imperfections.

6 � Experimental verification

According to the experimental conclusions from Singh 
et al. (2013), the expression is:

(27)V0 ∝
∆k

DR× f 2
anti

where, V0 is the anti-phase differential output voltage, Δk 
is the stiffness imbalance, fanti is the anti-phase modal fre-
quency, and DR is the frequency decoupling ratio.

The DR is defined as follows: 

where, fsanti and fsin denote the anti- and in-phase modal fre-
quency in the sense direction, respectively.

Substituting Eq. (15) (derived in Sect. 3) into Eq. (28), 
we obtain that: 

The capacitance sensitivity Sc and the displacement sen-
sitivity Sd can be expressed as follows:

From the Eq. (30), the displacement difference can be 
written as:

Since the type of TFG we designed is the same to Type-
B from Singh, we select the Type-B experimental results to 
make a comparison.

The case is as follows:

 Qanti =  330, Δk =  1  %, DR =  0.09, Sc =  3.77 mV/fF, 
Sd = 66 aF/nm, V0 = 4 mV,a = 9.8 m/s2

From Eq. (29), we obtain: 
CSR = 0.10
From Eq. (31), we calculate the experimental displace-

ment difference:

According to the theoretical formula Eq. (24) (derived in 
Sect. 3), we obtain the analytical displacement difference 
Δx′:

So, 

Considering the error of the calculation of Δk and the 
nonlinearity of the parallel plate electrodes, our analyti-
cal solution coincides with the experimental result. So, 
the analytical expression is verified. Since the in-phase 

(28)DR =
fsanti − fsin

fsanti

(29)CSR =

(

1− (1− DR)2
)

×

(

1+
∆k
2

)

2× (1− DR)2

(30)Sc =
V0

∆c
, Sd =

∆c

∆x

(31)∆x =
V0

Sc · Sd

fsanti = 16.5 kHz,

∆x = 1.61× 10
−8m

∆x′ =
a× Qanti

(

2π × fsanti
)2

×
∆k

2
×

1

CSR

∆x′ = 1.51× 10
−8 m

Fig. 8   Theoretical and simulation displacement difference of a 
0.97 % and b 4.0 % stiffness imbalanced coupled tines
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displacement difference between two tines has not been 
studied, we will fabricate these TFGs and experimentally 
verify in the future studies.

7 � Conclusions

This paper analyzes the acceleration sensitivity of the non-
ideal (stiffness imbalance) MEMS tuning fork gyroscopes 
(TFGs). We establish two degrees of freedom coupled 
model by simplifying TFG into two linearly coupled sense 
tines, and take advantage of the first-order matrix perturba-
tion method to compute the differential acceleration output, 
which coincides with the FEM simulation results. Addition-
ally, we verify the analytical expressions using the experi-
mental data from the other researches. The main conclusion 
is that the differential output displacement caused by the 
stiffness imbalance becomes larger in the in- and anti-phase 
modal frequencies, which is inversely proportional to the 
coupled stiffness ratio and square of the modal frequency, 
and is proportional to the stiffness imbalance, the quality 
factor and the amplitude of common-mode acceleration. 
The displacement and phase differences arise from the 
unsynchronized motion of two tines due to the stiffness 
imbalance. Therefore, the acceleration sensitivity of TFGs 
can be reduced by increasing coupled stiffness ratio, modal 
frequency and sense beam widths which are insensitive to 
the technological imperfections.
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