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Abstract Torsional micromirrors emerged recently as an

effective means of light manipulation. Their fast response,

low wavelength sensitivity, and easy mass production have

made them an attractive technology to implement optical

switching and scanning applications. In this work, we

developed a rigorous model of an electrically-actuated

torsional micromirror. We verified the model against

experimental data and conducted a convergence analysis to

determine the minimum size of a reduced-order model

(ROM) capable of representing the microscanner response

accurately. We used the optimal ROM to study the

dynamics of a microscanner. We found that the micros-

canner response exhibits a softening-type nonlinearity

whose magnitude increases as the magnitude of the bias

voltage increases. This nonlinearity results in multiple

stable solutions at excitation frequencies close to but less

than the natural frequency of the first mode. Operating the

mirror in this region can cause abrupt jumps in the mirror

response, thereby degrading the scanner performance.

Furthermore, for a certain voltage range, we observed a

two-to-one internal resonance between the first two modes.

Due to this internal resonance, the mirror exhibits complex

dynamic behavior, which degrades the microscanner’s

performance. We formulated a simple design rule to avoid

this problem.

1 Introduction

The past decade has seen tremendous growth and

remarkable progress in micro-fabrication techniques.

Today, smaller, cheaper, and more precise microsystems

are being produced and utilized in many industrial, mili-

tary, medical, automotive, space, and consumer market

applications. Microdevices are usually excited using simple

input signals. These signals (magnetic, piezoelectric,

electrostatic, thermal, etc.) are used to drive the device to a

desired static configuration (e.g., micro-switches, optical

crossconnects, thermal biomorphs) or to continuously

excite the device to achieve a certain dynamic behavior

(e.g., microresonators, microscanners, filters). A deep

understanding of the behavior of these devices in response

to these simple input signals is necessary to provide

designers with insight into the proper choice of the design

parameters. This results in a better response and maximum

performance capabilities as well as reduction in the time

and cost associated with the trial-and-error design process.

A particularly important and widely used microdevice is

the torsional micromirror. This device is utilized to steer,

reflect, or modulate light depending on the application at

hand. It consists of two main components: a mechanical

component, which represents the moving parts of the

device and consists of two identical microbeams fixed on

one side and connected to a rigid plate (the mirror) on the

other side; and an electronic component, which provides

the actuation signal through two sets of electrodes mounted

beneath the mirror and used to rotate the mirror in either
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direction by supplying a voltage to the corresponding

electrode.

Torsional micromirrors are used in projection displays

(Van Kessel et al. 1998), switching in fiber-optic networks

(Ford et al. 1999; Lin et al. 1999), neural networks (Collins

et al. 1998), phase modulating filters, optical computing

(Cohn and Sampsell 1988), electrophotographic printers,

and folded spectrum analyzers (Hornbeck 1983). More-

over, the fast response and large scanning angles of

micromirrors make them appealing substitutes for tradi-

tional scanning technologies. Therefore, they have been

successfully implemented in resonant optical microscan-

ners (Fan and Yu 1998). To achieve large rotation angles

while minimizing the voltage requirements, the micromir-

ror is excited at a resonant frequency and then used to steer

a laser beam along a surface. The laser beam is then

reflected from the surface to be collected and analyzed

through a photo detector. Resonant scanning mirrors are

used in a variety of applications, including laser printing,

confocal microscopy, and scanning video displays.

There is a significant body of research on modeling

and characterization of torsional micromirrors. Many

researchers treated the mirror as a 1-DOF lumped-mass

torsional system attached to two springs representing the

suspension beams. They developed numerical and analyt-

ical techniques to investigate the static response and hence

predict the pull-in point of the mirror. Osterberg (1995)

introduced a simple approach to analyze the static tilt angle

of a torsional micromirror. Using the parallel-plate

approximation to estimate the electrostatic torque and a

linear spring model to estimate the torsional stiffness of the

suspension beams, he developed the simplest analytical

model of the mirror. Although the model was numerically

efficient, the results were 20% away from experimental

findings. Hornbeck (1989) enhanced Osterberg’s model by

developing an analytical expression for the electrostatic

torque based on the solution of the Laplace equation

between two semi-infinite tilted plates. He numerically

solved for the mirror tilt angle at a given voltage and

gradually increased the voltage until pull-in was reached.

This numerical approach is extremely accurate, but

requires successive numerical solutions of a complex

nonlinear algebraic equation. To alleviate these shortcom-

ings, other researchers (Degani et al. 1998; Nemirovisky

and Degani 2001; Degani and Nemirovisky 2002; Zhang

et al. 1999; Zhang et al. 2001) developed analytical

methods to calculate the pull-in parameters of a 1-DOF

lumped-mass torsional micromirror.

Degani and Nemirovsky (2001) were the first to intro-

duce a 2-DOF lumped-mass model that includes both

torsion and bending to capture the static behavior of a

torsional microactuator. Huang et al. (2004) adopted this

model to study the static behavior of a torsional

micromirror. They derived the equations governing the

response of the mirror to a DC voltage and studied the

effect of electrode size and position on the pull-in param-

eters. They found that neglecting the bending of the

suspension beams can result in more than 20% error in the

prediction of the tilt angles.

Most of the available dynamic models also assume a

1-DOF lumped-mass system (Wetzel and Strozewski 1993;

Sattler et al. 2002; Sane et al. 2003). In one implementa-

tion, Ataman and Urey (2006) analyzed the dynamics of a

resonant microscanner subjected to pure AC voltage exci-

tations using a 1-DOF torsional lumped-mass model. Based

on the solution of the Mathieu equation, they analyzed the

response of the mirror and characterized the linear stability

of the device. Furthermore, for large scanning angles, they

numerically analyzed the nonlinear response and observed

a softening-type nonlinearity. This nonlinear softening

behavior was also experimentally reported by Camon and

Larnaudi (2000).

Zhao et al. (2005) were the first to consider the coupling

effect between torsion and bending in a dynamic model.

They treated the mirror as a lumped mass attached to two

springs. The springs represent the torsional and bending

stiffnesses of the suspension beams. They numerically

simulated the dynamic response of the mirror to step and

pure AC voltage excitations. The numerical simulations

also revealed a softening-type behavior.

To the authors’ knowledge, a comprehensive distrib-

uted-parameter model that captures the complete response

of a torsional micromirror has yet to be developed. This

model will be utilized to study the accuracy and legiti-

macy of the widely used SDOF and 2DOF models as well

as analyze the effect of the higher dynamic modes. Fur-

thermore, there has not been any analytical study of the

nonlinear dynamics of resonant microscanners subjected

to combined DC and resonant AC excitations. In this

work, we treat the mirror as a distributed-parameter sys-

tem. We use a Galerkin procedure to develop a reduced-

order model (ROM) that accurately represents the static

and significant dynamic response of the mirror. Using the

ROM, we conduct a convergence analysis to determine

the minimum number of assumed modes sufficient to

accurately predict the mirror response. We use the method

of multiple scales to analyze the nonlinear response of a

microscanner subjected to combined DC and resonant AC

excitations. We found that, within a range of DC voltages,

a two-to-one internal resonance might be activated

between the first two modes. Due to this internal reso-

nance, even if the bending motions are very small, the

energy fed to the first (torsion) mode can be channeled to

the second (bending) mode. This energy transfer results in

undesirable vibrations detrimental to the scanner’s

performance.
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2 Model

We consider the micromirror, Fig. 1, developed by Zhang

et al. (1999, 2001). It consists of two identical microbeams

of length l, width w, and thickness h. The beams are fixed

on one side and connected to a rigid rectangular plate (the

mirror) on the other side. The mirror has a length Lm, width

a, and thickness h. Two electrodes each of length b and

width c ¼ 1
2
ða2 � a1Þ are located beneath the micromirror

on both sides of the suspension beams. The perpendicular

distance between the undeformed position of the mirror

and the electrodes is denoted as d. The whole micro-

structure is made of polysilicon. The geometric and

material properties of the mirror are listed in Table 1.

The mirror is rotated in either direction by supplying a

voltage V(s) to the corresponding electrode. The electro-

static potential between the electrode and the mirror

generates an electrostatic field on the mirror, and hence

produces a downward electrostatic force and an electro-

static moment around the suspension axis. Consequently,

the microbeams undergo simultaneous and distributed

torsion ĥðx; sÞ and deflection ûðx; sÞ and the micromirror

rotates an angle ĥmðsÞ and deflects a distance ûmðsÞ:

Because of the difference in rigidity between the plate

and beams, we treat the micromirror as a rigid plate and

write the Lagrangian of the system as

L ¼
Z1

0

h2
t dnþ c1

Z1

0

u2
t dn�

Z1

0

h2
n dn� c2

Z1

0

u2
nn dn

þ c3h
2
mt þ c4u2

mt þ c5um þ
c6

hm
ln

1� um � ahm

1� um � bhm

� �

ð1Þ

where the subscripts t and n indicate partial derivatives

with respect to these variables,

n ¼ z
2l; t ¼ s

T;

c1 ¼ 12d2

h2
crðh2þw2Þ; c2 ¼ Eh3wd2

48GJbl2h2
cr

; c3 ¼
aLmðh2þa2Þ
2lwðh2þw2Þ;

c4 ¼ 6Lmad2

wlðh2þw2Þh2
cr

; c5 ¼ 4qhaLmgdl

GJbh
2
cr

; c6 ¼ 2�0bV2l
GJbh

3
cr

;

a ¼ a1

a ; b ¼ a2

a ; hcr ¼ 2d
a ;

h ¼ ĥ
hcr
; u ¼ û

d

are dimensionless quantities, T2 = qw h l2 (h2 + w2)/

(3 G Jb) is a time scale, and

Jb ¼
wh3

3
1� 192h

wp5

X1
n¼0

1

ð2nþ 1Þ5
tanh
ð2nþ 1Þ5

2ðw=hÞ

" #

is the polar moment of inertia of the suspension beams

including cross-sectional warping effects. In Eq. 1, the first

two terms represent the kinetic energy of the suspension

beams, the third and fourth terms represent the elastic energy

stored in the suspension beams, the fifth and sixth terms

represent the kinetic energy of the mirror plate, the seventhFig. 1 A schematic of the micromirror

Table 1 Geometric and material properties of the micromirror

Properties

Modulus of elasticity, E (GPa) 170

Shear modulus, G (GPa) 66

Density, q(kg/m3) 2,330

Dielectric constant of air, e0 (F/m) 8.85 9 10-12

Dimensions

Mirror width, a (lm) 100

Mirror length, Lm (lm) 100

Beam length, l (lm) 65

Beam width, w (lm) 1.55

Beam thickness, h (lm) 1.50

Electrodes length, b (lm) 100

Electrodes inner edges, a1 (lm) 6.0

Electrodes outer edges, a2 (lm) 84.0

Gap height, d (lm) 2.75
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term represents the potential energy of the plate, and the last

term represents the potential energy of the electrostatic field.

To generate the ROM, we carry out a Galerkin expan-

sion of the rotation h and deflection u in the Lagrangian. To

this end, we write:

hðn; tÞ ¼
Xn

i¼1

piðtÞwiðnÞ; uðn; tÞ ¼
Xm

i¼1

qiðtÞuiðnÞ ð2Þ

where pi and qi are the generalized coordinates corre-

sponding to the basis functions wi and ui. We choose the

basis sets to be the orthonormal eigenfunctions of the free

torsional vibrations of a clamped-clamped beam and the

bending vibrations of a clamped-clamped beam with a

concentrated mass at its middle.

To obtain the equations of motion in terms of the gen-

eralized coordinates, we substitute Eq. 2 into Eq. 1, carry

out the integration over the spatial domain of n, apply the

orthogonality conditions, then use the Euler–Lagrange

equation to generate the following equations:

€piþ c3

Xn

j¼1

€pjwi

1

2

� �
wj

1

2

� �
þpiKii¼

c6

2
Pn

j¼1 pjwj
1
2

� �

� b

1�
Pm

j¼1 qjuj
1
2

� �
�b
Pn

j¼1 pjwj
1
2

� �
(

� a

1�
Pm

j¼1 qjuj
1
2

� �
�a
Pn

j¼1 pjwj
1
2

� �

þ 1Pn
j¼1 pjwj

1
2

� � ln
1�
Pm

j¼1 qjuj
1
2

� �
�b
Pn

j¼1 pjwj
1
2

� �
1�
Pm

j¼1 qjuj
1
2

� �
�a
Pn

j¼1 pjwj
1
2

� �
" #)

ð3Þ

c1€qi þ c4

X1
j¼1

€qjui

1

2

� �
uj

1

2

� �
þ c2qi� ii �

1

2
c5ui

1

2

� �

¼ c6

2
Pn

j¼1 pjwj
1
2

� �� 1

1�
Pm

j¼1 qjuj
1
2

� �
� b

Pn
j¼1 pjwj

1
2

� �
(

� 1

1�
Pm

j¼1 qjuj
1
2

� �
� a

Pn
j¼1 pjwj

1
2

� �
)

ð4Þ

where

Z1

0

w0iw
0
j dn ¼ Kijdij;

Z1

0

u00i u
00
j dn ¼ � ijdij

and d is the Kronecker delta.

3 Static analysis

In the absence of time variation, the Lagrangian, Eq. 1,

reduces to the total potential energy of the system

Ls ¼ U

¼ �2

Z1=2

0

h2
n dn� 2c2

Z1=2

0

u2
nn dnþ c5um

þ c6

hm
ln

1� um � ahm

1� um � bhm

� �
ð5Þ

We can obtain the exact solution for the static deflection

and torsion of the micromirror and the suspension beams

by solving the corresponding boundary-value problem

analytically. The deflection problem is

d4u

dn4
¼ 0; uð0Þ ¼ 0;

du

dn
ð0Þ ¼ 0;

u
1

2

� �
¼ um;

du

dn
1

2

� �
¼ 0

ð6Þ

where the slope of the beam at n = 1/2 is zero due to

symmetry. The torsion problem is

d2h

dn2
¼ 0; hð0Þ ¼ 0; h

1

2

� �
¼ hm ð7Þ

Solving Eqs. 6 and 7 for u(n) and h(n), we obtain

uðnÞ ¼ �16umdn3 þ 24umn2 ð8Þ
hðnÞ ¼ 2hmn ð9Þ

For static equilibrium, the total potential energy U is sta-

tionary. Substituting Eqs. 8 and 9 into Eq. 5, setting the

partial derivatives of the potential energy equal to zero

ðoU=oum ¼ oU=ohm ¼ 0Þ; we obtain two equations that

can be solved numerically for the mirror deflection um and

rotation angle hm corresponding to a given DC voltage V.

The results are then substituted into Eqs. 8 and 9 to obtain

the spatial distribution of the static deflection and torsion of

the suspension beams.

To study convergence of the ROM, Eqs. 3 and 4, we

compare its results to the exact static solution and to

available experiments. Towards that end, we set the time

derivatives in Eqs. 3 and 4 equal to zero, increase the

number of spatial modes (n,m) gradually, and solve Eqs. 3

and 4 for the generalized coordinates (p1s, p2s,..., pns) and

(q1s, q2s,..., qms) until the solution converges over the

voltage range. Figure 2a and b show convergence of the

equilibrium solutions obtained using the ROM to the exact

solution. The results of the ROM converge to the exact

stable and unstable branches of solutions using nine tor-

sional modes and three bending modes (n = 9, m = 3).

To validate the converged ROM, we compare its results

to the experimental results obtained by Degani et al. (1998)

in Fig. 3. It demonstrates excellent agreement with the

experimental results, thereby validating the ROM. It is

worth noting that, when compared to the exact solution, the

ROM does not provide a more efficient alternative to
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predicting the static response of the beam. However, the

ability of the ROM to predict the dynamic response is

dependent on its ability to predict the static behavior of the

mirror.

4 Linear dynamic response

We study the dynamics of the micromirror shown in Fig. 1

around its equilibrium position. To obtain the natural fre-

quencies xi and the associated eigenfunctions Ai; we let

pi ¼ pis þ pid i ¼ 1; 2; . . .; n

qi ¼ qis þ qid i ¼ 1; 2; . . .;m
ð10Þ

where the subscript s denotes the static part of the response,

and the subscript d denotes the dynamic part. We linearize

the governing equations around the static equilibrium

position (p1s, p2s, ..., pns, q1s, q2s, ..., qms), assume that the

solution of the linearized equations has the harmonic form

Aie
ixi t; substitute this solution into the linearized equations

of motion, and obtain the characteristic equation of the

micromirror vibrations. We then solve the characteristic

equation numerically for the eigenfrequencies xi. To

determine the number of spatial modes necessary for

convergence, we gradually increase the number of modes

(n,m) used in the Galerkin procedure until the addition of

new modes does not change the eigenfrequencies, within a

specified tolerance, over the whole voltage range. In our

case, the solution converges when the numbers of torsional

and bending modes are n = 8 and m = 3.

At zero voltage, there is no electrostatic field and the

eigenvalue problem uncouples into two parts correspond-

ing to torsion and bending. Solution of the uncoupled

eigenvalue problems reveals that the lowest eigenvalue is

associated with torsion; the next two eigenvalues are

associated with bending; the fourth, fifth, and sixth are

associated with torsion; the seventh is associated with

bending; and so forth. The modes maintain their relative

order regardless of the strength of the electrostatic field.

Figures 4a–c show variations of the first five natural fre-

quencies with the applied voltage as well as results of the

convergence study for the first two frequencies.

As the applied voltage is increased, the first and second

natural frequencies decrease sharply, reflecting the system

approach to pull-in. However, the third, fourth, and fifth

frequencies do not change appreciably. At the pull-in

voltage, the first natural frequency x1 passes through zero,

which indicates a dynamic instability.

Next, we show evolution of the first four eigenfunctions

as the voltage is increased from V = 0 to pull in, Vp. Due to

symmetry, we only show the eigenfunctions of the left

suspension beam. Figures 5a and b show evolution of the

first eigenfunction W1. At zero voltage, the eigenfunction

W1 is purely torsional. As the voltage V is increased,

coupling between torsion and bending starts, and the ei-

genfunction develops a bending component, which starts to

grow. This coupling is due to the electrostatic field and is

more pronounced for higher voltages.

Similarly, as shown in Fig. 5c and d, at zero voltage the

eigenfunction W2 is purely bending. However, as the

voltage is increased, coupling between bending and torsion
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deflection um obtained from the

reduced-order model (ROM) to
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appears and increases gradually, resulting in the appear-

ance and growth of a torsion component of this

eigenfunction. The components of the second eigenfunc-

tion are always out-of-phase, while those of the first

eigenfunction are always in-phase. Figures 5e–h show the

third and fourth eigenfunctions W3 and W4, respectively.

We note that as the voltage is increased all the way to pull-

in, the eigenfunctions remain unchanged and no coupling

occurs between torsion and bending.

4.1 Lumped-mass model

The natural frequencies of the higher modes are two orders

of magnitude larger than the first two natural frequencies.

Further, at zero voltage the eigenfunctions associated with

these modes are the first torsion and bending modes of the

suspension beams. Unless the micromirror is excited at

high frequencies, the higher modes are not expected to

either capture or transfer energy to the lower frequency

modes (Nayfeh 2000). Therefore, one can safely assume

that, when the mirror is excited near any of the first two

modes, a two-mode assumption is enough to predict the

behavior of the beam response. This is a critical finding

because it implies that one can treat the micromirror as a

lumped mass attached to two springs representing the

suspension beams. The first spring is a torsional spring with

stiffness k11 ¼ 2GJp

l ; and the second spring is a bending

spring with stiffness k22 ¼
24EIby

l3
: The equations of motion

for the mirror can therefore be reduced to

m11
€hm þ l1

_hm þ k11hm ¼
V2

2hcr

oC

ohm
ð11aÞ

m22€um þ l2 _um þ k22um ¼
V2

2d

oC

oum
þMg

d
ð11bÞ

where C is the capacitance between the mirror and the

active electrode given by

C ¼ �0b

hmhcr

ln
1� um � ahm

1� um � bhm

� �

and

m11 ¼
Imzz

T2
; m22 ¼

M

T2
;

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k11m11

p

Q1

; l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22m22

p

Q2

Here, Imzz
¼ 1

12
Mðh2 þ a2Þ is the mass moment of inertia of

the mirror around the z-axis, M is the mass of the plate, and

Q1 and Q2 are the quality factors of torsion and bending

motions, respectively. In Fig. 6, we show a comparison

between the first two natural frequencies obtained using the
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ROM and those obtained using the lumped-mass model.

The figure shows good agreement over the whole operation

range.

4.2 Sensitivity of the Natural Frequencies to the

Electrode Parameters

To examine sensitivity of the first two natural frequencies

of the micromirror to changes in the electrode size and

position, we plot x1 and x2 for three values of a = 0, 0.15,

and 0.3 in Fig. 7 and three values of b = 0.70, 0.85, and 1

in Fig. 8. These results show the impact of changing the

size of the electrostatic field, and hence its balance with the

elastic energy of the suspension beams, on the linear

vibrations of the micromirror. Decreasing a or increasing b
increases the electrode size and hence increases the nega-

tive linear stiffness arising from the electrostatic force and

moment. This, in turn, causes the first two natural fre-

quencies to drop faster as pull-in is approached as shown in

Figs. 7 and 8.
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Fig. 6 Comparison between the

first two natural frequencies

obtained using the lumped-mass

model and the ROM
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Fig. 7 The first and second

natural frequencies for a = 0,
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It can also be seen from Fig. 7 that the second natural

frequency is more sensitive to changes in a than the first

natural frequency. The bending-dominated second natural

frequency responds to changes in the electrode size only.

On the other hand, the torsion-dominated first natural fre-

quency responds to changes in both of the electrode size

and location with respect to the axis of rotation. Decreasing

a increases the electrode size, while decreasing the distance

between the centroid and the axis of rotation and hence the

moment arm. Therefore, its impact on the electrostatic

force is purely proportional, while its impact on the elec-

trostatic moment is the sum of proportional and counter-

proportional components.

On the other hand, changing b, which defines the position

of the outer side of the electrode, has a significant impact on

both of the first and second natural frequencies. This results

from the fact that increasing b increases both of the size of the

electrode and the moment arm and therefore significantly

affects the electrostatic force and moment.

5 Nonlinear analysis

We analyze the response of the micromirror to electric

excitations consisting of a DC component Vdc and an AC

component Vaccos(X t), where X is approximately equal to

the natural frequency x1 of the first mode. We start by

expressing the response in the form

hm ¼ hs þ hd; um ¼ us þ ud ð12Þ

where the subscript s denotes the static part and the

subscript d denotes the dynamic part. Substituting Eq. 12

into Eq. 11, using the equilibrium equations describing us

and hs, expanding the electrostatic force and moment in

Taylor series around us and hs, and keeping only terms up

to third order in hd and ud, we obtain

m11
€hd þ l1

_hd þ k11hd

¼ C1a11ð2VdcVac cosðXtÞ þ V2
ac cos2ðXtÞÞ

þ C1V2ða12hd þ a13ud þ a14hdud þ a15h
2
d

þ a16u2
d þ a17hdu2

d þ a18h
2
dud þ a19h

3
d þ a110u3

dÞ ð13Þ

m22€ud þ l2 _ud þ k22ud

¼ C2a21ð2VdcVac cosðXtÞ þ V2
ac cos2ðXtÞÞ

þ C2V2ða22hd þ a23ud þ a24hdud þ a25h
2
d

þ a26u2
d þ a27hdu2

d þ a28h
2
dud þ a29h

3
d þ a210u3

dÞ ð14Þ

where

C1 ¼
�0b

2h3
cr

; C2 ¼
�0b

2d2hcr

;

and the aij coefficients result from the Taylor series

expansions. We use the method of multiple scales (Nayfeh

1981) to find a uniformly valid second-order approximate

solution of Eqs. 13 and 14 in the form

hd ¼ eh0ðT0; T1; T2Þ þ e2h1ðT0; T1; T2Þ þ e3h2ðT0; T1; T2Þ
þ � � � ð15aÞ

ud ¼ eu0ðT0; T1; T2Þ þ e2u1ðT0; T1; T2Þ þ e3u2ðT0; T1; T2Þ
þ � � � ð15bÞ

where e is a small nondimensional bookkeeping parameter

and T0 = t, T1 = et, and T2 = e2t are time scales. We scale

the forcing, damping, and frequency detuning such that the

effect of the excitation is balanced by those of damping and

nonlinearity; that is,

V ¼ Vdc þ e3Vac cosðXtÞ; li ¼ e2li; X ¼ x1 þ e2r

where r is a detuning parameter that describes the nearness

of X to x1. Carrying out the perturbation analysis (Daqaq

2006), we obtain a second-order approximation of the

response of the mirror as

hmðtÞ¼hsþc11a1ðtÞcosðx1tþb1ðtÞÞ

þc12a2ðtÞcosðx2tþb2ðtÞÞþc13a2
1ðtÞcos2½x1tþb1ðtÞ�

þc14a2
2ðtÞcos2½x2tþb2ðtÞ�þc15a2

1ðtÞþc16a2
2ðtÞ ð16aÞ

umðtÞ¼usþc21a1ðtÞcosðx1tþb1ðtÞÞ

þc22a2ðtÞcosðx2tþb2ðtÞÞþc23a2
1ðtÞcos2½x1tþb1ðtÞ�

þc24a2
2ðtÞcos2½x2tþb2ðtÞ�þc25a2

1ðtÞþc26a2
2ðtÞ ð16bÞ

where x1 and x2 are the linear frequencies of the mirror

corresponding to a given DC voltage and cij are functions

of hs, us, and Vdc. The amplitudes ai(t) and phases bi(t) of

the response are governed by the following modulation

equations:

2x1K11a01 ¼ x1K12a1 þ 2K13Vac sinðcÞ ð17aÞ

2x1K11a1ðc0 � ra1Þ ¼ �
1

4
ð8K13Vac cosðcÞ þ K14a3

1

þ K15a1a2
2Þ

ð17bÞ

2K21a02 ¼ K22a2 ð17cÞ

2x2K21a2b
0
2 ¼ �

1

4
ðK24a3

1 þ K25a2a2
1Þ ð17dÞ

where the prime indicate the derivative with respect to

time, c = rt-b1, and the Kij are constants.

The behavior of the mirror is characterized by the

solution of the modulation equations. A fixed-point of the

modulation equations corresponds to a periodic response of

the mirror. Since microscanners are designed to scan a

surface periodically, we analyze the equilibrium solutions

of the modulation equations and their stability. The equi-

librium solutions are found by setting the time derivatives
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in Eq. 17 equal to zero and solving the resulting algebraic

system for the roots (a1, a2, c, b2). The stability of the

equilibrium solutions is determined by finding the eigen-

values of the Jacobian matrix of the modulation equations

evaluated at the equilibrium solution. If all of the eigen-

values associated with a given equilibrium solution have

negative real parts, the equilibrium is asymptotically stable.

If one or more eigenvalues have positive real parts, the

solution is unstable. Setting the time derivative in Eq. 17

equal to zero, we obtain

x2
1K

2
12

4K2
13

a2
1 þ

x1K11

K13

ra1 �
K14

8K13

a3
1

� �2

�V2
ac ¼ 0 ð18aÞ

a2 ¼ 0 ð18bÞ

Using Eq. 18a, we study frequency–response curves of

the first mode amplitude a1 for different bias voltages Vdc

and Vac = 0.2 V. Figure 9a illustrates that, as the DC

voltage is increased, the magnitude of the effective

nonlinearity increases, and the curves bend further

towards the left, indicating a softening-type behavior.

The softening nonlinearity results in multiple stable

solutions at excitation frequencies close but less than the

natural frequency of the first mode. Operating the mirror in

that region can cause abrupt jumps in the mirror response,

thereby degrading the scanner performance. Figure 9b

shows variation of the response amplitude a1 with the

frequency detuning r for different values of Vac and

Vdc = 15 V. As the excitation level Vac is increased, the

response amplitude a1 increases, and the frequency-

response curves bend more towards the left, thereby

stretching further the region of multi-valued solutions.

This softening nonlinearity of the mirror can also be

seen by studying variation of the effective nonlinearity

coefficient �K14

8x1K11

� 	
with Vdc, Fig. 10. The effective non-

linearity is negative for all values of Vdc through pull-in. Its

magnitude grows from very small values, and hence min-

imal effect on the response, for small values of Vdc to large

values near pull-in. In the vicinity of Vdc&13.2 V, the

effective nonlinearity has a discontinuity and our

approximate solution breaks down. This discontinuity

occurs because of the nearness of the second natural fre-

quency to twice the first natural frequency; that is, x2&2

x1. These internal resonance channels the energy fed to the

first mode, via an excitation in the neighborhood of x1, to

the second mode, thus violating the underlying assumption

of our approximation that a2 ?0 as t ??. As a result, the

microscanner exhibit aperiodic (quasiperiodic in this case)

response as the two modes exchange energy as shown in

Fig. 11. The quasiperiodic response of the microscanner

results in steady-state fluctuations of the tilt angle ampli-

tude hm and non-zero bending oscillations um, thereby

changing the size of the scanned area from cycle to cycle

and bringing the target area in- and out-of-focus within

each cycle.

Our analysis also reveals (Daqaq 2006) that the effect of

the internal resonance extends over a wide range of bias

voltages (11–14.5 V) in the neighborhood of Vdc&13.2 V.

Therefore, avoiding operation in that region, in order to

eliminate the possibility of internal resonance, places

severe limits on the operation range of the microscanner.

One solution to this problem is to design the mirror with a
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ratio of the second to the first natural frequencies of x2

x1
[ 2

at Vdc = 0. Since x1 decreases faster than x2 as Vdc

increases, this design will eliminate the possibility of

internal resonance over the whole range of operation. A

simple approach to achieve this is to shorten the suspension

beams because x2 is inversely proportional to l3, whereas

x1 is inversely proportional to l only. However, this also

increases the torsional stiffness, which increases the volt-

age required to achieve a desired tilt angle. For example,

decreasing the length of the suspension beams by 30.7%

from l = 65 to l = 45 lm while keeping all of the other

mirror parameters constant, increases the ratio x2

x1
to 2.24.

As shown in Fig. 12, the second natural frequency x2 stays

away from twice the first natural frequency over the whole

voltage range, thereby eliminating the possibility of inter-

nal resonance. However, the pull-in voltage increases by

27.3% as shown in Fig. 13. To achieve a tilt angle of

hm = 0.3�, the voltage requirement increases from 17.1 to

21.3 V, which constitutes a major disadvantage.

To alleviate this shortcoming, one can revert to manip-

ulating the electrode parameters to increase the
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Fig. 11 Long-time histories of

the micromirror response for

Vdc = 13.2 V, r1 = 0, and

Vac = 0.1 V
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electrostatic moment obtained for the same applied volt-

age. We increase a from 0.06 to 0.20 and b from 0.84 to 1.

Comparing the results in Figs. 14–12 illustrates that the

37.4% decrease in the length of the suspension beams

increased x2

x1
to 2.24 and yet did not result in a significant

change in the pull-in voltage. In fact, Fig. 15 shows that the

voltage required to achieve a certain tilt angle has

increased only by a maximum of 1.1% over the whole

operation range.

6 Conclusions

We presented a dynamic model of a torsional mirror

operating as a microscanner. We conducted a convergence

analysis to determine the minimum number of modes

sufficient to create a finite-dimensional ROM with an

accuracy comparable to that of an infinite-dimensional

distributed-parameter model. We found that a two degree-

of-freedom lumped mass model created using the first two

modes of the mirror accurately describes the tilt angle and

transverse bending of the micromirror. It has the advanta-

ges of being as accurate as distributed-parameter and

higher-order models and yet being compact and computa-

tionally efficient.

We applied perturbation methods to this model to obtain

a consistent second-order approximation of the micros-

canner response to a biased actuation signal having a

frequency close to the mirror’s first natural frequency x1.

This provides a simple tool to investigate the transient and

steady-state responses of the microscanner. Studying the

steady-state response of the microscanner, we found that

the use of higher bias voltages increases the softening

nonlinearity of the device. Beyond a certain threshold of

the excitation amplitude Vac, the nonlinearity causes multi-

valued solutions, co-existing stable responses of the

microscanner, for a frequency range in the neighborhood of

and less than x1. It is necessary to avoid triggering this

threshold or at least to operate the microscanner using AC

frequencies X[ x1 to avoid sudden jumps and hysteresis

in the microscanner response.

Further, we found that an internal resonance between the

first and second modes of the microscanner can occur for a

significant range of the bias voltage Vdc. This resonance

causes severe degradation to the performance of the mi-

croscanner. Since placing limits on the actuation signal to

avoid triggering the internal resonance can significantly

undermine the functionality of the microscanner, we pro-

pose a simple design to eliminate the possibility of internal

resonance. Microscanners should be designed so that the

ratio of the second to the first natural frequencies satisfy the

condition x2

x1
� 2:2 when V = 0. To achieve this, we need

to increase the ratio of the transverse stiffness k22 to tor-

sional stiffness k11 of the suspension beams. This can be

done by either shortening the length of the suspension

beams or increasing the aspect ratio of the beam cross

section using a fabrication process, such as deep reactive

ion etching (DRIE). To maintain the same level of actua-

tion voltage, we need to simultaneously increase the

efficiency of the electrodes’ conversion of electrostatic

energy to electrostatic moment by increasing the size and/

or the moment arm of the electrodes. Finally, it should be

noted that increasing the ratio k22

k11
has the added advantage

of minimizing the spurious transverse bending deflection

um in response to the actuation signal as well as external

shock and vibration disturbances.
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