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Abstract The paper presents the snap-through phe-

nomenon in the case of micro fabricated clamped-

clamped buckled beam. This dynamic post-buckling

behavior is likely to occur in 3D microstructures when

they are subjected to large vibration amplitudes. The main

difference between this work and previous studies is the

MEMS specific beam dimension, especially the large

initial deflection of the buckled beam that involves

the inversion of the two first resonance frequencies. The

mathematical development allows showing how the

vibration amplitude of the supporting base affects

the post-buckling dynamic behavior of the beam. For each

frequency, the limit between the stable behavior and the

snap-through behavior is evaluated. Moreover, the effect

of environment is taken into account from the damping

point of view. Samples are fabricated and the experiment

is described. Measurements are compared to the theoret-

ical approach and the results are in good agreement with

the proposed model.

1 Introduction

When compared to a microelectronic device, a micro nano

electro mechanical system (MEMS or NEMS) exhibits a

major difference due to its ability to produce a displace-

ment once it has been released from a substrate. However,

for many years, the achievable vertical motion was deter-

mined by the thickness of the sacrificial layer which is

typically in the range of 2 lm. Thus, for example, the

resulting micro mirrors rotation excursion was only of a

few degrees. In order to overcome this limitation, two

solutions have been successfully implemented in the pro-

cesses: on the one hand, it consists in the bulk etching of

the substrate by different means (chemical etching or deep

reactive ion etching); and on the other hand, the micro-

structure is first fabricated by surface micromachining and

subsequently lifted up until the final shape is obtained. In

the literature, the elevation of the device is obtained either

by rotating the mobile parts around polycrystalline silicon

hinges (Pister et al. 1992) or by bending of a thin poly-

crystalline silicon strips (Suzuki et al. 1994; Lin et al.

1997). Microrobots (Suzuki et al. 1994), a microprobe (Lin

et al. 1997) and Micro-Opto-Electro-Mechanical Systems

(MOEMS) (Wu et al. 1995; Tien et al. 1996) have been

fabricated with such 3D techniques.

Nevertheless, micro manipulation involved in these

folding steps is likely to cause irreversible damages to the

microstructures. In order to comply with mass-production

capability, a safe and automatic procedure is required. Such

a self-assembly capability has been demonstrated already

by using upward bending induced by electrochemical

oxidation (Smela et al. 1995), Lorentz forces (Shimoyama

et al. 1998), melting photoresist pads (Syms and Yeatman

1993), or polymer shrinkage process (Ebefors et al. 1998).

Even if these techniques have been highly improved (Syms
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Institut d’Electronique et de

Micro-Electronique et de Nanotechnologie,

Dept. ISEN, Cité Scientifique,
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2000a, b), most of them require a very precise monitoring

of the assembly process aiming at the final shape control.

To overcome this difficulty, latches have been imple-

mented on self-assembled structures for MOEMS appli-

cations and presented in recent studies (Syms 1999; Syms

et al. 2001).

With polycrystalline silicon micromachining and inte-

grated electrostatic actuation, 3D self-assembly achieved

through vertical buckling of micro-beams showed to be a

very promising alternative approach (Fang and Wickert

1994; Garcia 1998; Akiyama et al. 1997). Scratch Drive

Actuators (SDA) (Akiyama and Shono 1993) produce a

force able to trigger buckling of a beam and the 3D shape is

subsequently kept permanent by the so-called reshaping

technology (Fukuta et al. 1997; Fan et al. 1997; Lee et al.

1997).

Self-assembly process is very attractive in the MOEMS

field because it allows larger deflection amplitudes of mi-

cro-mirrors. Although being very attractive, the self-

assembly process exhibits a major drawback that is the low

stiffness in the vertical direction. Therefore, a bistable

mechanical behavior can be expected if a static force is

applied along the vertical axis of the micro structure, see

figure 1. The static snap-through has been recently inves-

tigated in the MEMS’s field by Jin et al. (2001) and Van-

gbo (Vangbo 1998; Vangbo and Bäcklund 1998). It

consists in an instability allowing a mechanically bistable

structure to switch between two states of equilibrium

(Zycskowski 2005). In addition to static occurrences, snap-

through can also be triggered by a dynamical action. In

both case, it ends up in failure of the 3D device. In this

paper the snap-through phenomenon has been studied in

the case of 3D micro devices submitted to vibrations. The

principal idea is to ensure a large number of operations and

the understanding of the failure mechanisms. Over the past

years, numerous works dealing with beam large amplitude

vibration with fixed distance between supports during

vibration have been reported. Humphreys (1966) examined

a circular arch under impulse-step and rectangular pulse

loading by using an analog computer. Lock (1966) deter-

mined the critical step-pressure loads of an arch by the

numerical integration of the equations of motions and by an

infinitesimal stability analysis. Mettler (1967) applied the

method of averaging to investigate the stability and the

vibration of a sine arch under harmonic excitation. Tseng

and Dugundji (1970, 1971) include the dynamic overshoot

effect due to transient response in order to investigate the

snap-through problem. The main differences between this

study and the previous studies are the parameters of the

beam, especially the ratio a (initial deflection to the

thickness of the buckled beam). In the previous studies, a is

lower than 10, whereas in most of the MEMS devices, a is

bigger than 100 implying the inversion of the first two

modes. Moreover, using Nayfeh’s algorithm, we have

found an exact value of the resonant frequencies in the case

of a buckled beam. Finally, we have studied the damping

factor, which happened to be high due to the air viscosity.

The study presents the effect of the inversion of the two

first modes on snap-through problem. Secondly, we

determine the snap-through domain and parameters (sta-

bility’s criteria, damping influence). Moreover, the eigen-

frequencies of the first two modes in the case of a buckled

beam are calculated by the Nayfeh’s algorithm. Finally, the

dynamic snap-through behavior is investigated. Both ana-

lytical and experimental work are considered here.

2 Modeling

2.1 Equations of motion

This part gives a mathematical description of the system in

order to discover the criteria that influence snap-through

phenomenon. This study deals with a buckled beam (the

beam originally flat, which has been compressed beyond

the critical buckling load Pcr) with fixed ends and excited

by the base motion WB (Fig. 1). The governing differential

equation of such a buckled beam is

E � I @
4

@x4
ðW þW0Þ �

@

@x
Nx

@

@x
ðW þW0Þ

� �

¼ �m � @2W

@t2
þ @

2WB

@t2

� �
� c � @W

@t

ð1Þ
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E � A
2 � l

Z l
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@
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� �2
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Fig. 1 Scheme of a buckled beam with fixed ends
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WB is the base displacement, W0 is the initial static

deflection and W is the beam displacement. The parameters

which describe the structure are the moment of inertia I, the

mass per unit of length m, the length l, the beam cross

section A and the Young’s modulus E. The other quantities

are the time t, the damping coefficient c and Nx the total

tension force on beam.

P0 is a fictitious compressive force on the beam (3).

P0 ¼ Pcr þ
A � E

2l

Z l

0

@W0ðxÞ
@x

� �2

dx ð3Þ

Pcr is the fundamental buckling load of the clamped–

clamped beam (4).

Pcr ¼
4:p2:E:I

l2
ð4Þ

The initial static deflection W0 of the buckled beam is

defined as follows (5).

W0ðxÞ ¼
a � h

2
ð1� cos

2px

l
Þ ð5Þ

h is the beam thickness and a ¼ Wc

h with Wc ¼ W0
l
2

� �
a is a very important factor because it implies the inver-

sion of the first two modes. Classical studies are based on a

ratio a corresponding to a straight beam (a < 10), involving

that the natural frequency of the first mode is linearly pro-

portional to a, and that the natural frequency of the second

mode is constant. In the case of the structure used in micro-

actuators, the ratio a is bigger than 100 (experimentally

a = 200). Therefore, new assumptions have to be stated.

First, the natural frequency of the first mode is not consid-

ered proportional to a. Secondly, the natural frequency of the

second mode is smaller than the natural frequency of the first

mode, and the second mode is not constant.

Then, the inversion of the first two modes is done. The

influence of the second mode on the first mode must be

taken into account in the snap-through phenomenon. In

order to study this inversion, the Simple Harmonic Motion

(SHM) solutions and the Super Harmonic Motion (SPHM

order 2, 3) solutions have to be determined.

2.2 Determination of SHM solutions and SPHM

(order 2 and 3) solutions

Wah (1964) stated that a necessary but not sufficient con-

dition for the existence of normal modes in nonlinear

continuous system is that the space and time variables must

be separable. The beam with fixed supports exhibits this

character. Based on this property, a normal mode solution

(6) is assumed.

Wðx; tÞ ¼
X2

n¼1

/nðxÞ � ~qnðtÞ ð6Þ

~q1 and ~q2 are generalized coordinates. u1 and u2 are

the first and second buckling modes, which must

individually satisfy the geometric boundary conditions

of the beam. Due to the clamped ends, the boundary

conditions are W ¼ @W
@x ¼ 0 at x = 0,l; involving

equations (7) and (8).

/1 ¼
a � h

2
ð1� cosð2pnÞÞ ð7Þ

/2 ¼ a � h � b jn� sinðjnÞð Þ þ cosðjnÞ � 1½ � ð8Þ

where j = 8,986 (Tseng and Dugundji 1970, 1971), b ¼ 2
j

and n ¼ x
l: Now, to find the SHM and SPHM solutions

comes to determine the unknown coefficients ~qnðtÞ: They

are evaluated using Galerkin’s method (Tseng and Du-

gundji 1970, 1971; Wah 1964; Min and Eisley 1972),

which results in a set of nonlinear coupled ordinary dif-

ferential equations. Assuming harmonic excitation of the

base ~WBðtÞ ¼ ~WB1ðtÞ ¼ A1 � sinðxF � tÞ (excites the first

mode) or ~WBðtÞ ¼ ~WB2ðtÞ ¼ A2 � sinðxF � tÞ (excitation of

the second mode), Eqs. (9) and (10) are obtained.

d2~q1

dt2
þ c

m
� d~q1

dt
þ x2

1~q1 þ
3

2
� x2

1~q2
1

þ 1

2
� x2

1~q3
1 þ 2:263x2

1ð~q1 þ 1Þ~q2
2 ¼ ~WB1ðtÞ ð9Þ

d2~q2

dt2
þ c

m
� d~q2

dt
þ x2

2~q2 þ 1:259 � a2 � x2
2~q3

2

þ 0:278 � a2 � x2
2ð~q2

1 þ 2 � ~q1Þ~q2 ¼ ~WB2ðtÞ ð10Þ

where x1 and x2 are the natural frequencies of the first two

modes; xF is the external excitation frequency; A1 and A2

are the vibration amplitudes of the supporting base.

Now let x F.t = m.s [m is any integer (Tseng and

Dugundji 1970)], ~q1 ¼ q1 � 1 and ~q2 ¼ q2; then Eqs. (7)

and (8) are obtained.

d2q1

ds2
þ 2mf1

ffiffiffiffiffi
a1

p � dq1

ds
þ ðm2K1 � a1

þ m2K4 � a1 � q2
2Þ:q1 þ m2K2 � a1 � q3

1 ¼ WB1ðsÞ ð11Þ

d2q2

ds2
þ2mf2

ffiffiffiffiffi
a2

p �dq2

ds
þðm2ðK5�K7 �a2Þ �a2

þm2 �a2 �K7 �a2 �q2
1Þ:q2þm2K6 �a2 �a2 �q3

2¼WB2ðsÞ ð12Þ
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K1 ¼ �0; 5; K2 ¼ 0; 5; K4 ¼ 2; 263; K5 ¼ 1;

K6 ¼ 1; 258; K7 ¼ 0; 278

a1 ¼
x1

xF

� �2

¼ 1

X2
1

; a2 ¼
x2

xF

� �2

¼ 1

X2
2

;

11 ¼
c

2mx1

; 12 ¼
c

2mx2

:

At this level, the coefficients qn (t) have to be evaluated in

order to determine SHM and SPHM solutions. The present

discussion has been restricted to the first two modes.

Solving simultaneously Eqs. (11) and (12) turns out to be

difficult. Therefore, the response is split into two cases:

First mode Excited, Second mode at Rest (FESR), and

Second mode Excited, First mode at Rest (SEFR).

Considering FESR case (WB2 (s) = 0, q2 = 0) and

assuming WB1 (s) = K3 .AF1�sin (m .s), the governing equa-

tion for q1 is obtained (13). In the same way, assuming WB2

(s) = K3 .AF2�sin (m .s) in the SEFR configuration (WB1 (s)

= 0, q1 = 0), the governing equation (14) is obtained for q2.

d2q1

ds2
þ 2mf1

ffiffiffiffiffi
a1

p � dq1

ds
þ m2K1 � a1 � q1

þ m2K2 � a1 � q3
1 ¼ m2 � K3 � AF1 � sinðmsÞ ð13Þ

d2q2

ds2
þ 2mf2

ffiffiffiffiffi
a2

p � dq2

ds
þ m2ðK5 � K7 � a2Þ � a2 � q2

þ m2K6 � a2 � a2 � q3
2 ¼ m2 � K3 � AF2 � sinðmsÞ ð14Þ

K3 ¼ 1; 333; AF1 ¼
A1

a:h
; AF2 ¼

A2

a:h
:

Next, considering that m = 1 (Tseng and Dugundji 1970),

from normalized equations (13) and (14), it can be ob-

served that the normalized vibrations amplitudes of the

supporting base (AF1, AF2) and the damping coefficients

(f1, f2) are the only external parameters governing the

snap-through phenomenon. It can be deduced that the snap-

through is a function of the damping and the vibrations

amplitudes of the supporting base. In addition to the

analysis of the inversion of the first two modes, the study of

SHM and SPHM solutions show the influence of these two

parameters on the snap-through.

The Eqs. (13) and (14) have the same form as Duffing’s

equation; except for K1 (13) and (K5–K7.a2) (14) that are

negatives. So the general solution of equations (13) and (14)

before snapping-through can be approximated (15), (16).

q1 ¼ y1;0 þ
X3

k¼1

ðx1;k � sinðksÞ þ y1;k � cosðksÞÞ ð15Þ

q2 ¼ y2;0 þ
X3

k¼1

ðx2;k � sinðksÞ þ y2;k � cosðksÞÞ ð16Þ

Substituting (15) into (13), and (16) into (14), and using the

method of harmonic balance for the constant y1,0, y2,0 and

the first three harmonics, two sets of seven nonlinear

coupled algebraic equations are obtained. The damping

case has been considered because the air viscosity can not

be neglected: 3D microstructures are so small and thin that

damping effects (air frictions) are very critical. For the sake

of clarity, only the general expression of the two sets is

showed (19). Hence, it is considered that Eqs. (13) and (14)

have the same form as (17), and Eqs. (15) and (16) is like

Eq. (18).

d2qn

ds2
þ 2fn

ffiffiffiffiffi
an
p � dqn

ds
þ K 0 � an � qn þ K 00anq3

n

¼ K 000 � AFn � sin s ð17Þ

qn ¼ yn;0 þ
X3

k¼1

ðxn;k � sinðksÞ þ yn;k � cosðksÞÞ ð18Þ

K 0:y2
n;0þK 00:yn;0:A0¼ 0

K 0:yn;0:xn;1þK 00:yn;0:A1� xn;1�2:yn;1:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼K 000:AFn

K 0:yn;0:xn;2þK 00:yn;0:A2�4:xn;2�4:yn;2:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼ 0

K 0:yn;0:xn;3þK 00:yn;0:A3�9:xn;3�6:yn;3:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼ 0

K 0:yn;0:yn;1þK 00:yn;0:A4� yn;1þ2:xn;1:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼ 0

K 0:yn;0:yn;2þK 00:yn;0:A5�4:yn;2þ4:xn;2:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼ 0

K 0:yn;0:yn;3þK 00:yn;0:A6�9:yn;3þ6:xn;3:nn:
ffiffiffiffiffiffiffi
yn;0
p ¼ 0

1
CCCCCCCCCCCA

ð19Þ

A1, A2, A3, A4, A5 and A6 are functions given in the Appendix.

In order to compute the two sets, the first and second natural

frequencies of the buckled beam have to be known.

Using Nayfeh’s algorithm (Syms 2000a, 2000b) a good

estimation of the eigenfrequencies of the first and second

mode has been obtained for a buckled beam. This new

value depends both on the initial deflection and the

parameters of the beam. The algorithm starts by deter-

mining the critical load and the normal mode which cor-

responds to the boundary conditions of a clamped-clamped

beam. Then, the equations of motion dealing with the state

of the beam make an homogeneous system of equations

which defines an eigenvalues problem for the natural fre-

quency. This system of equations describes the dynamic

response of the initially deflected fixed-fixed beam. To find

a unique non-zero solution, the determinant of the system

must be zero. This conditions leads to the computation of

the exact natural frequency.

Finally, the good assessment of the eigenfrequencies of

the buckled beam leads to the solution of the two sets of

equations found in both cases by using a Newton iteration

method. It allows showing the exact solutions of SHM, and

SPHM (order 2 and 3). As an example, the solution of y1,1
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is shown in Fig. 2; for this calculation, the normalized

vibration amplitude AF1 of the supporting base is 0.3, and

the non-damping case is considered.

2.3 Stability

The stability of the system is depends on the continuity of

SHM solutions and SPHM (order 2 and 3) solutions. For

each excitation frequency, the continuity of the previous

solutions is analyzed. It is considered that the system is

stable when SHM and SPHM solutions are continuous. So,

for each frequency and for a fixed damping coefficient, the

normalized vibrations amplitude of the supporting base is

increased until the non-continuity of the solutions is

reached. It allows to determine, for each frequency, the

highest stable vibration amplitude of the supporting base.

Beyond this limit, the system is inevitably instable.

The method has been applied in the previous cases. So,

for each frequency, AF1 max is determined in the FESR case

and AF2 max in the SEFR case. Concerning the general case

(i.e., the first and the second mode excited at the same

time), it is assumed that the highest vibration amplitude AF

max of the supporting base, within the stability region of the

system, is equal to the minimum of (AF1 max, AF2 max).

2.4 Results

The major result is that AF1 max = AF max for each fre-

quency (Fig. 3); it confirms that the second mode is stable.

So, the inversion of mode does not influence the snap-

through phenomenon. Moreover, from the previous

stability analysis, one can find two stable steady-state

solutions for the buckled beam in the non-damping case at

frequencies lower than X1 ¼ 1
k ; where k = 1,2,3. The

snapping phenomenon generally occurs near jump points

(k = 1,2,3). A non-zero damping coefficient implies a

bigger stability state, i.e., any jump point (k = 2,3) has been

observed (Fig. 3). So, the vibration amplitude of the sup-

porting base is the stability criterion for the snap-through

and damping prevents snap-through phenomenon from

occurring.

2.5 Dynamic response using Runge–Kutta method

In order to validate the previous model, numerical simu-

lations have been performed. Considering the transient

response, the snapping phenomenon has been solved di-

rectly by numerical methods. Accordingly, the Runge–

Kutta numerical integration method has been employed

using different time increment. The calculations were

performed at the vicinity of jump points. The initial con-

ditions, which correspond to the beam at rest, were em-

ployed (20); the second mode is considered at rest because

the previous results confirm the second mode stability.

q1 ¼ 1;
dq1

ds
¼ 0; q2 ¼ 0 and

dq2

ds
¼ 0 at s ¼ 0:

ð20Þ

Some typical dynamic behaviors are shown in Fig. 4. At a

fixed excitation frequency, if the supporting base amplitude

is higher than AF max, it can be observed that the snap-

through problem begins and the buckled beam vibration

amplitude becomes large (Fig. 4). Moreover, with the same

set of parameters, if the damping effects get bigger,

Fig. 2 Dynamical behavior of y1,1 with intermittent instabilities. For

this calculation, the normalized vibration amplitude AF1 of the

supporting base is 0.3, and the non-damping case is considered

Fig. 3 Snap-through regions and limits of stability. The major result

is that AF1 max = AF max for each frequency; it confirms that the second

mode is stable. Two stable steady-state solutions are found for the

buckled beam in the non-damping case at frequencies lower than

X1 ¼ 1
k ; where k = 1,2,3. A non-zero damping coefficient implies a

bigger stability state, i.e., any jump point (k = 2,3) has been observed
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snap-through can be avoided resulting in a stable dynamic

behavior (Fig. 4).

2.6 Application

In order to demonstrate how useful the modeling is, the

following example is given. MEMS device consists in a

deformable plate which is fixed to buckled beams (Akiy-

ama et al. 1997; Quévy et al. 2000). This type of device is

used to actuate a continuous-membrane for adaptive optics

application. Such an optical MEMS is supposed to be part

of a space laboratory subjected to a dynamical excitation

during the launcher lift-off.

3 Experiment

3.1 Technological process

In order to validate the modeling, samples have been

fabricated. The 3D structure is obtained thanks to SDAs

coupled to a slender beam the length, width and thick-

ness of which are 550, 8 and 0.48lm, respectively

(Akiyama et al. 1997; Quévy et al. 2000). The process

flow of a SDA and a contact pad is shown in Fig. 5.

Starting with a 5–20 ohm cm, p-type (100) wafer, a

0.35lm oxide is grown, followed by the first Low

Pressure Chemical Vapor Deposition (LPCVD) poly-

crystalline silicon layer. After the electrode patterning,

the polycrystalline silicon is oxidized and covered by a

LPCVD silicon nitride (Si3N4) layer (Fig. 5a). 2lm sac-

rificial oxide (SiO2) has been deposited followed by the

etching of SDA bushing and contact pad (Fig. 5b). 2lm

LPCVD polycrystalline silicon was deposited, doped by

phosphorus implantation and annealed at 1,000�C for

60 min (Fig. 5c) for the dopant diffusion. The structural

patterned has been defined by SF6 and Cl2 etching. The

polycrystalline silicon was then thinned down to 0.5lm

by SF6 plasma. Finally, the structure has been released in

HF (Fig. 5d).

3.2 Lifting-up the beam

SDAs make supporting beams buckling resulting in the

beam lift-up (initial deflection: 97lm), until the SDA

mobile part is latched and locked to mechanical anchors

(Fig. 6) (Syms and Yeatman 1993). This locking technique

avoids the use of reshaping and thus enables good pre-

diction of the buckled beam shape. The buckled beam is

rigidly clamped at both ends by the use of mechanical

anchors. A SEM observation allows to check the sym-

metrical shape of the deformed beam (Fig. 6).

3.3 Measurements

3.3.1 Natural frequencies of the first two modes

The wafer was glued onto a piezoelectric ceramic. The

excitation of the piezoceramic (therefore the wafer) is

controlled by a network analyzer. An Optical Beam

Deflection (OBD) method (Fig. 7) (Buchaillot et al. 1997)

is used to determine the exact value of natural frequency of

the first two modes. OBD is a well-known nondestructive

optical method: a laser beam is focused on the sample by

means of a microscope objective. The reflected beam

reaches the four-quadrant photodiode used as a vibration

detector. The photodiode’s signal is compared to the

excitation frequency leading to the exact value of the first

and second natural frequency of the microstructure, thus

validating the theoretical approach.

3.3.2 Snap-through

The goal of this experiment was to verify that, at a fixed

excitation frequency, for two different values of the

vibration amplitude of the supporting base (one lower than

Fig. 4 Influence of damping on

dynamic SHM snap-through. At

a fixed excitation frequency, if

the supporting base amplitude is

higher than AF max, it can be

observed that the snap-through

problem begins and the buckled

beam vibration amplitude

becomes large. Moreover, with

the same set of parameters, if

the damping effects get bigger,

snap-through can be avoided

resulting in a stable dynamic

behavior
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the determined limit of stability—Fig. 3—and the other

one upper than the limit of stability), two different

dynamical behaviors (stability, snap-through phenomenon)

are observed. So, the test bench is under vacuum In order to

consider the damping equal to zero, a vacuum chamber was

used. The test is performed at a fixed excitation frequency

equal to half of the first natural frequency of the buckled

beam (22 kHz, obtained from Nayfeh’s algorithm).The

dynamical response at a jump point is investigated in order

to reach rapidly the instability (Fig. 3). At this frequency,

in the case of our structure (initial deflection of 97 lm), the

modeling predicts a limit of stability corresponding to a

19.4 lm vibration amplitude for the supporting base equal.

First, the vibration amplitude of the supporting base is set

to 10 lm (via the voltage control of the piezoceramic).

Secondly, the amplitude of the base is set to 25–30 lm.

The snap-through domain is determined for SHM. The

OBD method is used for the determination of the vibration

amplitude of the buckled beam, and the four-quadrant

Fig. 5 Simplified process flow

representing surface

micromachining of two

polycrystalline silicon layers

Fig. 6 Scanning electron

microscope image of a buckling

beam with its anchors. SDA are

also visible

Fig. 7 Optical beam deflection experimental set-up for the detection

of resonance frequencies (This test bench is in a vacuum chamber)
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photodiode is used as a position sensitive detector (PSD).

The output signal of the PSD has been analyzed by a scope;

the voltage observed is proportional to the vibration

amplitude of the buckled beam.

3.4 Results

3.4.1 Natural frequencies of the first two modes

Given that the initial post-buckling deflection is available,

the Nayfeh’s algorithm predicts the resonance frequencies

(x1, x2) and the mode inversion (x1 > x2). The initial

deflection was the only experimental parameter used as an

input for the computation. Figure 8 shows the experimental

values of the resonance frequencies for the modes of the base

and of the buckled beam. Table 1 presents a comparison

between the experimental and the theoretical results. For the

first resonant mode, the difference between experimental

values and the values predicted by the theory is low. The

explanation is twofold: First, in our case, the buckled beam

has been assumed to exhibit the ideal fixed-end boundary

conditions usually met in structures at the macroscale. In the

real structure, the buckled beam boundary conditions are

found to better correspond to elastically constraints against

rotation ends that differs from the theoretical fixed-end

boundary conditions. Secondly, stress failure may appear in

the beam after releasing of the structure.

3.4.2 Snap-through

The stability is confirmed by the analog computer solutions

when the vibration amplitude of the supporting base is

lower than the limit of stability (19.4 lm): the steady-state

SHM shows infinitesimal amplitudes. Figure 9 shows the

results for the same buckled beam, at the same frequency,

but with vibration amplitude of the base equal to 25–

30 lm. The transition to the snap-through behavior is

obvious. Very large amplitudes are obtained, thus validat-

ing the modeling.

4 Conclusion

Snap-through phenomenon has been considered in the

case of microfabricated clamped–clamped buckled beam.

The main differences between this study and the previous

study are the MEMS specific beam parameters, especially

the initial deflection of the buckled beam. In the MEMS

field, the ratio a is higher than 100 (in experiment,

a = 200) involving the inversion of the two first reso-

nance frequencies. Some conclusions have been drawn:

First, the vibration amplitude of the supporting base ap-

pears to be the triggering factor for snap-through phe-

nomenon. For each frequency, the limit between the

stable behavior and the snap-through behavior has been

evaluated. Secondly, the second mode is stable meaning

that the instability is confirmed with only the first mode.

Moreover, it has been shown that damping tempers the

snap-through phenomenon by increasing the stable state

of the system. Finally, the experimental results of the

natural frequencies of the first two modes are in good

agreement with the theoretical results. The present study

has demonstrated the importance of dynamical snap-

through in the understanding of the vibration behaviour of

microfabricated buckled beams.

Fig. 8 Frequency response

measured for the buckled beam

on the substrate (at atmospheric

pressure)
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