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Abstract This paper presents an analysis of the thermo-
electro-mechanical behaviour of the piezoelectric micro-
components during their self-heating at harmonic
oscilltions. The reasons of the self-heating effect are
discussed. An iterational algorithm for solving the
self-heating problem is suggested based on the thermo-
visco-elastic model and the equations describing the
piezoelectric effect. The thermal energy dissipated into
piezoelectric microcomponents during their oscillations is
obtained. It is shown that the characteristics of the
piezoelectric microcomponents depend in great extent on
the influence of the thermal fields of the self-heating. The
thermo-electro-mechanical analysis is carried out by the
finite element method (FEM).

1
Introduction
Piezoelectric microcomponents of various constructions
are widely used as actuators in micro-electro-mechanical
systems (Jendritza and Karthe, 1997). For example, they
have been successfully applied as actuators in the form
of monomorph piezoelements in micropositioning
(Keoschkerjan et al., 2000) and microgripping systems
(Salim et al., 1999). Their application areas have been
further expanded and piezoactuators of bimorph
construction were developed for different microfluidic
components (Gravesen et al., 1993). They have been used
as an actuating membrane in microfluidic components
such as micropumps, microdosing systems and micro-

valves for generation of additional pressure in their pump
chambers (Keoschkerjan and Dressler, 2000).

Depending on the application of the microsystems the
piezoelectric microcomponents can be actuated statically
or dynamically. As a result of the actuation at dynamic
mode with high frequencies, self-heating of the piezoelec-
tric microcomponents occurs due to the internal viscous
friction. The characteristics of the microsystems depend to
a great extent on internal and external thermal fields which
are generated during their self-heating. Many different
experiments have shown that the resonance frequencies
and oscillation amplitudes of the piezoelectric elements are
not stable in the initial stage of their actuation until the
thermal steady-state is reached. The self-heating thermal
fields lead to a change a of the electro-mechanical coeffi-
cients of the piezoelectric elements and as a result a change
of their resonance frequencies and oscillation amplitudes
takes place. This influence should be taken into account
while constructing the whole microsystems.

This paper presents an approach for solving the coupled
problem of the thermal, electrical and visco-elastic effects
by taking into account the internal dissipative energy of the
piezo microcomponents. The thermo-electro-mechanical
analysis is carried out by the finite element method (FEM).

2
Thermo-electro-mechanical analysis
An approximation procedure for calculation of the con-
struction elements based on the linear theory of the ther-
mo-viscoelasticity has been proposed in (Iljusin and
Rabotnow 1970). In particular for description of the ther-
moreological behaviour of the piezoelectric microcompo-
nents the linear theory of the thermo-viscoelasticity (Iljusin
and Pobedrja 1970) can be applied. According to this the-
ory it is necessary to express the elastic, piezoelectric and
dielectric constants of the piezomaterial in the mathemat-
ical complex form. For analysing of the self-heating effects
in the simplest case, i.e. when the characteristics of the
piezomaterial do not depend on the temperature, the fol-
lowing method of the theory of viscoelasticity can be used.
First it is necessary to solve the electromechanical problem,
then to determine the internal dissipative energy, and at the
end to solve the energy equation with the known heat
source. To analyse the thermo-electro-mechanical beha-
viour of the piezoelectric microcomponents in dynamic
mode the dependence of the piezomaterial electro-me-
chanical characteristics on the temperature has to be taken
into account. It is realised through the following iterative
algorithm by adding an iterative step at the end of the
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above mentioned method, i.e. determining the piezoelectric
characteristics and starting the calculations over again:

a. solving the problem of the mechanical vibrations: cal-
culation of the natural modes, the frequencies and the
forced harmonic oscillations

b. calculation of the thermal energy dissipated through
mechanical vibrations into the piezomaterial

c. solving the problem of non-steady thermoconductivity
with dissipative function as a source of thermal energy

d. correction of the electro-mechanical coefficients of the
piezomaterial depending on the calculated thermal fields

e. determination of the piezoelectric microcomponents
characteristics.

In order to solve the electro-mechanical problem, the
equation of the piezomaterial can be written in the fol-
lowing form:

rx ¼ cD
11ex þ cD

12ey � h31Dz

ry ¼ cD
12ex þ cD

11ey � h31Dz

sxy ¼ cD
33cxy

Dz ¼ eD
31ex þ eD

31ey þ eS
33Ez

ð1Þ

where cD
11; cD

12; cD
33 are the elastic constants (open circuit),

eS
33 is the dielectric constant, h31 ¼ e31=es

33 with e31 is the
piezoelectric charge constant, rx, ry, sxy, ex, ey, cxy are the
mechanical stresses and strains, Ez and Dz are the strength
and the induction of the applied electrical field.

The dissipative function of the energy for one cycle of
vibrations of the piezoelement microcomponent is deter-
mined in the following form:

Q ¼ x
2

ZtþT

t

ðRerx Re _eex þ Rery Re _eey þ Resxy Re _ccxy

þ ReEz Re _DDzÞdt ;

ð2Þ

where x is the actuating frequency of the piezoelement,
T is the period of the piezoelement oscillations. In (2) the
real parts of the complex values of the mechanical stresses
and strains, and the complex values of the strength and the
induction of the electrical field are used. Using the basic
equations of the piezomaterial (1), the following expres-
sion for the dissipative function is obtained:

Q ¼x
2
½C1ðe2

xo þ e2
yoÞ þ 2C2exoeyo þ c0033c

2
xyo������������������������! ������������������������

mechanical

� 2e31Ezoðexo þ eyoÞ������������! ������������
elec:�mech:

� e0033 E2
zo
�����! �����

elec:

;
ð3Þ

where C1 ¼ c011 � h031e0031 � h0031e031;

with h031 ¼
e031 e033 þ e0031 e0033

ð e033Þ
2 þ ð e0033Þ

2

C2 ¼ c012 � h031e0031 � h0031e031;

with h0031 ¼
e031 e0033 � e0031 e033

ð e033Þ
2 þ ð e0033Þ

2

ð4Þ

where exo, eyo, cxyo, Ezo are the magnitudes of the complex
values of the mechanical strains and the electrical field
strength. In (3) and (4) complex elastic, piezoelectric and
dielectric constants of the piezomaterial are used:

cD
ij ¼ c0ij þ ic00ij ¼ c0ijð1 þ idD

ij Þ; ij ¼ 11; 12; 33

e31 ¼ e031 þ i e0031 ¼ e031ð1 þ ide
31Þ

es
33 ¼ e033 þ ie0033 ¼ e033ð1 þ idS

33Þ

ð5Þ

where dD
ij ; de

31; dS
33 are the loss factors of the piezomate-

rial. The analysis of (3) shows that the dissipative energy
saved in the piezomaterial consists of three different
energy parts coming from the separate influence of the
mechanical and electrical fields and the combined influ-
ence of the both fields.

For description of the thermoconductivity effects in the
piezomaterial during their self-heating, the general equa-
tion for non-steady processes (Segerlind, 1976) can be
written in the following form:

kx
o2H
o x2
þ ky

o2H
o y2
þ kz

o2H
o z2
þ Q ¼ qC

oH
ot

; ð6Þ

where kx, ky, kz are the thermoconductivity coefficients in
the x, y, z directions; q is the density of the piezomaterial;
C is the specific heat of the piezomaterial; Q is the heat
source inside the piezomaterial (the dissipative function);
and Q is the temperature of the piezomaterial. There are
two different boundary conditions for the (6):

The first boundary condition for a given temperature on
the surface of the piezoelement is

H ¼ HBðSÞ : ð7Þ
the second boundary condition for the heat convection on
the surface of the piezoelement described with the value
aðH�H1Þ is

kx
oH
ox

lx þ ky
oH
oy

ly þ kz
oH
oz

lz þ aðH�H1Þ ¼ 0 ;

ð8Þ
where a is the coefficient of the heat convection between
the piezoelement and the environment, H1 is the tem-
perature of the environment and lx, ly, lz are the cosinuses
of the normals to the body surface. The initial condition
for (6) is Q ¼ Q0 for t ¼ 0. It could be assumed that:
Q0 ¼ Q¥. Using the conventional procedure of the FEM,
the Eq. (6) of the non-steady thermoconductivity with the
above mentioned boundary conditions takes the following
matrix form (Segerlind, 1976):

½CH
f _HHg þ ½KH
fHg þ fFHg ¼ 0 ; ð9Þ
where ½CH
 and ½KH
 are matrixes of the specific heat and the
heat conductivity respectively; fFHg is the vector of the
thermal loads and fHg is the temperature vector. Equations
(6) and (8) can be used also for solving the one- or two-
dimensional problems with excluding the terms corres-
ponding to the not-relevant coordinates. For definition of
the {Q} values for each time point, the linear differential
equation (9) must be solved. For this solution the finite-
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differences-method is used. The application of this method
to (9) leads to the following system of linear equations:

2

Dt
½CH
þ½KH


� �
fHgiþ1¼

2

Dt
½CH
�½KH


� �
fHgiþ1

�2fFHg ; ð10Þ
where Dt is the time step. The solving of (10) gives the
distribution of the temperature over the surface of the
piezoelectric element.

3
Calculations
The algorithm described above was applied to calculate the
thermal fields of the piezoelectric microcomponents and
their influence on the main dynamic characteristics. The
mostly used geometrical forms of the piezoelectric
microcomponents, rectangular and ring, were considered
and their harmonic oscillations were analysed. The overall
dimensions of the rectangular and ring piezoelectric
elements were 37.5 · 15 · 2 mm3 and 13.5 · 6.5 · 6 mm3

respectively. The piezoelements were actuated with a
harmonical electrical signal of 100 V. The main charac-
teristics of the piezomaterial PZT-5 at Q0 ¼ 20 �C are:
CD

11 ¼ 1:39� 1011 N/m2, CD
12 ¼ 0:778� 1011 N/m2,

CD
33 ¼ 1:15� 1011 N/m2, e31 ¼ �5:2 C/m2,

h31 ¼ �9:2� 108 V/m, ee
33 ¼ 5:62� 10�9 F/m;

q ¼ 7500 kg/m3, c ¼ 420 J/(kg Æ deg), kx ¼ ky ¼ 1.25
W/(m Æ deg) (Berlincourt et al., 1966). Some temperature
dependencies of the stiffnesses, the piezoelectric
charge constant and the dielectric constant are given in
(Berlincourt et al., 1966). The case of conductive heat
transfer from the upper and lower surfaces of the piezo-
element with a ¼ 15 W/(m2 Æ deg) was considered. The
initial temperature is assumed equal to the environment
temperature, i.e. 20 �C. Figure 1 shows the dependences of
the steady-state maximal temperature of the self-heating of
the rectangular piezoelement and the saturation time (the
time for which the temperature reaches the steady-state) as
a function of the frequency. The maximal temperature and
the saturation time are increasing functions of the
frequency provided the dissipative energy increases with
increasing the frequency as shown in Fig. 2.

The analysis of the temperature fields of the piezoele-
ment self-heating allows to define their influence on the
main dynamic characteristics. The analysis of the piezo-
element eigen vibrations in the temperature range from 20
to 120 �C shows that the vibration modes (Figs. 3 and 4)
are not sensitive to the thermal fields, while their fre-
quencies are temperature dependent. The frequencies are
increasing due to the increasing of the elastic coefficients
Cij in the same temperature range (Berlincourt et al.,
1966). Theoretical determination of the amplitude-
frequency response was carried out by actuating the
piezoelements with a homogeneous harmonic electric
field. The amplitude–frequency responses for the point K
(see Figs. 3 and 4) of the rectangular and ring piezoele-
ments are shown in Figs. 5 and 6 correspondingly. The
vibration amplitude of the rectangular piezoelement is
represented with a longitudinal Av and a transversal Au

component. The vibration amplitude of the ring

Fig. 1. Steady-state maximal temperature of the self-heating
rectangular piezoelement and the saturation time versus operat-
ing frequency

Fig. 2. Maximal values of the dissipative energy versus frequency

Fig. 3a–c. Modes of the rectangular piezoelement eigen vibra-
tions at the first three frequencies: a f1� ¼ 7.1 kHz, f1

Q ¼ 7.3 kHz;
b f2� ¼ 24.3 kHz, f2

Q ¼ 25 kHz; c f3� ¼ 40.3 kHz, f1
Q ¼ 41.4 kHz

77



piezoelement is represented with a radial Ar and a tan-
gential At component. From the amplitude-frequency re-
sponses it is possible to conclude that as a result of the
thermal field influence in the temperature range from 20 to
120 �C, an increase of the amplitude components takes
place at these frequencies which modes of forced vibra-
tions are close to the natural (eigen) modes. This means
that the homogenous thermal field amplifies the homog-
enous electrical field and consequently the mechanical
field. This phenomenon can be explained by an increase of
the piezoelectric constant e31 relatively to its value at 20 �C
in the above mentioned temperature range and by a de-
crease of the piezoelement damping. The increase of the
vibration amplitude of the rectangular piezoelement oc-
cures due to an increase of the longitudinal component Av

(Fig. 5b) which can be explained by an increase of the
longitudinal mode of vibrations (Fig. 3b) and a decrease of
the bending modes (Fig. 3a, c).

For the ring piezoelement a decrease of the tangential
component At (Fig. 6b) takes place in the whole range of
the actuating frequencies. An increase of the radial com-
ponent Ar is observed at the first three resonance
frequencies (Fig. 6a) which corresponds to the tangential
modes (Fig. 4 a, b, c). A decrease of the radial component
Ar (Fig. 6a) at the fourth tangential–radial mode (Fig. 4d)
and at the fifth radial mode (Fig. 4e) can be explained by
amplification of the radial vibration mode and weakening
of the tangential mode. The increase of the radial com-
ponent Ar at the fifth resonance frequency (Fig. 6a) can be
explained by an increase of the piezoelectric constant e31

in the temperature range from 90 to 120 �C (Berlincourt

et al., 1966) where the saturation temperature of the pi-
ezoelement self-heating is located.

4
Comparison to experimental results
The results of the suggested theoretical method and cal-
culating algorithm were compared with the results of
experimental measurements carried out for the rectangu-
lar and ring piezoelectric elements with the same dimen-
sions. The rectangular element was clamped at the smaller
end side and the ring element – at the inner circle surface.
The main electro-mechanical characteristics of the piezo-
material were defined as: CD

11 ¼ 4:6� 1010 N/m2,
CD

12 ¼ 2:6� 1010 N/m2, CD
33 ¼ 1:0� 1010 N/m2,

e31 ¼ �15:1 C/m2, h31 ¼ �9:2� 108 V/m,
ee

33 ¼ 5:62� 10�9 F/m, q ¼ 7500 kg/m3, c ¼ 420 J/
(kg Æ deg), kx ¼ ky ¼ 1.25 W/(m Æ deg). The case of
conductive heat transfer from the upper and lower
surfaces of the piezoelements was considered. The
temperature dependencies of the stiffnesses, the
piezoelectric charge constant and the dielectric constant
were taken from (Berlincourt et al., 1966). The rectangular
and ring piezoelectric elements were actuated with a
harmonic signal of 100 V in the frequency range 5–40 kHz
and 50–190 kHz respectively.

Fig. 4a–e. Modes of the ring piezoelement eigen vibrations at
the first five frequencies: a f1� ¼ 66.9 kHz, f1

Q ¼ 71.2 kHz; b ¼ c
f2�= f3�=85 kHz, f2

Q ¼ f3
Q ¼ 88 kHz; d f4� ¼ 103 kHz,

f4
Q ¼ 106 kHz, e f5� ¼ 136 kHz, f4

Q ¼ 139 kHz

Fig. 5a, b. Theoretically calculated amplitude–frequency
response of the rectangular piezoelement at 20 �C and after self-
heating: a transversal component; b longitudinal component

78



The temperature of the self-heating was measured with
a special temperature sensor based on a semiconductor
microelement with temperature dependent characteristics
which was mounted on the upper surface of the piezo-
electric element. The sensor microdimensions (1.4 · 1.2
mm2) provided negligible disturbance of the piezoelectric
element oscillations. The steady-state maximal tempera-
ture of the self-heating and the saturation time were
measured. The Figs. 7 and 8 present the experimental and
theoretically calculated temperatures as a function of fre-
quency for the rectangular and ring piezoelectric elements
respectively. The temperature-frequency dependence for
both piezoelements has maxima at frequencies close to the
resonance frequencies. In the case of the ring piezoelectric
element these maxima are much more pronounced which
reflects the similar behaviour of the amplitude–frequency
response (Fig. 6b) characterized by the lower damping. In
the case of the rectangular piezoelectric element a very
good agreement between the experimental and theoretical
values is seen in the whole frequency range. For the ring
piezoelectric element the agreement has a qualitative
character: the measured and calculated temperatures are
in the same order of magnitude.

Various more or less simplified models are used in
practice to describe such complex viscoelastic processes.
In general, it is practically impossible to find materials
which behaviour can be completely described by only one

theoretical model. For example, the Maxwell model is
recommended for plastic materials, resins and even some
metals, while the Kelvin-Voigt model describes better the
energy dissipations during elastic oscillations (Iljusin and
Rabotnow, 1970). Even so in most of the cases the theo-
retical models give only qualitative prediction of the
experimental temperature-frequency dependencies. For
this reason we consider that the suggested thermo-
electromechanical model and the iterational algorithm
describe well the self-heating phenomenon in the piezo-
electric microcomponents.

5
Conclusions
The analysis presented using the above mentioned thermo-
electro-mechanical model is in a good agreement with the
physics of the thermo-viscous-elastic effects in the piezo-
electric microcomponents during their harmonic oscilla-
tions. The results show that the components of the vibration
amplitudes change in such a way that the deformable state of
the piezoelement tries to attain the initial homogeneous
geometrical form. The comparison between the experi-
mental investigations and the numerical modelling con-
firms that the suggested theoretical algorithm describes

Fig. 6a, b. Theoretically calculated amplitude–frequency re-
sponse of the ring piezoelement at 20 �C and after self-heating:
a radial component; b tangential component

Fig. 7. Measured temperature–frequency characteristic of the
rectangular piezoelectric element

Fig. 8. Measured temperature–frequency characteristic of the
ring piezoelectric element
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satisfactory well the self-heating phenomenon in the pi-
ezoelectric microcomponents. It is shown that the temper-
ature deformations in the piezoelectrical microcomponents
can reach the order of magnitude of the deformations
coming from the electrical actuation. Therefore, the elec-
trical control of the piezoelectric microcomponents should
be optimised so that the influence of the temperature fields
on the dynamical characteristics is compensated.
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grippers created in microstructurable glass. J Microsyst Technol
4: 32–34
Segerlind L (1976): Applied Finite Element Analysis. John Wiley,
New-York

80


