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Abstract
Inflammation is the body’s response to injury and infection, involving a complex biological response of the somatosensory, 
immune, autonomic, and vascular systems. Inflammatory mediators such as prostaglandin, proinflammatory cytokines, and 
chemokines induce pain via direct activation of nociceptors, the primary sensory neurons that detect noxious stimuli. Neu-
rogenic inflammation is triggered by nerve activation and results in neuropeptide release and rapid plasma extravasation and 
edema, contributing to pain conditions such as headache. Neuroinflammation is a localized inflammation in the peripheral 
nervous system (PNS) and central nervous system (CNS). A characteristic feature of neuroinflammation is the activation 
of glial cells in dorsal root ganglia, spinal cord, and brain which leads to the production of proinflammatory cytokines and 
chemokines in the PNS and CNS that drives peripheral sensitization and central sensitization. Here, we discuss the distinct 
roles of inflammation, neurogenic inflammation, and neuroinflammation in the regulation of different types of pain condi-
tions, with a special focus on neuroinflammation in postoperative pain and opioid-induced hyperalgesia.
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Introduction

The biological significance of acute pain is to avoid potential 
damage and protect wounded tissue. In contrast, chronic pain 
is maladaptive and has no beneficial biological significance. 
Chronic pain has long been recognized as a pain state that 
continues beyond normal healing time, thus lacking the acute 
warning function of physiological nociception. According to 
the International Classification of Diseases (ICD), chronic 
pain is defined as pain that persists or recurs for more than 
3 months and has been further delineated by the IASP Task 
Force for the Classification of Chronic Pain (2016).

Chronic pain is a major health concern in the world. It is 
estimated that chronic pain affects one in three Americans 
and with an annual cost over $600 billion dollars [1, 2]. As 
shown in Table 1, the incidence of chronic pain in Japan 
ranges from 13.4 to 47% [3–10]. The largest internet sur-
vey of 41,597 Japanese residents by Yabuki et al. reported a 
chronic pain (> 3 months) incidence of 22.5% [6].

In particular, major surgeries result in high incidence of 
chronic postsurgical pain (CPSP). The prevalence of CPSP 
occurs in 20–50% patients after thoracic and breast surgeries 
(thoracotomies and mastectomies) and up to 80% of patients 
following amputations, with 5–10% patients suffering from 
severe chronic pain [11–13]. The prevalence of CPSP in 
Japan at 3 and 6 months is 18% and 12% after lung surgery 
and 49% and 33% after total knee arthroplasty [14].

Chronic pain is maladaptive and characterized by sponta-
neous pain (e.g., burning) as well as evoked pain in response 
to noxious (hyperalgesia) or non-noxious (allodynia) stimuli. 
It is well understood in the pain research community that 
neuronal and synaptic plasticity, i.e., neural plasticity in 
pain coding pathways and circuits results in chronic pain. 
Neuronal plasticity occurs in primary sensory neurons of 
dorsal root ganglia (DRG) and trigeminal ganglia (peripheral 
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sensitization) as well as in pain-processing neurons in the 
spinal cord and brain (central sensitization) [15, 16].

Inflammation and pain

A complex interplay between various biological responses 
of the immune system, the autonomic nervous system, vas-
cular regulation, and the central and peripheral nervous sys-
tems in response to the insults of tissue injury, pathogens, 
and irritants comprise the sensation of pain by the body. 
Pain can serve a vital protective role for an organism, as is 
the case with acute inflammation that results in the percep-
tion of pain, leading to avoidance of harmful stimulus and 
encouraging healing of damaged tissue [17]. Inflammatory 
mediators, produced during inflammation, evokes pain via 
direct activation and sensitization of nociceptors [18, 19]. 
Nociceptors are a subset of primary afferent neurons, with 
cell bodies located in the DRG and trigeminal ganglia, that 
respond to tissue injury, and are made up of both unmyeli-
nated C-fibers and myelinated Aδ-fibers innervating skin, 
muscle, joint, and visceral organs. These tissue injury sensi-
tive neurons signal through the activation or sensitization of 
G-protein coupled receptors (GPCRs), ionotropic receptors, 
and tyrosine kinase receptors located on nerve terminals and 
cell bodies. These receptors are directly bound and activated 
by a variety of inflammatory mediators, including but not 
restricted to, bradykinin, prostaglandins (e.g., PGE2),  H+, 
ATP, nerve growth factor (NGF), as well as proinflammatory 
cytokines and chemokines such as tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), and CCL2 [17, 19–22].

The phenomenon of peripheral sensitization, which is 
marked by a state of hypersensitivity and hyperexcitabil-
ity of nociceptors as a result of tissue injury and inflamma-
tion, is caused by the activation of a varied collection of ion 
channels including the transient receptor potential ion chan-
nels (i.e., TRPA1, TRPV1, and TRPV4) [23, 24], sodium 
channels (i.e., Nav1.7, Nav1.8, and Nav1.9) [25, 26], and 
mechanosensitive piezo ion channels [27]. Protein kinases 

including MAP kinases, protein kinase A (PKA), and protein 
kinase C (PKC) are critical activating links in the recep-
tor signaling pathways of nociceptors, leading to peripheral 
sensitization induction and maintenance [28–31]. It has been 
found that peripheral sensitization is marked by increased 
TRPV1 activity in response to TNF [32] and increased 
Nav1.8 activity in response to IL-1β [33], with both of 
these increased ion channel responses resulting from p38 
MAP kinase activation in DRG neurons [34–36]. Continued 
elevated TRPV1 expression maintains the state of periph-
eral sensitization and consequently transition from acute to 
chronic pain [34, 37, 38]. In addition to inflammatory and 
neuropathic pain [34, 39], activation of p38 MAP kinase in 
DRG neurons with C- and Aδ-fibers also contributes to pain 
hypersensitivity after plantar incision [40].

Nociceptor priming or hyperalgesic priming is a unique 
form of peripheral sensitization [41]. The inflammatory 
mediator PGE2 normally produces a transient hyperalgesia 
for hours in naïve animals. However, when preceded by a 
prior insult (e.g., IL-6 or carrageenan), a peripheral injection 
of PGE2 results in sustained hyperalgesia for weeks [41]. 
Interestingly, PGE2 also produces long-lasting hyperalge-
sia after priming with plantar incision [36]. This sustained 
post-incisional nociception is mediated by an upregulation 
of exchange protein directly activated by cyclic adenosine 
monophosphate (EPAC) in DRG. Of note, treatment with 
FR167653 [42, 43], a selective p38 MAP kinase inhibitor, 
prior to the incision, prevented the development of nocicep-
tor priming and incision-induced EPAC expression in DRG 
neurons, presumably nociceptors [36].

Interestingly, nociceptors and immune cells are involved 
in neuroimmune communication involving a common rep-
ertoire of inflammatory mediators including cytokines, 
chemokines, and TLRs [44, 45]. Thus, in the context of 
inflammation and pain, neuroimmune interactions enable 
the modulation of both nociceptor and immune response to 
injury by regulating both resident immune cells as well as 
recruitment of immune cell populations to the area of local 
inflammation, primary afferents, and DRG [46]. A particular 

Table 1  Chronic pain prevalence in Japan

First author Year Survey method Age (years) Participants (response rate) Duration of pain 
(months)

Prevalence (%)

Hattori [3] 2004 Internet ≥ 18 18,300 (72.2%) 6 13.4
Matsudaira [4] 2011 Internet 20–80 20,044 (20.1%) 3 22.9
Nakamura [5] 2011 Postal ≥ 18 11,507 (60%) 6 15.4
Yabuki [6] 2012 Internet ≥ 20 41,597 (unknown) 3 22.5
Ogawa [7] 2012 Internet 20–69 20,000 (unknown) 3 26.4
Shibata [8] 2014 Interview ≥ 40 927 (46%) 6 47
Inoue [9] 2015 Postal ≥ 20 2628 (43.8%) 6 39.3
Inoue [10] 2017 Postal ≥ 20 5437 (54.4%) 6 16.6
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example is the role of neuronal TLR signaling in regulating 
macrophage activation in the vicinity of DRG by producing 
CCL2 chemokine in nociceptors [44, 47]. In 2010, Amaya 
and coworkers first demonstrated that an induction of high 
mobility group box-1 (HMGB-1), an endogenous ligand 
of TLR2/4, in DRG neurons occurs after peripheral nerve 
injury, and this process is critical for the induction of neu-
ropathic pain [48].

It is important to point out that acute inflammation not 
only induces pain but also promotes the resolution of pain 
by producing specialized pro-resolving mediators (SPMs), 
including resolvins (RvD1, RvD2, RvD5, RvE1), protectin 
or neuroprotectin (PD1/NPD1), and maresin (MaR1) derived 
from fish oil. SPMs, produced during the resolution phase 
of inflammation, exhibit potent anti-inflammatory actions 
in various animal models of inflammation [49, 50]. Nota-
bly, SPMs are also potent analgesics that inhibit and resolve 
inflammatory pain and postoperative pain [51, 52].

Peripheral inflammation also results in hyperactivity of 
the central nervous system (CNS), including the spinal cord 
and brain as well as primary afferent central terminals in 
the spinal cord and trigeminal nucleus. The CNS exhibits 
increases in the production and release of neurotransmitters 
and/or neuromodulators involved in inflammation includ-
ing glutamate, the neuropeptides substance P and CGRP, 
as well as the neurotrophic factor BDNF, when persistently 
activated by inflammatory input from peripheral nocicep-
tors [39, 53]. Persistent nociceptive input in turn results in 
the development of central sensitization, marked by the 
hyperactivity and hyperexcitability of neurons in the brain 
and spinal cord [15, 16]. Furthermore, there is particular 
involvement of postsynaptic glutamate NMDA receptors 
and insertion of AMPA receptors in the plasma membrane, 
as well as activation of ERK in postsynaptic neurons [54], 
to initiate and maintain central sensitization [15, 16]. Loss 
of inhibitory control (e.g., inhibitory synaptic transmission 
[55]) and inhibitory signal molecules (e.g., β−αρρεστιν−2 
[56]) is sufficient to drive central sensitization and pain 
hypersensitivity.

Neurogenic inflammation and pain

Neurogenic inflammation results from nociceptor activa-
tion and can be experimentally caused with immediate onset 
by intradermal administration of capsaicin, which activates 
TRPV1, or mustard oil, which activates TRPA1 [57]. The acti-
vated nociceptors, notably C-fibers, release a host of neuropep-
tides such as substance P, CGRP, and prostanoids. Following 
the activation of nociceptors, rapid plasma extravasation and 
edema occurs at a timescale faster than that of immune cell 
infiltration. Among clinical conditions, neurogenic inflamma-
tion has been found to be particularly involved in inflammatory 

diseases including asthma and psoriasis [18]. Additionally, 
neurogenic inflammation is a major component of pain caused 
by migraines as well as complex regional pain syndrome 
(CRPS) due to bone fracture [58]. Although the ablation of 
nociceptors can decrease neurogenic inflammation, it must be 
noted that nociceptors can play a modulatory role that can be 
beneficial in other scenarios, for example the release of CGRP 
by nociceptors which has been found to regulate inflammation 
in bacterial infections [59, 60].

The generation of neurogenic inflammation is not only 
limited to activation of peripheral C-fibers but can also be 
caused by local inflammation events or even by CNS acti-
vation of primary afferents in the case of dorsal root reflex 
resulting from orthograde or anterograde neuronal activa-
tion [61]. The CNS itself can also be subject to neurogenic 
inflammation following neuroinflammation events in the 
brain or spinal cord [18, 61].

Neuroinflammation and pain

Neuroinflammation is a localized form of inflammation 
occurring in both the PNS and CNS [17]. Four features of 
neuroinflammation include increased vascular permeabil-
ity, leukocyte infiltration, glial cell activation, and increased 
production of inflammatory mediators such as cytokines 
and chemokines [17]. In the state of neuroinflammation, 
the blood brain barrier is subject to an increased level of 
permeability, exposing the CNS to increased infiltration by 
peripheral immune cells. Accordingly, neuroinflammation 
is increasingly being implicated in chronic pain disorders 
including postsurgical pain following major surgeries such 
as amputation, thoracotomy, and mastectomy, and postop-
erative complications such as delirium [18, 62].

Although chronic pain is observed as a condition that 
continues beyond the resolution of observable clinical signs 
and symptoms of inflammation, neuroinflammation actually 
maintains a close association with chronic pain states and 
may be responsible for the mediation and continuation of 
pain in human patients [63]. Of note, chronic pain is corre-
lated differently with inflammation and neuroinflammation. 
Chronic neuroinflammation has been observed in patients of 
HIV neuropathy and also in patients with fibromyalgia [63, 
64]. The involvement of different neuroinflammatory media-
tors in modulating pain sensitivity in the pain neurocircuitry 
will be a particularly interesting area of inquiry.

Glial activation and neuroinflammation 
after surgery and opioid treatment

Peripheral glia [i.e., Schwann cells and satellite glial cells 
(SGCs)] and central glia (i.e., microglia, astrocytes and oli-
godendrocytes) are activated during neuroinflammation [65, 
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66]. In DRG, nerve injury not only causes neuronal changes 
leading to peripheral sensitization but also results in activa-
tion of SGCs, which contributes to peripheral neuroinflam-
mation and neuropathic pain via SGC–neuron interactions 
(Fig. 1) [65, 67, 68]. Notably, opioids produce not only anal-
gesia but also paradoxical hyperalgesia, which could be con-
veyed by SGCs. Strikingly, a single intraperitoneal injection 
of morphine is sufficient to activate SGCs [69]. This activa-
tion requires the upregulation of matrix metalloprotease-9 
(MMP-9) in DRG neurons, which causes IL-1β cleavage and 
release to activate SGCs [69]. As a result, opioid analgesia is 
suppressed by MMP-9/IL-1β-mediated SGC activation but 
enhanced in mice lacking Mmp9 [69, 70]. Plantar incision 
produced a rapid activation (within 1 h) of ERK not only 
in large-size DRG neurons but also in surrounding SGCs. 
Blocking the coupling of neuron-SGC with the gap junction 
blocker carbenoxolone inhibited neuronal ERK activation 
and postsurgical pain [71], supporting an essential role of 
neuron-SGC interactions in the initiation of postsurgical 
pain. It remains to be investigated if MMP-9 and IL-1β are 
involved in ERK activation in SGCs after plantar incision.

With regard to the central glia, which is the focus of the 
majority of glial studies on pain, the mediators and actions 
produced by these cells serve major modulatory roles in 
the processes of synaptic plasticity and central sensitiza-
tion [18]. Notably, the phenomenon of glial activation 
has emerged in recent literature as a potent mechanism in 
chronic pain, and the resulting dysfunction of glia in chronic 
pain has been referred to as “gliopathy” [65]. Nerve injury 

results in remarkable microgliosis and astrogliosis in the spi-
nal cord [65, 72, 73]. Spinal microgliosis was also reported 
after plantar incision [43]. Multiple receptors, such as ATP 
receptors (e.g., P2X4, P2X7, P2Y12) [73–75], chemokine 
receptors (e.g., CX3CR1, CXCR5) [76, 77], and Toll-like 
receptors (e.g., TLR4) [78], along with proteases such as 
matrix metalloproteases (MMP-9 and MMP-2) and cath-
epsin S (CatS) [79–81] have been shown to regulate glial 
activation and neuropathic pain.

In particular, following nerve injury, surgery (e.g., plantar 
incision), and chronic opioid exposure, p38 MAP kinase is 
not only activated in DRG neurons during peripheral sensi-
tization but also activated in spinal microglia during central 
sensitization [43, 75, 82, 83]. Thus, activation of p38 MAP 
kinase plays an important role in neuropathic pain, postsur-
gical pain, and opioid tolerance via regulating neuroinflam-
mation [84]. p38 MAP kinase regulates microglial secretion 
of TNF, IL-1β, ανδ ΒΔΝΦ, all of which are powerful regula-
tors of central sensitization [85, 86] (Fig. 2). Interestingly, 
blockade of both A-fibers and C-fibers together, but not 
C-fibers alone, can prevent microglial activation in the spi-
nal cord after nerve injury [87]. Consistently, blocking large 
A-beta fibers but not small C-fibers alleviated mechanical 
allodynia, a cardinal feature of chronic pain after chemother-
apy and nerve injury [88]. Nerve injury, surgery, and chronic 
opioid exposure also activate spinal cord astrocytes, and 
persistent astrocyte activation maintains neuropathic pain 
via sustained neuroinflammation [65, 89]. Mechanistically, 
astrocyte-produced chemokines such as CCL2 and CXCL1, 

Fig. 1  Schematic illustration of 
peripheral sensitization induced 
by peripheral glial activation 
and neuroinflammation in dorsal 
root ganglia (DRG) following 
surgeries and opioid expo-
sure. Activation of peripheral 
glia (i.e., SGCs: satellite glial 
cells) by surgery and/or opioid 
treatment results in secretion 
of glial mediators such as TNF 
and IL-1β, leading to peripheral 
sensitization, postsurgical pain, 
and opioid-induced hyperalgesia 
and tolerance
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as well as cytokines (e.g., IL-1β), powerfully regulate central 
sensitization [90, 91] (Fig. 2).

Surgical incisions and resulting nerve injury have been 
shown to cause increased expression of COX-1 in spinal 
glial cells which can lead to postsurgical pain and neuro-
pathic pain development following a surgery [92, 93]. P2X7 
receptors and spinal glial cells also contribute to the devel-
opment of chronic postsurgical pain induced by incision 
and retraction of skin and muscle tissue [94]. Furthermore, 
discrepancies between inflammation in peripheral tissues 
and central neuroinflammation in acute versus chronic pain 
support the notion that central neuroinflammation maintains 
chronic pain states [18, 95]. This was suggested from a study 
of a rat model of complex regional pain syndrome (CRPS), 
where levels of IL-1β were elevated in peripheral and spi-
nal samples at the acute phase 4-week time point, but at 
the chronic phase 16-week time point only spinal levels of 
IL-1β remain elevated. Furthermore, the efficacy of anakinra 
treatment to antagonize IL-1 was delineated along the same 
peripheral versus central compartments, as peripheral anak-
inra treatment was effective at inhibiting nociceptive behav-
ior measurements at only the 4-week time point, whereas 
intrathecal anakinra treatment was able to inhibit nocicep-
tion at both the 4-week and 16-week time points [96]. Thus, 
neuroinflammation, especially central neuroinflammation, 
plays an essential role in maintaining chronic pain. Notably, 
central neuropathic pain after spinal cord injury is associated 

with peripheral sensitization in DRG neurons [97]. It was 
recently proposed that central neuroinflammation and central 
sensitization could maintain chronic pain in part by driving 
peripheral sensitization via diffusion and retrograde signal-
ing [18].

Clinical significance and future perspectives

As detailed in the preceding sections, there are different 
types of inflammation, namely classic inflammation (referred 
to as “inflammation” in this review), neurogenic inflamma-
tion, and neuroinflammation. Although all three types of 
inflammation play active roles in pain and anti-inflammatory 
drugs are partially effective in treating acute pain and pain, 
it is important to make distinctions among different types 
of inflammation from a therapeutic perspective. For exam-
ple, inhibiting neurogenic inflammation with nerve block 
such as by Botox (botulinum neurotoxin A) or anti-CGRP 
antibody show great efficacy in reducing bacterial infection, 
inflammatory pain, and headache [57, 98–100]. Given the 
important role of central neuroinflammation in maintain-
ing chronic pain, delivery of anti-inflammatory drugs to the 
CNS is critical. Thus, intrathecal but not peripheral admin-
istration of anakinra, an FDA-approved anti-IL-1β treatment, 
can alleviate CPSP in rodents in the late phase (16 weeks) 
after bone fracture [96].

Fig. 2  Schematic illustration of 
central sensitization induced by 
glial activation and neuroin-
flammation in the spinal cord 
following surgery and/or opioid 
exposure. Activation of central 
glia (microglia and astrocytes) 
in the spinal cord by surgery 
and/or opioids treatment results 
in secretion of glial mediators 
including TNF, IL-1β, CCL2, 
CXCL1, and BDNF. These fac-
tors can act as neuromodulators 
to induce central sensitization 
via the modulation of excitatory 
and inhibitory synaptic trans-
mission. Central sensitization is 
a driving force of postsurgical 
pain as well as opioid-induced 
hyperalgesia and tolerance
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Neuroinflammation resulting from neuroglial and neuro-
immune interactions not only serves as a driving force for 
chronic pain, but is also implicated in other neurological and 
psychiatric diseases such as Alzheimer’s disease, Parkin-
son’s disease, multiple sclerosis, autism, major depression, 
and schizophrenia [17], as well as in cognitive deficits after 
major surgeries [62]. Chronic pain is commonly associated 
with depression, anxiety, sleep disorders, and cognitive 
decline, which are clinical sequelae of particular concern to 
the growing aging population which has increasingly high 
prevalence of chronic pain. Neuroinflammation and astro-
cyte reactivity is also associated with chronic pain in post-
mortem human spinal cord samples [63]. Glial activation can 
further be detected in patients with chronic low back pain 
using positron emission tomography (PET) imaging [101]. 
Thus, targeting excessive neuroinflammation will be a prom-
ising approach to alleviate chronic pain and control the pro-
gression of neurological and psychiatric diseases. Notably, 
there is ongoing opioid crisis in the United States with hun-
dreds of Americans dying from opioid overdoses every day 
[102]. Therefore, the development of effective non-opioid 
treatments for the prevention and resolution of neuroinflam-
mation and postoperative pain is of utmost urgency. Finally, 
it is worthy to mention that non-pharmacological alternative 
treatments, such as cellular therapy with bone marrow stem 
cells show promising long-term pain relief via powerful 
control of neuroinflammation [103–105]. Autologous con-
ditioned serum and platelet-rich plasma contain high levels 
of anti-inflammatory cytokines and produce relief in patients 
with knee osteoarthritis [106–108]. Neuromodulation via 
spinal cord stimulation and electroacupuncture also demon-
strate the ability to control neuroinflammation for pain relief 
[18, 109, 110]. Further studies are warranted in the future 
to investigate how these alternative strategies control CPSP 
and neuroinflammation after surgery.
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