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Introduction

Endothermic animals (e.g., mammals and birds) regulate 
body temperature by balancing heat loss and heat produc-
tion. The thermoregulatory center (anterior hypothalamus) 
maintains a narrow temperature range and asymmetrically 
adjusts temperature to the upper limit of survival, which 
is generally determined by the irreversible denaturation 
of enzymes and structural proteins [1]. Compared with 
other mammals, humans have an especially high defensive 
capacity against heat through autonomic thermoregulation 
of skin blood flow and perspiration. In humans, maximal 
skin blood flow increases to approximately 50 % of the 
cardiac output under excessive environmental heat stress, 
mainly by the cutaneous active vasodilator system. The 
maximal perspiration rate of the human eccrine sweat 
apparatus exceeds 3 L/h. Its primary purpose is for cooling 
[2–4].

Advantages of maintaining a higher body temperature 
include increased immune function and a greater exercise 
capacity from enhanced nerve conduction velocity and 
muscle contractions. However, disadvantages include a heat 
production requirement of ≳75 % of the chemical energy 
in foods, necessitating greater food consumption to main-
tain body temperature [5–8]. Mammals appeared on Earth 
approximately 60 million years ago when the climate was 
tropical or subtropical worldwide. Homeothermic mam-
mals are thought to have adjusted and survived by main-
taining physical activity during subsequent cyclic glacial 
environmental changes [6]. Although the normal body tem-
perature of a mammal is determined by the climatic tem-
perature when they first appeared on Earth, a recent unique 
study showed that optimal core temperature can be calcu-
lated as approximately 36.7 °C from the trade-off between 
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bacterial propagation from hypothermia and increased met-
abolic cost from hyperthermia [9].

Over the past two decades, there have been studies 
showing changes in patient outcomes by actively or pas-
sively modulating human thermoregulation in the periop-
erative and critical care field. This review aims to highlight 
the two controversial topics of therapeutic hypothermia and 
fever management in critical care.

Therapeutic hypothermia

Clinical relevance of hypothermia

Recently, physicians have focused on the beneficial effects 
of brain protection from hypothermia. The Greek physi-
cian Hippocrates advocated packing wounded soldiers 
in ice and snow to control bleeding as early as 400 BC. 
Dominique Jean Larrey, surgeon-in-chief of the Napole-
onic armies, used therapeutic hypothermia to both pre-
serve injured limbs and relieve pain during amputation, and 
noted that wounded officers who kept closer to a fire for 
rapid rewarming experienced increased mortality [10]. The 
first scientific report on the clinical use of hypothermia was 
published in 1945. Fay treated patients who suffered severe 
head trauma with deep hypothermia (28 °C); the outcomes 
were positive, although several patients died from arrhyth-
mia and sepsis [11]. In the 1950s, hypothermia was utilized 
to create a bloodless field in cerebral aneurysm surgery 
[12].

Sudden cardiac death represents a major health problem. 
The overall survival rate for out-of-hospital cardiac arrest 
in adults is approximately 10 %, and approximately 20 % 
for in-hospital cardiac arrest. Major causes of mortality are 
post-resuscitation brain injury and myocardial infarction 
[13]. More than a decade ago, randomized controlled stud-
ies from Australia and Europe demonstrated that therapeu-
tic hypothermia for comatose cardiac arrest survivors after 
a return from a shockable rhythm (ventricular fibrillation 
[VF] or pulseless ventricular tachycardia [VT]) for 12–24 h 
and subsequent slow rewarming over 12–16 h had benefi-
cial effects on survival and neurological outcomes [14, 15].

These studies laid the foundation for the 2005 Ameri-
can Heart Association guidelines recommending that 
unconscious adults with a return of spontaneous circu-
lation after an out-of-hospital cardiac arrest should be 
cooled to 32–34 °C for 12–24 h when they initially had a 
shockable VF rhythm (Class IIa). A similar therapy may 
be beneficial for patients who experience non-VF arrests, 
both out-of-hospital and in-hospital (Class IIb) [16]. After 
the addition of >40 non-randomized studies support-
ing the beneficial effects of therapeutic hypothermia, the 
2010 American Heart Association guidelines upgraded the 

recommendation level for comatose patients with a return 
of spontaneous circulation after an out-of-hospital cardiac 
arrest. The guidelines include shockable VF rhythm and 
pulseless VT rhythm (Class I), in-hospital cardiac arrests of 
any initial rhythm, and out-of-hospital cardiac arrests with 
initial rhythms of pulseless electrical activity or asystole 
(Class IIb) (Table 1) [17].

Other guidelines also recommend therapeutic hypother-
mia for unconscious survivors of out-of-hospital cardiac 
arrest with systolic blood pressures >90 mmHg, especially 
after VF or pulseless VT, despite the fact that the precise 
mechanisms of neuroprotection by therapeutic hypothermia 
are unknown [18]. A Cochrane review from 2012 supports 
these recommendations [19].

The negative impacts of therapeutic hypothermia 
have also been discussed. There are many immediate and 
delayed risks of complications, including bleeding, infec-
tion, metabolic and electrolyte changes, pharmacokinetic 
changes, cardiovascular effects, shivering, and seizures. 
The overall rate of these adverse events was reported to be 
approximately 70 %. However, because these complica-
tions were generally reported to be mild and transient, the 
benefits of therapeutic hypothermia outweigh these adverse 
effects [20].

Therefore, the main focus of recent studies on therapeu-
tic hypothermia has been alternative indications, the most 
effective cooling methods, and the most beneficial treat-
ment protocols and supportive therapies. As for other thera-
peutic hypothermia indications, its efficacy has been well-
proven in neonatal encephalopathy patients, and it has been 
extensively investigated in stroke, traumatic brain injury, 
and spinal cord injury patients. However, we encounter 
difficulties in preventing shivering, especially in relatively 
conscious patients with well-maintained and normal ther-
moregulatory responses versus those who are comatose. In 
such cases, the most efficient drug combinations reported 
to induce thermal tolerance without respiratory depres-
sion or severe toxicity are a combination of buspirone and 
meperidine, and a combination of dexmedetomidine and 
either meperidine or buspirone [21–23].

However, recent trials demonstrated negative findings 
concerning therapeutic hypothermia. Two landmark thera-
peutic hypothermia trials published in 2002 were criticized 
for their small, underpowered sample sizes. The Bernard 
trial lacks neurological records from the time of hospi-
tal arrival and includes no structural assessment of patient 
outcome [14]. The Hypothermia After Cardiac Arrest trial 
is also deficient in that the traditional management group 
(control group) patients were febrile from approximately 
12 h after the restoration of spontaneous circulation, which 
could have overestimated the effect of therapeutic hypo-
thermia [15]. Fever following resuscitation is a factor well 
known to negatively impact patient outcome [24].
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A rebuttal for therapeutic hypothermia

In a major multicenter trial, 1,359 survivors of out-of-
hospital cardiac arrest were randomized to identify the 
advantages of pre-hospital cooling by rapidly infusing 2 L 
of cold normal saline approximately 1 h faster than the 
standard in-hospital method. Surprisingly, the results dem-
onstrated no benefit in the survival rate between the inter-
vention and control groups in either patients with VF (inter-
vention group 62.7 % vs control group 64.3 %; P  =  0.69) 
or without VF (intervention group 19.2 % vs control group 
16.3 %; P  =  0.30). Similarly, no benefit was observed in 
neurological outcomes with full recovery or mild impair-
ment at discharge in VF (intervention group 57.5 % vs con-
trol group 61.9 %; P  =  0.69) or non-VF patients (inter-
vention group 14.4 % vs control group 13.4 %; P  =  0.30). 
In contrast, the proportion of patients who experienced car-
diac re-arrest during transport was significantly greater in 
the intervention group (26 vs 21 % in the control group; 
P  =  0.008) [25]. It thus seems likely that the National 
Institute for Health and Care Excellence recommendation 
of cooling patients as soon as possible after cardiac arrest 
will need to be updated.

Experimental animal data have shown a survival advan-
tage from immediate cooling, even before the return of 
spontaneous circulation [26–28]. This prehospital cooling 
trial has been criticized for taking too much time to cool 
patients compared with animal studies showing a brain pro-
tection benefit, even though the average duration to reach 
the goal temperature of <34 °C in patients receiving both 
pre-hospital and in-hospital cooling was 4.2 h, and approxi-
mately 1 h faster than for patients receiving only in-hospital 
cooling [25]. Furthermore, the cooling method of using 2 L 
of cold saline might have negative effects by inducing pul-
monary edema and a reduction in coronary perfusion pres-
sure [29]. Thus, alternate cooling methods such as intra-
arrest evaporative cooling should be investigated to achieve 
faster cooling without negative effects and improve patient 
outcomes [30, 31].

Another clinical trial demonstrated no significant differ-
ence in the overall survival rate (hazard ratio 1.06 for 33 °C 
treatment vs 36 °C treatment; P = 0.51) or a composite of 
neurological outcome and death after 180 days of follow-
up between groups strictly controlled at 33 and 36 °C by 
strictly preventing fever in comatose patients after cardiac 
arrest [32]. This study has the advantage of a larger sample 
size than the sum of the study populations of the other clin-
ical trials. Although it has been criticized for selection bias, 
long delays before cooling, a shorter target temperature 
time of 10 h, and a rapid rewarming rate, this could also 

explain the lack of benefit from early pre-hospital cooling 
when fever had not yet occurred.

Taking the results of these two studies together, it might 
be possible that intentional fever prevention was all that 
was ever required to improve the outcome of comatose 
patients after cardiac arrest, which has not been demon-
strated in randomized studies to date. In fact, Bernard, the 
author of the landmark therapeutic study in 2002 [14], rec-
ommended changing clinical practice guidelines towards 
strict temperature management for fever prevention, while 
another author on the Australian Resuscitation Council still 
recommends therapeutic hypothermia [15].

Future clinical studies will be required to elucidate the 
precise effects of various temperatures (32–36 °C) and 
treatment durations (24–72 h) on the outcomes of patients 
with shockable rhythms. Furthermore, future randomized 
controlled studies focusing on the effect of hyperoxia 
avoidance [33], arterial pressure maintenance [34], and 
early coronary intervention [35] on patient outcomes might 
be necessary.

Lastly, non-VF and VT are the most common initial car-
diac rhythms, and represent the majority of deaths among 
adult in-hospital and out-of-hospital cardiac arrests. In 
fact, less than one-third of out-of-hospital and in-hospital 
cardiac arrest patients have VF or VT. The widespread use 
of the implantable cardioverter-defibrillator might cause 
this ratio to decline even further over time [36]. However, 
indications for therapeutic hypothermia in non-VF and VT 
patients remain unclear, and large randomized controlled 
trials might encounter difficulties in enrolling >1,000 
patients, as non-VF and VT patients are resistant to return-
ing to spontaneous circulation, and <10 % of these patients 
survive to be discharged from the hospital [37–41].

Regardless, the 2015 American Heart Association guide-
lines updated several recommendations concerning thera-
peutic hypothermia. First, all comatose adult patients with 
return of spontaneous circulation after both out-of and 
in-hospital cardiac arrest with any initial rhythm should 
receive the target temperature management between 32 
and 36 °C (Class I), maintained constantly for at least 24 h 
(Class IIa). The selected temperature could be determined 
by clinician preference or clinical factors. Second, it may 
be reasonable to actively prevent fever in those patients 
after target temperature management (Class IIb). Lastly, 
the routine pre-hospital cooling of patients with rapid infu-
sion of cold intravenous fluids after return of spontaneous 
circulation is not recommended (Class III) (Table 1) [42]. 
A summary of randomized controlled trials evaluating the 
therapeutic hypothermia in patients after cardiac arrest is 
shown in Table 2.
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Fever management in critical care

Hyperthermia and fever

Hyperthermia, an elevation of core body temperature, can 
be divided into two clinical diagnoses—febrile hyperther-
mia (fever) and non-febrile hyperthermia. The distinc-
tion is that fever is specifically regulated, and thus diffi-
cult to treat. Textbooks on physiology document that in 
fever, exogenous and endogenous pyrogens actively shift 
the thermoregulatory threshold temperature upwards by 
affecting the thermoregulatory center control. Fever-like 
responses, including behavioral thermoregulation, are 
observed in invertebrates having solely innate immune 
responses, and are speculated to have developed 600 mil-
lion years ago [43]. Thus, fever acts as a defensive reac-
tion against pyrogens and foreign objects by increasing 
their clearance, the immune response, and heat-shocking 
proteins, along with protection against infectious agents 
[44–46].

On the other hand, in excessive exogenous heat expo-
sure in hot environments and endogenous heat produc-
tion in metabolic disorders, the thermoregulatory thresh-
old temperature remains unchanged and passively results 
in non-febrile hyperthermia [47, 48]. In most cases, these 
two conditions can be differentiated after obtaining the 
patient’s history and performing a physical examination. 
However, they are difficult to differentiate in some cases, 
because thermoregulation can be maintained by changing 
the thermoregulation threshold in mild hyperthermia [49, 
50]. Because medical treatment can save the life of non-
febrile hyperthermia patients by decreasing their tempera-
ture below a critical level [51, 52], this review will focus on 
the clinical aspects of febrile hyperthermia (fever).

Association between fever and mortality in critically ill 
patients

More than 50 % of patients in intensive care units (ICUs) 
experience fever from infectious and non-infectious causes. 
Fever is associated with a longer ICU stay for general 
ICU patients and increased mortality, especially in certain 
groups such as patients with external and internal cen-
tral nervous system injuries [53]. However, which criti-
cally ill patients will experience benefits or damage from 
the fever itself remain unknown in cases of infectious and 
non-infectious disease [54]. Although the febrile response 
is important to enhance the immune system, humans might 
not be well adapted to severe sepsis; however, mortality is 
increased without medical intervention.

A recent observational study reported that the adjusted 
odds ratio for in-hospital mortality in infectious patients, 
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especially in the first 24 h after ICU admission, was 
lower when the peak temperature was in the range of 
37.0–39.9 °C in an Australian and New Zealand cohort 
group, and even from 37.0 to >40 °C in an United King-
dom cohort, as opposed to normothermic patients (36.5–
36.9 °C). Moreover, the adjusted odds ratio for in-hospital 
mortality was elevated for patients without infection with 
temperatures >39.0 °C compared to normothermia (36.5–
36.9 °C) [55]. Another recent multicenter observational 
study demonstrated similar results, showing that patients 
with a maximal temperature >39.5 °C during their ICU stay 
had an increased 28-day mortality risk in a cohort without 
sepsis compared with normothermic patients (an adjusted 
odds ratio of 8.14 with every 1.0 °C increase, P < 0.01), 
but not in a cohort with sepsis (adjusted odds ratio 0.47; 
P = 0.11) [56]. Refractory postoperative fever is classi-
cally thought to be a benign clinical finding resulting from 
a postoperative inflammatory cytokine response. How-
ever, it sometimes exceeds 40 °C, in which case peak body 
temperature is reported to be the strongest predictor of 
patient mortality. There is also a strong positive association 
between patient mortality and peak body temperature [57].

Recent large retrospective cohort studies showed the 
survival advantage of a core temperature >37.5 °C in septic 
non-neutropenic patients, but not in neutropenic patients, 
indicating that neutrophil activation during fever had a 
clinical impact by improving patient mortality [58]. Taken 
together, fever in infectious patients could be advantageous, 
while it might be a maladaptive phenomenon in non-infec-
tious patients.

We sometimes encounter hypothermia in septic patients 
(10–20 %). Because patient mortality was consistently 
worse in hypothermic infectious patients than in severely 
hyperthermic (hyperpyrexic) infectious patients in many 
previous studies, hypothermia might indicate an impaired 
immune response [59–61]. Furthermore, a bipolar pres-
entation of fever and hypothermia along with hypother-
mia alone within the first 24 h after ICU admission in 
severely infectious patients significantly affected mortality 
[62]. These clinical studies indicate that thermoregulation 
might be dysregulated in conditions with hypothermia and 
biphasic temperature changes, likely from severe sepsis, as 
human temperature responses are concordant with those of 
rodents administered different doses of lipopolysaccharide 
(LPS). These studies show that a small amount (<101 µg/
kg) of LPS increased core temperature by shifting the ther-
moregulatory threshold temperature upward, while medium 
doses (between 101 and 104 µg/kg) of LPS fluctuated the 
core temperature by widening the inter-threshold range, 
and high doses (>104 µg/kg) of LPS decreased core tem-
perature, presumably by deteriorating thermoregulation 
further, especially below ambient temperature [63, 64]. 

Accordingly, when rats and mice are not allowed to regu-
late their body temperatures behaviorally, the direction of 
the body temperature response is determined by LPS dose 
and ambient temperature. Alternatively, it seems likely that 
the degree of clinical severity influences whether homeo-
thermy is maintained in infectious disease.

Antipyretic treatment in critically ill patients

Recent guidelines concerning fever have documented the 
evaluation, diagnosis, and treatment of febrile patients, but 
do not describe temperature management [65]. Under wide 
ranges of fever definitions and management practices [66], 
most medical staff tend to manage hyperthermic patients 
when their temperatures rise >38.5 °C [67]. Although pos-
sible side-effects of fever include discomfort, increased 
heart rate, arrhythmia, accelerated cardiac output, and 
increased energy use, permitting fever without interven-
tion might be advantageous in lowering personnel and drug 
costs related to patient care while improving survival.

It is known that neurologically damaged patients with 
fever should be treated, except for those with central nerv-
ous system infection [46, 68, 69]. Some prospective rand-
omized clinical trials have focused on temperature changes, 
the amount of vasopressor use, tachycardia, oxygen con-
sumption, and lactate levels in fever treatment [70–72]. 
Thus, the question of whether treating the fevers of neuro-
logically normal critically ill patients using non-steroidal 
anti-inflammatory drugs and other cooling methods wors-
ens mortality and morbidity remains unresolved, despite 
the classical clinical theme of the debate [46, 66, 73].

A small randomized clinical trial of 82 patients compar-
ing critically ill patient mortality and morbidity between 
aggressively treated and permitted fever groups was termi-
nated early because of unexpectedly higher mortality in the 
groups aggressively treated using non-steroidal anti-inflam-
matory drugs and cooling devices [74]. Although the target 
sample from the power analysis was not achieved, the ques-
tion of increased mortality caused by routine early inter-
ventions for fever prevention arose. Recent large multi-
center observational studies confirmed clinical findings that 
antipyretic drugs and acetaminophen increased mortality in 
septic patients (adjusted odds ratio 2.61 for non-steroidal 
anti-inflammatory drugs, P = 0.028; adjusted odds ratio 
2.05 for acetaminophen, P = 0.01), in contrast to results 
showing little difference in mortality in non-septic patients 
(adjusted odds ratio 0.22 for non-steroidal anti-inflamma-
tory drugs, P = 0.15; adjusted odds ratio 0.58 for acetami-
nophen, P = 0.63) in a multivariate analysis [56].

However, external cooling in septic shock patients sig-
nificantly increased the percentage of patients with a 50 % 
decrease in baseline vasopressor dose 12 h after treatment 
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(54 vs 20 %; P < 0.001) and shock reversal during their 
ICU stay (86 vs 73 %; P < 0.021), and decreased the 
14-day mortality (19 vs 34 %; P < 0.013) as the second-
ary outcome [72]. Furthermore, a retrospective observa-
tional study showed a significant and independent associa-
tion between acetaminophen use and reduced in-hospital 
mortality in critically ill patients after a multivariate logis-
tic regression analysis including a propensity score for 
acetaminophen treatment (adjusted odds ratio = 0.60, 
P < 0.001), and after a Cox proportional hazards analysis 
(adjusted odds ratio 0.51, P < 0.001) [75]. A recent large 
multicenter, randomized, double-blind controlled trial 
to investigate intravenous acetaminophen administration 
every 6 h in critically ill patients with fever >38.0 °C did 
not find a decrease in ICU free days to day 28 (compos-
ite outcome combining mortality and ICU length of stay). 
Because open-label acetaminophen was administered after 
discontinuation of the study in approximately 30 % of 
patients exclusively due to ICU discharge, resolution of 
fever, or cessation of antimicrobial therapy, this study did 
not exclude the possibility of prolonged acetaminophen 
usage, which may have had a negative impact on patient 
outcome [76].

Furthermore, a clinical question might arise as to 
whether warming hypothermic septic patients might 
improve outcomes. This idea is not new, since therapeutic 
hyperthermia was used for patients with syphilis and gon-
orrhea in the early twentieth century [77, 78]. Other ani-
mals have been observed to typically show warmth-seeking 
behavior for thermoregulation along with fever from LPS 
administration, including rats [79–81], mice [82], and rab-
bits [83]. Therefore, increased temperature could be natu-
rally beneficial. However, they initially express cold-seek-
ing behavior, and higher doses of LPS in rodents result in 
hypothermia as the initial response. These phases are con-
cordant with phases of arterial pressure drops in sepsis, 
indicating that regulatory hypothermia prevents cardiovas-
cular collapse by thermoregulatory vasoconstriction [84]. 
Rodents improve their chances of survival by hypothermia 
with a regulated thermoregulatory response and cold-seek-
ing behavior, and with increased heat loss following acute 
exposure to many toxic chemicals [85]. Hypothermic sta-
tus might be advantageous in reducing the magnitude of the 
toxicity, despite prolonging the metabolism of toxic insults. 
In sepsis, hypothermic status has the advantage of main-
taining arterial pressure and the disadvantage of increasing 
bacterial burden [86, 87]. However, regulated hypothermia 
with increased heat loss and decreased heat production is 
less likely to occur in large animals because of their limited 
ability to dissipate heat, resulting from their lower ratios of 
body surface area to body mass [85]. A summary of ran-
domized controlled trials evaluating fever management in 
critically ill patients is shown in Table 3.

Conclusion

Since the advent of medicine, physicians have acknowl-
edged that human body temperature significantly changes 
pathophysiologically with altering patient mortality. 
Ancient Egyptian, Greek, Roman, and Persian physicians 
investigated medical applications for hypothermia and 
febrile disorders over the centuries. However, we do not 
yet know the best temperature management strategies for 
comatose patients after cardiac arrest or for critically ill 
patients without a central nervous system disorder. Future 
research focusing on the generalizability of temperature 
intervention is urgently recommended, given the global and 
long-standing epidemiology of these patients.
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