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Abstract 
Background Chemoradiotherapy (CRT) modulates the 
tumor immune microenvironment of multiple cancer types, 
including esophageal cancer, which potentially induces both 
immunogenicity and immunosuppression by upregulating 
the presentation of tumor-specific antigens and immune 
checkpoint molecules in tumors, respectively. The prognos-
tic effects of immune modification by CRT in esophageal 
squamous cell carcinoma (ESCC) remain controversial 
because of the lack of detailed immunological analyses 
using paired clinical specimens before and after CRT. We 

aimed to clarify the immunological changes in the tumor 
microenvironment caused by CRT and elucidate the predic-
tive importance of clinical response and prognosis and the 
rationale for the necessity of subsequent programmed cell 
death protein 1 (PD-1) inhibitor treatment.
Methods In this study, we performed a comprehensive 
immunological analysis of paired biopsy specimens using 
multiplex immunohistochemistry before and after CRT in 
patients with unresectable locally advanced ESCC.
Results CRT significantly increased the intra-tumoral infil-
tration and PD-1 expression of  CD8+ T cells and conven-
tional  CD4+ T cells but decreased those of regulatory T cells 
and the accumulation of tumor-associated macrophages. 
Multivariate analysis of tumor-infiltrating T-cell phenotypes 
revealed that the density of PD-1+CD8+ T cells in the tumor 
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after CRT could predict a confirmed complete response and 
favorable survival.
Conclusions This study showed that CRT improved the 
immunological characteristics of unresectable locally 
advanced ESCC and identified the density of PD-1+CD8+ 
T cells as a predictive factor for prognosis. This finding 
supports the rationale for the necessity of subsequent PD-1 
inhibitor treatment.

Keywords Chemoradiotherapy · Esophageal squamous 
cell carcinoma · Tumor-infiltrating lymphocytes

Introduction

Esophageal carcinoma is a leading cause of death worldwide 
[1]. In Western countries, junctional adenocarcinoma 
accounts for most cases of esophageal carcinoma, whereas 
squamous cell carcinoma accounts for most cases in Asia, 
including Japan [2, 3]. Radiation therapy (RT) is a good 
indication for the treatment of squamous cell carcinoma, and 
chemoradiotherapy (CRT) is widely accepted as the standard 
treatment for unresectable locally advanced esophageal 
squamous cell carcinoma (ESCC), showing efficacy with 
a complete response (CR) rate of 11–25% and an overall 
survival (OS) period of 9–10 months. CR on CRT is a 
strong predictor of survival in ESCC [4–7]. Although new 
therapeutic strategies other than CRT have been investigated, 
the standard treatment strategy has not changed over the 
past 20 years.

Based on the results of KEYNOTE-590 and 
CheckMate-648, combination therapy, either pembrolizumab 
plus cytotoxic chemotherapy or nivolumab plus ipilimumab, 
has become the standard first-line treatment for patients 
with metastatic esophageal cancer who meet the following 
criterion: ECOG performance status (PS) of 0–1, with 
permitted tolerability [8, 9]. In addition, based on the results 
of CheckMate-577, postoperative nivolumab is now strongly 
recommended if pathological CR cannot be achieved with 
neoadjuvant CRT followed by surgery [10]. Recent clinical 
trials of unresectable locally advanced rectal cancer [11] 
and stage III non-small cell lung cancer [12] have suggested 
the importance of adding programmed cell death protein-1 
(PD-1) inhibitors after definitive CRT. To develop novel 
combinatorial strategies for CRT with immune checkpoint 
inhibitors (ICIs), it is necessary to elucidate how CRT alters 
the tumor microenvironment (TME) from an immunological 
perspective.

CRT promotes immune cell infiltration into the TME 
in esophageal adenocarcinomas [13, 14]. However, few 
studies have performed comprehensive immunological 
analyses of tumor samples before and after CRT in patients 

with advanced ESCC. In the present study, we performed 
multiplex immunohistochemistry (mIHC) using paired 
endoscopic specimens before and after CRT in patients 
with unresectable locally advanced ESCC. Consequently, 
we aimed to clarify the immunological changes in the TME 
caused by CRT and elucidate the predictive importance of 
clinical response and prognosis and the rationale for the 
necessity of subsequent PD-1 inhibitor treatment.

Methods

Patients and study criteria

Patients treated with concurrent standard-dose 5-fluorouracil 
(5-FU)/cisplatin (CDDP) chemotherapy and RT (definitive 
CRT) at the National Cancer Center Hospital East between 
January 2013 and March 2020 were enrolled in this study. 
The eligibility criteria were as follows: (i) patients with 
histologically confirmed primary ESCC; (ii) patients 
diagnosed with an unresectable tumor by computed 
tomography (CT) before initiating definitive CRT (more 
specifically, [a] the depth of the primary tumor is diagnosed 
as T4b [tumor invades other adjacent structures, such as the 
aorta, vertebral body, or trachea] according to the Union for 
International Cancer Control-tumor-node-metastasis [TNM] 
classification [8th edition] and Japanese Classification of 
Esophageal Cancer, 11th Edition, and/or (b) regional lymph 
nodes and/or supraclavicular lymph nodes have invaded 
adjacent structures other than the esophagus [LNT4]) 
[15, 16]; (iii) patients without prior esophageal cancer 
treatment, except for endoscopic resection before CRT; 
(iv) patients undergoing post-treatment biopsy 4–6 weeks 
after RT completion; and (v) patients aged ≥ 20  years. 
The exclusion criteria were as follows: (i) patients with 
uncontrolled comorbidities, a history of ischemic heart 
disease, or active carcinoma at another site and (ii) patients 
who received induction chemotherapy or participated 
in clinical trials. ESCC staging was performed using CT 
and endoscopy. Positron emission tomography–CT was 
performed when distant metastasis was suspected. Tumor 
length was measured using a combination of endoscopy and 
upper gastrointestinal tract radiography. Skilled endoscopists 
measured the endoscope insertion length from the distal to 
the proximal side of the tumor.

Definitive chemoradiotherapy and sample collection

The regimen of definitive CRT was two courses of 5-FU/
CDDP (70 mg/m2 CDDP on day 1 plus 700 mg/m2 5-FU 
on days 1–4 every 28 days). Consolidation chemotherapy 
was administered after the completion of definitive CRT if 
patients did not have local progression or distant metastases 
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and had adequate organ function. This treatment consisted 
of two additional courses of 5-FU/CDDP. A total dose of 
60 Gy/30 fractions of RT was delivered over 5–7 weeks, 
and the end date of CRT was defined as the end date of RT. 
The gross tumor volume was defined as the volume of the 
primary tumor, as indicated on CT and/or endoscopy, and 
of any metastatic lymph nodes. The clinical target volume 
(CTV) for the primary tumor was created by adding a 
2-cm craniocaudal margin to account for subclinical tumor 
extension. The CTV margin for metastatic lymph nodes was 
not included in the selective irradiation of regional lymph 
nodes. The planning target volume was defined as the CTV 
plus the margins at the discretion of the treating radiation 
oncologists. No prophylactic irradiation was administered. 
Samples were collected by endoscopic biopsies 2–4 weeks 
before CRT and 6–8 weeks after CRT. Endoscopic biopsy 
specimens were taken from the center of all tumors.

Evaluation of therapeutic response and follow‑up

CT and endoscopy were used to determine a therapeutic 
response based on the Response Evaluation Criteria in 
Solid Tumors (RECIST) version 1.1 with modifications 
and the Japanese Classification of Esophageal Cancer 
(11th edition), respectively [16, 17]. The modified RECIST 
defines both measurable and nonmeasurable lymph nodes as 
those ≥ 10 mm and 5–10 mm in their short axis, respectively, 
when assessed by CT [15]. According to the Japanese 
Classification of Esophageal Cancer, we defined the primary 
lesion as CR when the conditions satisfied all the following 
four factors: (1) disappearance of endoscopic findings 
suggestive of tumor presence, (2) negative endoscopic 
biopsy findings from the original area of the primary tumor, 
(3) evaluation of the entire esophagus using endoscopy, 
and (4) no endoscopic findings of active esophagitis. 
Confirmed CR (cCR) was defined as the confirmation of 
CR > 4 weeks after the first CR diagnosis. Progression-free 
survival (PFS) was defined as the period from the initiation 
of definitive CRT to progression or death from any cause and 
was censored on the last day the patient was alive without 
progression or distant metastases. OS was defined as the 
period from the initiation of definitive CRT to death from 
any cause and was censored on the last day the patient was 
alive. Metachronous esophageal cancers were not included 
in the PFS analysis.

Multiplex immunohistochemistry

Fluorescent mIHC was performed using the Opal 6-color tyr-
amide signaling amplification kit (Akoya Biosciences, Mar-
lborough, MA). Cells were stained with antibodies against 
CD3 (ab16669, Abcam, Cambridge, UK), CD8 (M710301-
2, Agilent, Santa Clara, CA), FoxP3 (ab96048, Abcam, 

Cambridge, UK), cytokeratin (ARG56129, Arigo Biolabo-
ratories, Hsinchu, Taiwan), PD-1 (ab137132, Abcam, Cam-
bridge, UK), TIGIT (ab243903, Abcam), LAG3 (NBP1-
97657, Novus, Cambridge, UK), TIM3 (45208S, Cell 
Signaling Technology, Danvers, CA), CTLA-4 (ab251599, 
Abcam, Cambridge, UK), and CD206 (MA5-34981, Thermo 
Fisher Scientific, Waltham, MA). Moreover, the fluorescence 
signals were captured with the following fluorophores: Opal 
520, Opal 540, Opal 570, Opal 620, Opal 650, and Opal 690, 
following the manufacturer’s protocol (Online Resource 1). 
Briefly, we prepared tissues for detection with Opal using 
standard fixation and embedding techniques. Each slide was 
baked in the oven at 65 °C for 1 h, dewaxed with xylene 
(3 × 10 min), and rehydrated through a graded series of etha-
nol solutions (100%, 1 × 10 min; 95%, 1 × 10 min; and rinsed 
in 70%). After rehydration, we briefly rinsed the slides with 
distilled water and subsequently with the appropriate AR 
buffer. We placed each slide in a microwave oven and, sub-
sequently, cooled them back to room temperature. The tis-
sue sections were covered with a blocking buffer, and the 
slides were incubated in a humidified chamber for 10 min at 
room temperature. We drained off the blocking buffer and 
applied a primary antibody working solution. We incubated 
the tissue sections with primary antibodies according to the 
manufacturer’s instructions and washed the slides thrice in 

Table 1  Clinicopathological patient characteristics

ECOG Eastern Cooperative Oncology Group, Ccr creatinine 
clearance
*The following factors are allowed to be duplicated

Variables Total (N = 36)

Age (median), years 66 (42–80)
Sex (male/female) 28/8 (78%/22%)
Smoke (ever/never) 6/30 (17%/83%)
ECOG performance status (0/1) 23/13 (64%/36%)
Primary tumor site (Ce/Ut/Mt/Lt) 6/12/13/5 (17%/33%/36%/14%)
Tumor status (T1/T3/T4b) 1/12/23 (3%/33%/64%)
Adjacent organ invasion via lymph 

node
16 (44%)

Lymph node status (N0/N1/N2/N3) 1/8/17/10 (3%/22%/47%/28%)
Metastatic stage (M0/M1) 21/15 (58%/42%)
Clinical stage (III/IVA/IVB) 7/14/15 (19%/39%/42%)
Tumor length (median), cm 6.5 (3–14)
Lymph node short diameter 

(median), mm
14.5 (6–39)

Obstruction (tube feeding) 7 (19%)
Involved sites of T4*
 Aorta 16 (44%)
 Tracheobronchial tree 22 (61%)
 Others 2 (6%)

Fistula formation (before CRT) 3 (8%)
Ccr (median), mL/min 77 (39–125)
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Tris Buffered Saline Buffer with Tween 20 (TBST) at room 
temperature, preferably with agitation. We incubated the 
slides in Polymer HRP Ms + Rb for 10 min at room tem-
perature and washed them thrice in TBST at room tempera-
ture, preferably with agitation. We drained off excess wash 
buffer and pipette 100–300 µL of Opal Fluorophore Working 
Solution onto each slide. We incubated the slides at room 
temperature for 10 min and washed them thrice in TBST 
at room temperature, preferably with agitation. The slides 
were rinsed with the appropriate AR buffer. We placed the 
slides in the appropriate AR buffer, placed them in a micro-
wave, and cooled them to room temperature to strip the pri-
mary–secondary–HRP complex, allowing the introduction 
of the next primary antibody. To detect the next target, we 
restarted the protocol during the blocking step. After all the 
targets were processed, we applied the DAPI Working Solu-
tion for 5 min at room temperature in a humidity chamber 
and washed the slides for 2 min in TBST buffer and then 
for 2 min in water. Finally, we cover-slipped slides with a 
mounting medium  [ProLong® Diamond Antifade Mountant 
(Thermofisher)]. Visualization of seven-color Opal slides 
was visualized using the Vectra 3 Automated Quantitative 
Pathology Imaging System (Akoya Biosciences, Marlboro, 
MA, USA).

Slide scanning and image analysis

Fluorescence images were acquired using the inForm 2.4.4 
image analysis (IA) software (Perkin Elmer). Whole-slide 
images were analyzed using the IA software (HALO version 
2.3; Indica Labs, Corrales, NM) and divided into individual 
cells based on the expression of stained markers. The 
slides were manually annotated to remove tissue artifacts 
(e.g., folds, air bubbles, fluorescent precipitate) and select 
regions of interest for IA when applicable. A visually 
adjusted intensity threshold was set for each marker. Cells 
showing staining intensities above this threshold were 
considered “positive.” Spots were automatically identified 
and segmented using the IA software and reviewed by 
the researchers. The density of stained cells per  mm2 was 
calculated by dividing the measured area of each tissue spot.

Statistical analyses

The median tumor length, lymphocyte count, and density 
of tumor-infiltrating lymphocytes (TILs) were used to 
divide the patients into two groups. TIL levels between 
pre- and post-treatment biopsy specimens were compared 
using paired t tests. Univariate logistic regression analyses 
were performed to determine the association between 
independent variables, and multivariate logistic regression 
analyses using a backward stepwise selection method were 
performed to predict cCR. Survival was calculated using the 
Kaplan–Meier method and compared using the log-rank test. 
Cox proportional hazards regression analysis for PFS was 
used for analyses. All statistical analyses were performed 
using the PRISM software (GraphPad Software Inc., San 
Diego, CA, USA) and EZR (Saitama Medical Center, 
Jichi Medical University, Saitama, Japan), a graphical 
user interface for R 2.13.0 (R Foundation for Statistical 
Computing, Vienna, Austria) [18]. EZR is a modified 
version of the R commander (version 1.6–3) designed to add 
statistical functions that are frequently used in biostatistics. 
A P value of 0.05 was considered statistically significant.

Results

Patient characteristics

Thirty-six patients who received definitive CRT for 
unresectable locally advanced ESCC were enrolled in this 
study. Patient characteristics are shown in Table 1. The 
patients’ median age was 66 (range 42–80) years, and 64% 
of the participants had a PS score of 0. Twenty-three patients 
had T4b disease, and 16 patients had LNT4 disease. The 
lesions with tumor invasion were located in the thoracic 
aorta (44%), trachea/bronchus (61%), and others (5%). 
Three patients had an invasion of both the thoracic aorta and 
trachea/bronchus. The median length of the primary lesion 
was 6.5 (range 3–14) cm. All patients completed two cycles 
of chemotherapy, and 34 (94%) patients received at least one 
cycle of consolidation chemotherapy following definitive 
CRT. cCR was achieved in nine of the 36 (25%) patients. 
The median PFS and OS periods of the 36 patients were 
8 and 18 months, respectively, and the median follow-up 
periods were 39.5 and 31 months, respectively.

The effects of CRT on the immunological phenotype 
of TILs

After CRT, the densities of  CD3+ cells (total T cells), 
 CD3+CD8+ cells  (CD8+T cells), and  CD3+CD8–FoxP3– cells 
(conventional  CD4+T [Tconv] cells) in the  cytokeratin+ 

Fig. 1  Representative images of mIHC for ESCC tissues. Represent-
ative mIHC images are shown. ESCC tissue samples before and after 
chemoradiotherapy (left and right) were subjected to mIHC. A T-cell-
related molecules were evaluated. The stainabilities of CD3 (yellow), 
CD8 (pink), CTLA-4 (cyan), PD-1 (green), FoxP3 (red), DAPI (blue), 
and cytokeratin (gray) are shown. B Macrophage-related molecules 
were evaluated. The stainabilities of CD206 (red), DAPI (blue), and 
cytokeratin (gray) are shown

◂
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tumor area were significantly elevated (Figs. 1A and 2A), 
whereas the densities of  CD3+CD8–FoxP+ cells (regula-
tory T [Treg] cells) and  CD206+ cells (immunosuppres-
sive macrophages) in the tumor area significantly decreased 
(Figs. 1A and 2B). Focusing on PD-1 expression in each 
cell subset, the densities of  CD3+PD-1+ cells (PD-1+ 
total T cells),  CD3+CD8+PD-1+ cells (PD-1+CD8+ T 
cells), and  CD3+CD8–FoxP3–PD-1+ cells (PD-1+ Tconv 
cells) significantly increased, whereas the density of 
 CD3+CD8–FoxP3+PD-1+ cells (PD-1+Treg cells) signifi-
cantly decreased in the tumor area after CRT (Fig. 2C). 
Consistent with these results, CRT increased the positiv-
ity of PD-1 in tumor-infiltrating  CD3+,  CD3+CD8+, and 
 CD3+CD8−FoxP3– cells and reduced the positivity of 
PD-1 in tumor-infiltrating  CD3+CD8−FoxP3+ cells (Online 
Resource 2A). The expression of other immune checkpoint 
molecules, including TIGIT, LAG-3, and Tim-3, among 
 CD3+CD8+PD-1+ cells, was not altered (Online Resource 
2B); however, the density of  CD3+CD8−FoxP3+CTLA-4+ 
cells (CTLA-4+ Treg cells) was significantly reduced after 
CRT in the tumor bed (Online Resource 2C).

CRT increased PD‑1+CD8+ T cells and PD‑1+ Tconv 
cells in the TME of patients with cCR

We evaluated the phenotypes of TILs before CRT according 
to the clinical outcomes (cCR vs. non-cCR) (Online 
Resource 3). There were no significant differences in the 
densities of  CD3+,  CD3+CD8+,  CD3+CD8–FoxP3–, and 
 CD3+CD8–FoxP3+ cells and  CD206+ macrophages in the 
tumor area between patients with cCR and non-cCR before 
CRT (Online Resource 3A, B). Similarly, there was no 
significant difference in the density of PD-1+ cells in any 
subpopulation of the tumor area between patients with cCR 
and non-cCR before CRT (Online Resource 3C).

The phenotypes of TILs after CRT were also evalu-
ated according to the clinical outcomes (Fig. 3). There 
were no significant differences in the densities of  CD3+, 
 CD3+CD8+,  CD3+CD8–FoxP3–, and  CD3+CD8–FoxP3+ 
cells,  CD206+ macrophages, and  CD3+CD8–FoxP3+PD-1+ 
cells between the two groups (Fig.  3A–C). However, 
the densities of  CD3+PD–1+,  CD3+CD8+PD-1+, and 

 CD3+CD8–FoxP3–PD–1+ cells after CRT were significantly 
elevated in patients with cCR (Fig. 3C).

Abundancy of PD‑1+CD8+ T cells after CRT 
was an independent predictor of cCR

The prognostic effect of each clinicopathological 
factor on cCR was evaluated using logistic regression 
analysis (Table 2). As the densities of  CD3+CD8–PD–1+, 
 CD3+CD8+PD-1+,  CD3+CD8–  FoxP3+ cells, and  CD206+ 
macrophages after CRT were significantly associated with 
cCR in univariate analysis (Table 2), we further evaluated 
them by multivariate analyses. Multivariate analysis 
of these TIL phenotypes revealed that the density of 
 CD3+CD8+PD-1+ cells in the tumor area after CRT was an 
independent predictor of cCR (odds ratio [OR], 28.30; 95% 
confidence interval [CI], 1.32–605.00; P = 0.032) (Table 2).

Low density of  CD3+CD8–FoxP3+ was associated 
with favorable PFS both before and after CRT 

The association between TIL phenotypes before CRT and 
patient survival was evaluated using the Kaplan–Meier anal-
ysis. Most TIL phenotypes before CRT were not significantly 
associated with PFS (Online Resource 4A–F, H), but the low 
densities of  CD3+CD8–FoxP3+ showed a statistically favora-
ble prognosis (Online Resource 4G). We further evaluated 
the prognostic effect of TIL phenotypes on PFS after CRT 
(Fig. 4). Patients with a high density of  CD3+CD8+PD-1+ 
cells had a favorable prognosis (Fig. 4C), whereas those 
with a high density of  CD3+CD8–FoxP3+ cells or  CD206+ 
macrophages had an unfavorable prognosis (Fig.  4G, 
H). The densities of  CD3+,  CD3+PD-1+,  CD3+CD8+, 
 CD3+CD8–FoxP3–, and  CD3+CD8–FoxP3–PD-1+ cells in 
the tumor area after CRT were not significantly associated 
with prognosis.

Univariate and multivariate analyses revealed factors 
associated with favorable PFS

The densities of  CD3+CD8–  FoxP3+ cells in the tumor area 
before CRT were significantly associated with unfavorable 
PFS in univariate analysis. In addition, the densities of 
 CD3+CD8+PD-1+ and  CD3+CD8–FoxP3+ cells and  CD206+ 
macrophages after CRT were significantly associated with 
PFS in the univariate analysis (Table 3). Thus, these factors 
were selected for multivariate analyses, and the density 
of  CD3+CD8+PD-1+ in the tumor area after CRT was an 
independent predictor of favorable PFS (hazard ratio [19], 
0.33; 95% CI 0.14–0.77; P = 0.010) (Table 3).

Fig. 2  Effects of CRT on TIL phenotypes. We evaluated the 
changes in TIL phenotypes caused by CRT. The densities of each 
TIL subpopulation before and after CRT were compared using a 
paired t test. A The densities of  CD3+ (left),  CD3+CD8+ (mid-
dle), and  CD3+CD8–FoxP3– (right) lymphocytes before and after 
CRT are shown. B The densities of  CD3+CD8–FoxP3+ lympho-
cytes (left) and  CD206+ macrophages (right) before and after CRT 
are shown. C The densities of  CD3+PD-1+,  CD3+CD8+PD-1+, and 
 CD3+CD8–FoxP3–PD-1+cells and  CD3+CD8–FoxP3+PD-1+ lympho-
cytes before and after CRT 

◂
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Discussion

Several studies have investigated the effects of CRT on the 

immunological phenotypes of tumors, including ESCC 
[20]. In preclinical models, CRT causes immunogenic cell 
death, which induces cancer cells to release tumor-specific 

Fig. 3  Association between TIL phenotypes after CRT and con-
firmed complete response. The densities of the TIL subpopula-
tions after CRT were compared between patients who experi-
enced cCR and those who did not. A The densities of  CD3+ (left), 
 CD3+CD8+ (middle), and  CD3+CD8–Foxp3– (right) lymphocytes 
after CRT were compared between the two groups. B The densities 

of  CD3+CD8–Foxp3+ lymphocytes (left) and  CD206+ macrophages 
(right) after CRT were compared between the two groups. C The den-
sities of  CD3+PD-1+,  CD3+CD8+PD-1+,  CD3+CD8–Foxp3−PD-1+, 
and  CD3+CD8–Foxp3+PD-1+ lymphocytes after CRT were compared 
between the two groups
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antigens and triggers an antitumor immune response through 
multiple mechanisms. RT alone stimulates the cyclic guano-
sine monophosphate–adenosine monophosphate synthase 
stimulator of interferon (IFN) gene-dependent nucleic acid-
sensing pathway, which promotes antigen presentation in 
cancer cells and dendritic cells (DCs) [21] and cytotoxic 
T-cell recruitment through IFN-inducible chemokines 
[19]. Chemotherapies also induce the release of damage-
associated molecular patterns, including high-mobility 
group box-1 protein [22], which activates DCs by binding 
to Toll-like receptor 4 [23]. These findings suggest that CRT 
inhibits tumor growth by physically killing tumor cells and 
optimizing the antitumor immune system. However, DNA 
damage induced by RT upregulates programmed cell death 
ligand 1 (PD-L1) expression in cancer cells through the 

STAT1/3-IRF1 signaling pathway [24], which potentially 
contributes to immune evasion by tumor cells. Therefore, 
the necessity of targeting the PD-1:PD-L1 interaction has 
been proposed to maintain therapeutic efficacy.

To validate these preclinical results in patient samples, 
several clinical studies have analyzed esophageal cancer 
samples, mainly in the neoadjuvant setting. First, several 
studies focusing on patients with esophageal adenocarci-
noma who received neoadjuvant CRT and underwent sur-
gical resection demonstrated that neoadjuvant CRT pro-
moted T-cell infiltration [13, 14]. However, the association 
between  CD8+ cell infiltration and clinical outcomes after 
neoadjuvant CRT remains controversial, with both favorable 
[25, 26] and poor outcomes [27]. Second, there are a few 
studies on patients with ESCC who received neoadjuvant 

Table 2  Significance of clinicopathologic parameters and immune markers for cCR in patients with unresectable locally advanced ESCC

P value < 0.05 was considered statistically significant

Variables Univariate analysis
OR 95% CI P value

Age  ≥ 65 1.18 0.24 −5.77 0.841
Sex Male 0.46 0.08 − 2.47 0.361
Tumor length, cm  ≥ 6.5 0.40 0.08 − 1.94 0.258
Lymphocyte count (before CRT) *  ≥ 1470 1.25 0.28 − 5.65 0.772
Lymphocyte count (after CRT) *  ≥ 380 4.04 0.71 −23.0 0.115
TIL phenotype before CRT 
CD3+, /mm2  ≥ 150 1.73 0.36 − 8.35 0.493
CD3+PD-1+, /mm2  ≥ 20 4.04 0.71 − 23.00 0.115
CD3+CD8−, /mm2  ≥ 69 1.25 0.28 − 5.65 0.772
CD3+CD8−PD-1+, /mm2  ≥ 9 0.89 0.42 − 1.88 0.768
CD3+CD8+, /mm2  ≥ 70 1.25 0.28 − 5.65 0.772
CD3+CD8+PD-1+, /mm2  ≥ 4 4.67 0.82 − 26.60 0.082
CD3+CD8−  Foxp3+,/mm2  ≥ 3 0.25 0.04 −1.41 0.115
CD206+, /mm2  ≥ 30 0.99 0.99 − 1.00 0.655
TIL phenotype after CRT 
CD3+, /mm2  ≥ 312 4.67 0.82 − 26.60 0.083
CD3+PD-1+, /mm2  ≥ 63 5.41 0.95 − 31.00 0.057
CD3+CD8−, /mm2  ≥ 148 4.67 0.82 − 26.60 0.083
CD3+CD8−PD-1+, /mm2  ≥ 39 14.40 1.57 − 132.0 0.018
CD3+CD8+, /mm2  ≥ 145 2.31 0.48 − 11.10 0.297
CD3+CD8+PD-1+, /mm2  ≥ 20 12.40 1.35 − 113.00 0.026
CD3+CD8−  Foxp3+, /mm2  ≥ 5 0.06 0.007 − 0.58 0.015
CD206+, /mm2  ≥ 14 0.11 0.01 − 0.99 0.049

Variables Multivariate analysis
OR 95% CI P value

TIL phenotype after CRT 
  CD3+CD8−PD-1+, /mm2  ≥ 39 16.60 0.79 −349.00 0.0708
  CD3+CD8+PD-1+, /mm2  ≥ 20 28.30 1.32 − 605.00 0.0324
  CD3+CD8−  Foxp3+, /mm2  ≥ 5 0.16 0.008 − 2.99 0.2190
  CD206+, /mm2  ≥ 14 0.06 0.002 − 1.43 0.0824
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CRT and underwent surgical resection [28–30]. A previous 
study showed that the number of tumor-infiltrating T cells 
in patients with ESCC who received neoadjuvant CRT was 
lower than that in patients who did not receive neoadjuvant 
CRT [28]. Paired transcriptome and mIHC analyses before 
and after neoadjuvant CRT were also reported [29]. This 

study showed that immune scores and immune signaling 
pathways were enriched by transcriptome analysis after 
CRT, and mIHC analysis showed an increasing trend in 
the proportion of  CD4+ Tconv cells in the TME after CRT 
in patients with ESCC [29]. In another study, single-cell 
RNA sequencing was performed to evaluate the cellular and 
molecular dynamics of neoadjuvant CRT in paired ESCC 
samples before and after CRT [30]. CRT increased  CD8+ 
T-cell infiltration and promoted exhaustion in both major 
and minor responders. In major responders, CRT promoted 
the differentiation of Th cells but not Treg cells.

Clinical stages of ESCC are categorized as cT1-4aN0-3 
according to the TNM classification or clinical stages I–III, 
which can be applied for CRT treatment. For stage I disease, 

Fig. 4  Association between TIL phenotypes after CRT and 
PFS. The PFS of patients with esophageal squamous cell car-
cinoma was evaluated according to TIL phenotypes after CRT 
using the Kaplan–Meier analysis. The PFS curves of patients are 
shown, according to the densities of  CD3+ (a),  CD3+PD-1+ (b), 
 CD3+CD8+ (c),  CD3+CD8+PD-1+ (d),  CD3+CD8–Foxp3– (e), 
 CD3+CD8–Foxp3−PD-1+ (f), and  CD3+CD8–Foxp3+ lymphocytes 
(g) and  CD206+ macrophages (h) in the tumor bed after CRT 

◂

Table 3  Significance of clinicopathologic parameters and immune markers for PFSin patients with unresectable locally advanced ESCC

P value < 0.05 was considered statistically significant

Variables Univariate analysis

HR 95% CI P value

Age  ≥ 65 1.20 0.23 − 6.30 0.823
Sex Male 0.45 0.08 − 2.47 0.361
Tumor length, cm  ≥ 6.5 1.57 0.34 − 71.75 0.558
Lymphocyte count (before CRT) *  ≥ 1470 0.42 0.07 − 2.38 0.324
Lymphocyte count (after CRT) *  ≥ 380 0.35 0.04 − 2.56 0.301
TIL phenotypes before CRT 
  CD3+, /mm2  ≥ 150 0.99 0.46 − 2.09 0.969
  CD3+PD-1+, /mm2  ≥ 20 0.71 0.33 − 1.52 0.383
  CD3+CD8−, /mm2  ≥ 69 1.23 0.58 − 2.60 0.576
  CD3+CD8−PD-1+, /mm2  ≥ 9 0.89 0.42 − 1.88 0.768
  CD3+CD8+, /mm2  ≥ 70 0.91 0.43 − 1.92 0.802
  CD3+CD8+PD-1+, /mm2  ≥ 4 0.61 0.28 − 1.31 0.204
  CD3+CD8−  Foxp3+,/mm2  ≥ 3 2.56 1.16 − 5.65 0.019
  CD206+, /mm2  ≥ 30 0.99 0.99 − 1.00 0.680

TIL phenotypes after CRT 
  CD3+, /mm2  ≥ 312 0.60 0.28 − 1.29 0.191
  CD3+PD-1+, /mm2  ≥ 63 0.48 0.22 − 1.03 0.062
  CD3+CD8−, /mm2  ≥ 148 0.68 0.31 − 1.43 0.306
  CD3+CD8−PD-1+, /mm2  ≥ 39 0.62 0.28 − 1.33 0.220
  CD3+CD8+, /mm2  ≥ 145 0.61 0.28 − 1.28 0.191
  CD3+CD8+PD-1+, /mm2  ≥ 20 0.31 0.14 − 0.68 0.003
  CD3+CD8−  Foxp3+, /mm2  ≥ 5 2.37 1.05 − 5.34 0.036
  CD206+, /mm2  ≥ 14 2.44 1.07 − 5.53 0.032

Variables Multivariate analysis

HR 95% CI P value

TIL phenotypes before CRT 
  CD3+CD8−  Foxp3+,/mm2  ≥ 3 1.44 0.56 3.56 0.423

TIL phenotypes after CRT 
  CD3+CD8+PD-1+, /mm2  ≥ 20 0.33 0.14 0.77 0.010
  CD3+CD8−  Foxp3+, /mm2  ≥ 5 1.57 0.62 3.98 0.336
  CD206+, /mm2  ≥ 14 1.87 0.79 4.44 0.151



809J Gastroenterol (2024) 59:798–811 

1 3

CRT has been investigated in patients with T1b stage for 
whom endoscopic treatment is difficult [31]. It has shown 
a high CR rate and preferable long-term prognosis, which 
are comparable to those of surgery; therefore, it is consid-
ered the standard treatment [32]. However, even a subset of 
cases in which cCR is achieved after CRT relapse [33, 34]. 
This is why the importance of surveillance and the need for 
additional treatment after definitive CRT has been reported 
[33]. The effectiveness of salvage surgery following defini-
tive CRT has been demonstrated [35]. Preoperative CRT is 
often used as the standard treatment strategy for patients 
with locally advanced ESCC [36, 37]. Although surgical 
resection is an important therapeutic strategy for patients 
with cStage I–III, CRT is the only standard treatment for 
T4b and LNT4, despite of the fact that recurrence occurs 
at a rate of 45–53% even in CR cases [7, 33]. Accordingly, 
T4b and LNT4 were focused in this study to evaluate the 
sole efficacy of CRT [5, 38]. To the best of our knowledge, 
there have been no reports on the evaluation of paired sam-
ples from patients with unresectable locally advanced ESCC 
before and after CRT. In this study, we performed mIHC 
analysis on paired samples from patients with unresectable 
locally advanced ESCC before and after CRT. Supporting 
the results from previous studies on neoadjuvant CRT for 
patients with locally advanced esophageal cancer [13, 14, 
28–30], we clarified that CRT increased tumor-infiltrating 
 CD8+ T cells and  CD4+ Tconv cells but decreased Treg cells 
and suppressive macrophages in patients with unresectable 
locally advanced ESCC. Simultaneously, CRT induced PD-1 
expression in  CD8+ T cells and  CD4+ Tconv cells without 
the upregulation of terminally exhausted T-cell markers, 
such as TIGIT, LAG3, and Tim-3. In addition, the number of 
 CD3+CD8+PD-1+ cells was significantly higher in patients 
with cCR than in those without cCR, which may be an inde-
pendent predictor of cCR. PD-1 expression on  CD8+ T cells 
is upregulated upon the recognition of high-affinity antigens 
[39], and PD-1+CD8+ T cells in tumors are predictive factors 
for the therapeutic response to PD-1 blockade therapy in 
lung and gastric cancers [39, 40]. These studies suggest that 
this may reflect the enhancement of antigen presentation by 
tumor-specific antigens in the TME by CRT.

The increase in  CD3+CD8+PD-1+ cells after CRT 
observed in this study is an important finding that provides 
evidence for the need for PD-1 inhibitors after CRT. 
Several clinical trials have demonstrated the efficacy of 
combined CRT and PD-1 inhibitors [12, 41]. In addition, 
the TENERGY trial was introduced for unresectable locally 
advanced ESCC, and the results are awaited [42]. Moreover, 
tumor-associated macrophages (TAMs) and PD-1+ Tregs, 
which are defined as  CD206+ and  CD3+CD8−FoxP3+PD-1+ 
by immunohistochemistry, are associated with an 
unfavorable prognosis and can be decreased after CRT. A 
previous study showed low doses of RT (≤ 2 Gy) reprogram 

TAMs to an M1 phenotype, which led to normalization of 
the tumor vasculature with a reduction of  CD31+ vessels 
and upregulation of vascular cell adhesion protein-1 in 
tumor endothelium [43]. Other reports have shown that 
ICI responses are related to the number of TAMs or Tregs 
[44, 45]. In this study,  CD3+CD8+PD-1+ cells were also 
increased in non-cCR after CRT (Online Resource 5). All of 
these findings suggest a rationale for additional ICI treatment 
after CRT, which may further improve prognosis.

This study had some limitations. For instance, the sample 
size was small because of the relatively low incidence of 
unresectable ESCC and the difficulty in obtaining a pair of 
tumor specimens before and after CRT. Another was the 
possibility of bias owing to intra-tumoral heterogeneity 
caused by endoscopic specimens. Taking this into account, 
we conclude that unresectable locally advanced ESCC can 
be immunologically activated by CRT. The abundance 
of  CD8+PD-1+ cells after CRT is a favorable prognostic 
factor, suggesting a rationale for subsequent PD-1 inhibitor 
treatment. This study focused on patients with T4b and 
LNT4 to investigate the sole effect of CRT on ESCC, which 
can be applied to all stages of ESCC. These results can guide 
clinical trials to test the combination of immunotherapy and 
CRT.
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