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Abstract

Background Precise area diagnosis of early gastric cancer

(EGC) is critical for reliable endoscopic resection. Com-

puter-aided diagnosis (CAD) shows strong potential for

detecting EGC and reducing cancer-care disparities caused

by differences in endoscopists’ skills. To be used in clinical

practice, CAD should enable both the detection and the

demarcation of lesions. This study proposes a scheme for

the detection and delineation of EGC under white-light

endoscopy and validates its performance using 1-year

consecutive cases.

Methods Only 300 endoscopic images randomly selected

from 68 consecutive cases were used for training a con-

volutional neural network. All cases were treated with

endoscopic submucosal dissection, enabling the accumu-

lation of a training dataset in which the extent of lesions

was precisely determined. For validation, 462 cancer

images and 396 normal images from 137 consecutive cases

were used. From the validation results, 38 randomly

selected images were compared with those delineated by

six endoscopists.

Results Successful detections of EGC in 387 cancer ima-

ges (83.8%) and the absence of lesions in 307 normal

images (77.5%) were achieved. Positive and negative

predictive values were 81.3% and 80.4%, respectively.

Successful detection was achieved in 130 cases (94.9%).

We achieved precise demarcation of EGC with a mean

intersection over union of 66.5%, showing the extent of

lesions with a smooth boundary; the results were compa-

rable to those achieved by specialists.

Conclusions Our scheme, validated using 1-year consec-

utive cases, shows potential for demarcating EGC. Its

performance matched that of specialists; it might therefore

be suitable for clinical use in the future.

Keywords Computer-aided diagnosis � Early gastric

cancer � White light endoscopy � Precise area demarcation �
Delineation of horizontal extent

Introduction

Early detection of gastric cancer is one of the most effec-

tive ways to reduce cancer death. Patients with advanced

gastric cancer have a poor prognosis, whereas the 5-year

survival rate is greater than 90% when the lesion area is

localized as a result of being detected at an early stage

[1–4]. Gastrointestinal endoscopy plays a critical role in

improving the detection rate of EGC and enables early

intervention with endoscopic submucosal dissection (ESD)

through precise area diagnosis. However, endoscopic

diagnosis including detection and demarcation is difficult

even for well-trained gastroenterologists because a lesion’s

morphology is usually only slightly depressed or elevated

and, because of chronic inflammation, lesions exhibit only

a minor color change relative to the background [5–7].
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Research in computer-aided lesion detection using

endoscopic images or videos to assist endoscopists and

equalize the diagnostic ability has been increasing in recent

years [8–13]. Such research has strong potential to reduce

cancer-care disparities caused by differences in endo-

scopists’ proficiency or by differences among equipped

endoscopes. In particular, substantial improvements in the

detection of gastrointestinal lesions have been reported

since the introduction of convolutional neural networks

(CNNs) [14]. In a previous study, we developed an auto-

matic detection scheme for EGC; this scheme was based on

an efficiently trained CNN using a small training dataset,

revealing the approximate extents of lesions [15]. Although

this previous study indicated the feasibility of computer-

aided lesion detection, the performance of the proposed

method was insufficient for practical use because not only

lesion detection but also demarcation of lesions is critical

for curative resection for both ESD and partial gastrectomy

[16–19].

In this study, we enhanced our detection scheme so that

more detailed regions can be demarcated while keeping the

efficient CNN trained using a small dataset and then carried

out delineation of the horizontal extent of lesions. The

proposed scheme was validated using 1-year consecutive

cases. In addition, we conducted a pilot study with endo-

scopists to compare their ability to demarcate EGC with

that of our enhanced scheme.

Methods

Acquisition of training and test datasets

with accurately annotated images

To train the CNN, we collected 150 cancer images and 150

normal images randomly selected from 68 consecutive

patients (926 images) with EGC who were treated with

ESD [20–22] at National Cancer Center Hospital East

(NCCHE) from November 2016 to April 2017. In the

present study, ‘‘normal’’ means that the image does not

contain cancerous regions. We next collected a test dataset

completely independent from the training dataset; the test

dataset comprised 462 images (137 patients) from con-

secutive EGC cases that underwent ESD from April 2017

to March 2018 at NCCHE. The dataset also included 396

normal images containing no cancer regions. All the ima-

ges in both datasets were 24-bit, 1000 9 870 pixels, full-

color images originally obtained from endoscopic still

images captured under white light (GIF-H290Z or GIF-

H260Z; Olympus, Tokyo, Japan) using a standard video

endoscopy system (EVIS LUCERA ELITE; Olympus). On

the basis of the ESD pathological results, an experienced

and certified gastroenterologist (K.H.) annotated the lesions

on all cancer images to train and validate the CNN. The

datasets included different lesion characteristics such as

size, macroscopic type, location, invasion depth, and his-

tological type (see Table 1 for details).

This study used a retrospective design, and patients’

personal information was removed. The protocol was

approved by the Institutional Review Board of the National

Cancer Center (2017-090). In this study, the patients pro-

vided informed consent to participate in the study using an

opt-out method through disclosure of a public document on

the website of the facility because of the retrospective

nature of the study using completely anonymized data.

Efficient increase in training dataset

A CNN is one of the machine learning tools used in various

tasks related to computer vision, such as image classifica-

tion and segmentation. CNNs generally require huge

amounts of training data. By contrast, an extremely small

number of endoscopic images—specifically, only 150

cancer and 150 normal images—were collected for training

the CNN in this study. The collected images were divided

into approximately 1.13 million small images using the

Table 1 Patient and lesion characteristics of the training and test

datasets

Training dataset

Patient characteristics (n = 68)

Sex: male/female 57/11

Median age: year (range) 75 (36–82)

Lesion characteristics (n = 68)

Median tumor size: mm (range) 16 (1–52)

Size: 0–10 mm/11–20 mm/ C 21 mm 14/36/18

Macroscopic types: 0-I/0-IIa/0-IIc 3/11/54

Location: Upper/Middle/Lower 18/22/28

Depth: pM/pSM1/pSM2 57/7/4

Histological types: differentiated / undifferentiated 64/4

Test dataset

Patient characteristics (n = 137)

Sex: male/female 117/20

Median age: year (range) 73 (36–85)

Lesion characteristics (n = 137)

Median tumor size: mm (range) 15 (1–61)

Size: 0–10 mm/11–20 mm/ C 21 mm 40/61/36

Macroscopic types: types 0-I/0-IIa/0-IIb/0-IIc 2/9/1/125

Location: Upper/Middle/Lower 24/57/56

Depth: pM/pSM1/pSM2 101/18/18

Histological types: differentiated/undifferentiated 126/11
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following procedure. First, each image was cropped auto-

matically and randomly into approximately 100 images

with a size of 224 9 224 pixels. At least 80% of the pixels

of each cropped image labeled as a cancer included lesions

to enable the characteristics of lesions (e.g., the pit pattern,

margin, and the central depression) to be identified. Con-

versely, the cropped images labeled as normal contained no

cancer regions. Next, data augmentation, which increases

the number of images via geometric or appearance image

transformation, was performed to increase the cropped

images artificially. We used Keras [23], an open-source

neural network library, for data augmentation. Finally,

534,926 cancer images and 593,874 normal images with

sizes of 224 9 224 pixels were obtained (see Online

Resource Fig. S1a).

Training network by fine-tuning

Fine-tuning [24], a type of transfer learning, is a powerful

tool for efficiently training a neural network model. Goo-

gLeNet [25], which is one of the simplest models and is

trained using the datasets of the ImageNet large-scale

visual recognition challenge [26], was adopted in this study

as a pre-trained network for fine-tuning. The aforemen-

tioned training dataset, totaling approximately 1.13 million

images, was then used to tune the pre-trained network to fit

the network with the datasets of this study (Online

Resource Fig. S1b). The training time was approximately

10 h with an Intel Xeon (2.4 GHz, 128 GB) and NVIDIA

GeForce GTX1080 (8 GB 9 2 memory). After this train-

ing, the trained network could classify whether an input

was cancer or normal (noncancerous). We evaluated the

generalization ability of the trained network by cross-val-

idation—a technique used to evaluate machine learning

algorithms—and confirmed that the trained network could

perform well on previously unseen input (Online Resource

Fig. S2).

Detection and delineation by per-pixel prediction

We implemented a sliding-window procedure that per-

formed an existence probability prediction of lesions for an

unknown input image using the trained CNN, leading to

semantic segmentation—a technique used for annotating

images at the pixel level. The precise segmentation even-

tually enabled the delineation of lesions (i.e., demarcation

of EGC). A short summary is presented as follows. An

input endoscopic image with an original size of

1000 9 870 pixels was divided into small blocks of

W 9 H (horizontal 9 vertical) images with a size of

224 9 224 pixels. Each block, which was not resized and

therefore preserved fine image features, passed through the

trained network and was then classified with a predicted

probability between 0.0 and 1.0 (i.e., block-based predic-

tion). A block with high probability was considered to be

cancer, whereas a block with low probability was consid-

ered to be normal (Online Resource Fig. S3). After all the

blocks had been applied to the trained network, the pre-

dicted probability of each block was assigned to each pixel

inside the original input image as the existence probability

of EGC, according to a weighted function (Online

Resource Fig. S4). Each block in which the probability

prediction was performed was defined by being slid around

the input image from the top left to the bottom right, and

the variable sliding pitch determined the number of blocks.

The neighboring blocks partially overlapped according to

the sliding pitch, leading to multiple predictions for each

pixel and increasing the prediction reliability. In this study,

we divided each input image into 43 9 39 (horizon-

tal 9 vertical) blocks by sliding around the input image

every 28 pixels, resulting in 1677 predictions (6.7 s) being

performed per input image.

The assigned and summed probabilities based on the

image-based prediction were used and then translated into

a pseudo-color that was subsequently superimposed onto

the input image. The result provided the exact region of

EGC as a heat map by selection of pixels whose probability

was greater than 0.5 because our trained network is based

on the concept of two-class classification, where the pre-

dicted pixel with a probability greater than 0.5 is regarded

as cancer. If no misdetection is acceptable, the probability

should be set lower than 0.5 to reduce the number of

misdetections. However, our detection goal is the accurate

delineation of EGC, and we therefore set the probability to

0.5. The detected cancer region was depicted as a rainbow-

colored region, whereas the noncancerous (normal) region

was depicted as a blue-colored region (Online Resource

Fig. S1c).

Evaluation methods and outcome measures

To validate our proposed scheme, we performed two types

of evaluations for the test dataset: one evaluation for

detection ability and another for demarcation accuracy.

Detection ability refers to whether our scheme can cor-

rectly detect the presence of cancer in an input, and

demarcation accuracy refers to the overlap rate of the

detected region with the exact cancer region. The detection

ability was calculated on the basis of the true-positive rate

(TP), true-negative rate (TN), false-positive rate (FP), and

false-negative rate (FN). The TP and FP reflect the num-

bers of images correctly and incorrectly recognized as

EGC, respectively, whereas the TN and FN represent the

numbers of images correctly and incorrectly recognized as

normal, respectively. We calculated five metrics—sensi-

tivity (TP/(TP ? FN)), specificity (TN/(FP ? TN)),

123

J Gastroenterol (2023) 58:741–750 743



accuracy ((TP ? TN)/(TP ? FN ? FP ? TN)), positive

predictive value (PPV = TP/(TP ? FP)), and negative

predictive value (NPV = TN/(FN ? TN))—for evaluating

the detection ability. These evaluations were performed for

block-based prediction, image-based prediction, and case-

based prediction of the test dataset (Online Resource

Table S1). The evaluation of block-based prediction

reflects the detection ability before the predicted proba-

bilities are summed across all the blocks in the sliding-

window procedure. We examined the detection ability of

1,438,866 blocks obtained from 462 cancer and 396 normal

images by counting the number of blocks when the pre-

diction result matched the ground truth. The ground truth,

which is co-located with the target block, is regarded as a

cancer block when at least 80% of pixels of a block include

cancer regions. For the evaluation for image-based pre-

diction, if at least one cancer pixel is detected in the input

target image, then the target image is counted as correctly

detected. Regarding the evaluation for case-based predic-

tion, for each image of the 137 cases, if at least one cancer

image is detected correctly, then the target case is counted

as a correctly detected one.

The demarcation accuracy was measured for the cancer

images of the test dataset in terms of the mean intersection

over union (mIoU) [27], which is a measure commonly

used to evaluate the accuracy of semantic segmentation,

which can quantify the degree of overlap between a seg-

mented region and a ground truth. The images that show

the lesion extent annotated by experienced gastroendo-

scopists on the basis of the pathological examination of

ESD were used as the ground truth for calculating the

mIoU.

We also compared the automatically delineated regions

of our scheme with the regions delineated via manual

annotation by six experienced endoscopists. The average

experience number of upper gastrointestinal endoscopy

procedures performed by the endoscopists was 6000 (min

3000 to max 12,000). The randomly selected 38 cancer

images among the successfully detected cases in the test

dataset, and their ground truths, which were precisely

detected lesions annotated on the basis of pathological

examination, were used for the comparison. When anno-

tating each image, the endoscopists were permitted to

reference a white-light-only endoscopic image without

magnification. The ratio of lesion characteristics was in

approximate accordance with that of the test dataset. In

terms of each selected image, the mIoU, sensitivity,

specificity, accuracy, PPV, and NPV were calculated

between the ground truth and the manual annotation.

Results

Evaluation of the detection ability using consecutive

cases throughout 1 year

Table 2 presents the detection ability based on the numbers

of images and cases. For the image-based result, EGC

detection was accomplished in a total of 387 (83.8%) out of

462 cancer images. For the normal cases, 307 (77.5%) out

of 396 normal images were predicted correctly. A PPV of

81.3%, NPV of 80.4%, and accuracy of 80.9% were

obtained, all of which achieved stable detection accuracy.

The PPV of the block-based results was low (Online

Resource Table S1), whereas that of the image-based

results was improved. This result means that the detection

ability was substantially improved in terms of FN occur-

rence because of the sliding-window procedure. We spec-

ulate that multiple predictions performed at each pixel by

the sliding-windows procedure led to stable detection

accuracy. Notably, from the perspective of the case-based

results, our proposed method achieved a detection accuracy

of 94.9%.

Heat map of cancer probability delineating

the horizontal extent of lesion

Figure 1a–d shows the results of demarcation for three

macroscopic types of gastric cancer: 0-I, 0-IIa, 0-IIb, and

0-IIc. A heat map shows not only the extents of lesions but

also the probability of lesions. In addition, the margins of

cancer regions can be observed at the pixel level. Although

the lesion size ranged from approximately 70 square pixels

to 650 square pixels in each image, the demarcation results

were accurate irrespective of the lesion size. Especially in

Table 2 Detection ability based on the numbers of images and cases

Image-based (n = 858) Prediction

Cancer Normal

Ground truth Cancer TP: 387 FN: 75 Sensitivity:

83.8%

Normal FP: 89 TN: 307 Specificity:

77.5%

PPV: 81.3% NPV: 80.4% Accuracy:

80.9%

Case-based (n = 137) Prediction

Cancer Normal

Ground truth Cancer TP: 130 FN: 7 Accuracy:

94.9%
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the cases of types 0-IIa, 0-IIb, and 0-IIc, a few salient

features were observed in the shapes. Nevertheless, our

proposed scheme provided accurate pixel-level demarca-

tion of the lesion across various macroscopic types of EGC.

In terms of incorrect detection, irregular textured patterns

on the gastric surfaces resulted in over-segmentation and

mis-segmentations were observed in regions with shadows

or in deeper areas (Online Resource Fig. S5).

Fig. 1 Demarcation results of four early gastric cancer (EGC) types:

a protruding type (type 0-I); b superficial elevated type (type 0-IIa);

c superficial flat type (type 0-IIb); d superficial depressed type (type

0-IIc). Each row shows the following images: an input image, a

ground truth, a heat map showing the predicted probability of EGC,

and a pseudo-colored TP–TN–FP–FN image. In the ground truth

images, the manually annotated regions, which were based on the

pathological examination by a gastroenterologist (K.H.), are marked

in green. The heat map images, which were produced fully automat-

ically by our proposed scheme, indicate the potential cancer and

normal regions detected on the basis of the predicted probability. In

the TP–TN–FP–FN images, light blue, white, red, and yellow indicate

true positive, true negative, false positive, and false negative,

respectively
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The mIoU calculated from the successfully detected

cancer images (387/462) was 66.5% on average. In general,

with respect to the degree of overlap of two regions, we

considered an overlap greater than 65% for the target

region to be sufficient because moving the two regions

diagonally by only 10% gives an mIoU of 65% (Online

Resource Fig. S6).

Analyzing the results in terms of lesion

characteristics

Figure 2 shows the demarcation accuracy expressed using

the mIoU in terms of lesion size, depth, location, and

histological type. The mIoU was significantly better in

images of lesions of pSM2 (vs. pM, p\ 0.0001; vs. pSM1,

p\ 0.05), lesions at the upper stomach (vs. middle,

p\ 0.05), and lesions of the histologically differentiated

type (vs. undifferentiated type, p\ 0.001). There were no

significant differences in mIoU with regard to the lesion

size.

We also analyzed the correct-detection rate in terms of

lesion characteristics such as the size, depth, location, and

histological type of the lesion (Table 3). Similar to the

results in Fig. 2, lesions with deeper invasion depths and

that were located in the upper part of the stomach and were

of the differentiated type were likely to be detected more

precisely using our scheme. This tendency of detection

ability was the same as that of the endoscopists. Notably,

according to the case-based results, our proposed method

resulted in a correct-detection rate of approximately 95%.

Comparison with the manual demarcation

by experienced endoscopists

Table 4 shows the results of a comparison between the

computer detection and the averaging results of six endo-

scopists in terms of six evaluation metrics. In the three

evaluation metrics of mIoU, sensitivity, and NPV, our

scheme demonstrated superior diagnostic ability compared

with that of the endoscopists. However, in the other three

metrics of specificity, accuracy, and PPV, the diagnostic

ability of the endoscopists was superior to that of our

scheme. The small differences regarding specificity and

accuracy verified that the diagnostic ability of our

scheme was comparable to that of the endoscopists.

Figure 3 shows three representative examples of lesion

demarcation. Similar to the trends shown in Table 3, our

scheme tends to lead to over-segmentation compared with

the lesion demarcations of the endoscopists. However, the

lesion demarcations of the endoscopists tend to be mis-

segmented. The results show that the annotated regions of

lesions varied substantially from each other.

Discussion

We developed a scheme for the computer-aided demarca-

tion of EGC that demonstrates area diagnosis ability sim-

ilar to that demonstrated by endoscopists. The demarcation

accuracy of the correctly detected EGC, expressed using

mIoU, was 66.5%, which is considered a sufficient degree

of overlap with exact cancer regions because mIoU is an

extremely strict evaluation metric. For lesions with

ambiguous boundaries, such as those in EGC, our pixel-

level lesion delineation will assist endoscopists in under-

standing the spread of lesions and aid in the development

of an appropriate treatment plan for ESD.

In a previously reported method that enabled the real-

time detection of upper gastrointestinal cancer, greater than

90% sensitivity and specificity were achieved using

approximately 1 million images (approximately 84,000

cases) [28]. However, the target lesions for automatic

detection were primarily advanced cancer (81% of the

total), which deviated from the concept of automatic

detection at the early stage of gastric cancer. Ping et al.

proposed an automatic delineation of EGC [29]. However,

their aim was to delineate the lesion area only in the cancer

image; they did not attempt to detect the presence of

lesions. We attribute the difficulties of automatic EGC

detection and delineation to two primary reasons. First,

there is a lack of large amounts of high-quality data for use

in training datasets [30]. By contrast, our scheme does not

focus on collecting large amounts of training data but

instead uses precise training data based on pathological

examination—in this study, originally from only 150 can-

cer images and 150 normal images. The high-quality

training data appear to have positively affected the training

accuracy, even for one of the simplest CNNs such as

GoogLeNet. Our scheme, which overcomes the problem

regarding training data collection, has the potential to be

readily applied in a wide range of detection tasks in other

hospitals and clinics, even with other gastrointestinal dis-

eases. Normally, the appearance of images acquired by

different facilities or devices differs because of differences

in the imaging conditions and methods; thus, re-training

using the images from those facilities or devices is neces-

sary for accurate detection. In such cases, the ability to

train with a small training dataset is considered a major

advantage. Second, many previous studies utilized a one-

stage detection framework typified by the single-shot

multibit detector (SSD) [31]. We speculate that the SSD-

based scheme might be linked to the low PPV [10, 28]. The

SSD uses low-resolution images derived from compressed

images (e.g., the SSD-300 model compresses the original

image to 300 9 300 pixels); thus, the detailed texture

pattern of the images is missing and the lesions with flat
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and indecisive boundaries, typified by EGC, may not be

correctly detected. Our scheme, by contrast, detected the

minor differences in the local texture patterns around the

lesion boundary as a result of multiple predictions derived

from the sliding-window procedure performed using a

CNN trained using uncompressed images. Our particularly

striking result is that the occurrence of both FPs and FNs

was strongly suppressed for both cancer and normal images

and that high-performance results in both PPV and NPV

were eventually achieved.

Fig. 2 Differences in mean

intersections over unions

(mIoUs) of each lesion

characteristic. Scatter plots of

mIoUs in terms of a lesion size,

b lesion depth, c lesion location,

and d histological type of

lesion. The differentiated

lesions include tub, tub1, tub2,

pap, and carcinoma, and the

undifferentiated lesions include

sig, por, and por2. In each plot,

the p-value was calculated using

the Kruskal–Wallis test for the

size, depth, and location and

using the Mann–Whitney U test

for the histological

types. *p\0.05, ***p\0.001,

****p\0.0001. ns no

significance, pC0.05
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Although we did not explore methods to shorten the

detection time, numerous options are available for this

purpose. For example, our scheme can offer coarse or fine

segmentation results based on the sliding pitch selected for

the sliding windows (Online Resource Fig. S7). As for the

probability prediction of each block in the sliding-window

procedure, the coarse sliding pitch is first adopted for rough

prediction and then only the blocks with high probabilities

are re-predicted for the fine prediction. We speculate that

this approach will shorten the detection time to enable real-

time diagnosis in the future. Alternatively, this pitch

selection could be applied to meet the needs of endo-

scopists to balance segmentation quality and execution

time. For example, the advantage of making the sliding

pitch small is that more accurate segmentation results with

a smooth outline can be obtained, which would be useful

for area diagnosis before ESD in our method. Conversely, a

large sliding pitch has the advantage of decreased execu-

tion time as the number of predictions decreases. The large

sliding pitch might contribute to the application of mass

screening programs or real-time detection using high-

quality video endoscopy in the future. Because a tradeoff

exists between the segmentation level and execution time,

parameters that suit the needs of the endoscopist must be

selected. In addition, the sliding-window procedure can be

performed in parallel via GPU implementation, thereby

accelerating the detection speed.

This study had several limitations. First, our dataset was

biased in the number of training and test images according

to the lesion characteristics. For example, the number of

undifferentiated-type images was less than one-tenth that

of differentiated-type images. This difference might be

responsible for the lower detection accuracy of the undif-

ferentiated-type images compared with that of the differ-

entiated-type images. The effect of this bias on the

detection accuracy should be investigated in future work.

Second, the proposed scheme was evaluated using retro-

spective datasets at a single institution with a relatively

small number of patients. Additional studies with larger

sample sizes from multiple institutions would increase the

generalization capability of our proposed scheme. Third,

the scheme was trained and tested on images from limited

image environments captured using an Olympus video

endoscopy system. Additional studies using datasets from

multiple image environments may lead to hardware-ag-

nostic prediction. Fortunately, our scheme does not require

a large amount of training data and can be readily applied

to images from other institutions and imaging environ-

ments. In addition, we recently developed a system to

accumulate annotated endoscopic images from a daily

Table 3 Correct-detection rate

based on the lesion

characteristics

Lesion characteristics Correct-detection (Image-based) Correct-detection (Case-based)

Size (mm)

B 10 104/147 (70.7%) 38/40 (95.0%)

11–20 162/197 (82.2%) 58/61 (95.1%)

C 21 103/118 (87.3%) 34/36 (94.4%)

Depth

pM 264/341 (77.4%) 95/101 (94.1%)

pSM1 54/65 (83.1%) 17/18 (94.4%)

pSM2 51/56 (91.1%) 18/18 (100.0%)

Location

Lower 151/195 (77.4%) 51/56 (91.1%)

Middle 151/191 (79.1%) 55/57 (96.5%)

Upper 67/76 (88.2%) 24/24 (100.0%)

Histological types

Differentiated 344/422 (81.5%) 121/126 (96.0%)

Undifferentiated 25/40 (62.5%) 9/11 (81.8%)

Table 4 Comparison of the

delineation accuracy with six

endoscopists

mIoU Sensitivity Specificity Accuracy PPV NPV

Our scheme 68.7 69.9 94.0 91.7 62.9 96.3

Average of six

endoscopists

68.3 (4.0) 49.8 (12.5) 98.9 (1.8) 93.3 (0.9) 89.0 (10.2) 93.8 (1.3)

All results are given as percentage (standard deviation)
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reporting system, which could make training data collec-

tion more convenient in the future [32].

In conclusion, we demonstrated that our

scheme achieved a high performance of computer-aided

area diagnosis of EGC via a CNN trained using an extre-

mely small number of endoscopic images. A particularly

striking result is that our scheme offered pixel-level

demarcation of EGC with well-balanced accuracy for both

cancer and normal images and demonstrated area diagnosis

ability similar to that of experienced endoscopists. In the

future, we believe that our scheme will offer substantial

assistance in the decision-making of gastroendoscopists for

curative resection of EGC by ESD.

Supplementary InformationThe online version contains

supplementary material available at https://doi.org/10.1007/s00535-

023-02001-x.
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