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Abstract The hepatic stellate cells (HSCs) localize at the

space of Disse in the liver and have multiple functions.

They are identified as the major contributor to hepatic

fibrosis. Significant understanding of HSCs has been

achieved using rodent models and isolated murine HSCs;

as well as investigating human liver tissues and human

HSCs. There is growing interest and need of translating

rodent study findings to human HSCs and human liver

diseases. However, species-related differences impose

challenges on the translational research. In this review, we

focus on the current information on human HSCs isolation

methods, human HSCs markers, and established human

HSC cell lines.
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Introduction

The hepatic stellate cells (also referred to as Ito cell, fat-

storing cell, lipocyte, perisinusoidal cell, parasinusoidal

cell) are one of the key nonparenchymal components in the

sinusoid compartment with multiple functions in the liver.

HSCs were first described and named ‘‘Sternzellen’’ in

1876 by Kupffer [1] using a gold-chloride impregnation

technique. Later Toshio Ito [2] and Bronfenmajer [3]

observed perisinusoidal cells containing lipid droplets in

human livers. Wake [4] identified that ‘‘Sternzellen’’ were

the same cells as the vitamin A-storing cells in the liver. In

1995, the international community of investigators rec-

ommended the nomenclature of hepatic stellate cell (HSC)

[5]. The embryologic origin of HSCs remains unresolved.

Based on expression markers, potential origins of HSCs

include endoderm (cytokeratins) [6], or the septum

transversum mesenchyme (Foxf1, vimentin) [7], or neural

crest (GFAP, synaptophysin, N-CAM) [8] and P75 [9]).

However, the neural crest origin has been challenged [10].

Recent studies utilizing cell-fate mapping in mice have

suggested that HSCs may originate from septum transver-

sum [11].

Under physiological conditions, HSCs reside in the

space of Disse exhibiting a quiescent phenotype (qHSCs),

and their main function is storing vitamin A in lipid dro-

plets [12, 13]. In response to injury, qHSCs decrease

vitamin A storage and peroxisome proliferator-activated

receptor gamma (PPAR!) expression, and activate into

myofibroblasts (aHSCs), which are characterized by

increased proliferation and high contractility with expres-

sion of pericellular matrix proteins (a-smooth muscle actin

(a-SMA), vimentin), and secretion of abundant extracel-

lular matrix proteins (fibronectin, collagen type I and III)

[14–17]. HSCs release inflammatory, proliferative, and
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fibrogenic cytokines such as IL-6, PDGF, and TGFb,
through direct contact with their neighboring cells [18]. It

is reported that HSCs can also function as regulatory

bystander and contribute to liver-induced tolerance [19].

HSCs also contribute to liver regeneration [20], and

potentially mediate sinusoidal blood flow via contraction

and regulate microvascular structure and function in liver

[21].

The development of methodologies and techniques for

isolating and culturing primary HSCs has provided a

platform for great achievements in understanding this cell’s

unique and pleiotropic functions in liver pathophysiology.

Knook et al., using density centrifugation and centrifugal

elutriation, first established the isolation of HSCs from rat

liver [22]. Subsequently, the first human HSC isolation and

characterization was reported by Friedman from normal

liver [23]. With the development of techniques for HSC

isolation, cultivation and characterization, dramatic

achievement has been made in exploring the physiological

and pathological functions of HSCs. Mouse models have

been a very valuable tool in characterizing cellular gene

activation and protein-expression profiles as well as elu-

cidating the signaling pathways involved. Especially,

mouse models utilizing HSC specific markers has greatly

advanced our understanding of the function of HSCs

[24–27]. Meanwhile, significant advancement has been

made in human liver pathology studies as well as in vitro

studies using isolated primary human HSCs, for example,

to study their reverting capacity and function in retinoid

metabolism [28–33]. There is increasing interest in trans-

lating research from mouse models and mouse HSCs to

human HSCs and human disease. In this review we will

examine the current information on human HSCs, includ-

ing the methodologies for HSC isolation, primary cultures

of human HSCs, human liver tissues, as well as established

human HSC cell lines.

Human HSC isolation methods

An efficient method of HSC isolation and clear character-

ization of human HSCs is undoubtedly critical for a deep

understanding of its role in human liver physiology and

liver diseases. Two main methods for isolating HSCs from

human liver have been described so far, one is to grow

smooth muscle-like cells from liver tissue explants, and the

other is using density gradient centrifugation similar to the

isolation of HSCs in rodents [22, 34].

Liver tissue explants

Culture and characterization of myofibroblasts grown from

human liver explants of normal and fibrotic livers were

reported about 40 years ago [35–37]. Tissue fragments

were attached to plastic substratum. The outgrowth of cells

with myofibroblast characteristics became detectable after

10–15 days, and the myofibroblastic cells were recovered

and passaged by trypsinization after 3–4 weeks culturing

from the explants of liver sections [38]. Generally, studies

were carried out on homogeneous cultures of ‘‘smooth

muscle cells’’ subcultured between three and ten passages,

without noticeable phenotypic alterations and significant

result variation from various passages [36, 38–41].

The HSCs/myofibroblasts grown from explants of

human liver provide a useful research model to study

human fibrogenesis. The cells are positive for desmin and

smooth muscle a-actin, and demonstrate features typical of

myofibroblasts, such as abundant rough endoplasmic

reticulum (ER) and bundles of microfilaments under

transmission electron microscopy. Typical lipid droplets

were not detectable, since these cells were kept in culture

long enough to be considered as fully ‘activated’ [38].

They express collagen types I, III, IV, and V; and also

laminin B1 chain, fibronectin, matrix-metalloproteinase-2

(MMP-2) [37, 39], and fibroblast activation protein (FAP)

[42].

Similar to the outgrowth from liver slice cultures, some

studies have isolated human HSC-like myofibroblasts

through culture purification from mixed crude liver cell

populations, obtained from perfused normal human livers.

Stellate-cell growth in mixed cultures revealed that more

than 80% displayed desmin and a-SMA expression, and

also express interstitial collagens type I and III. Using this

cell culture system, researchers demonstrated that retinoic

acid suppressed the response of myofibroblasts to PDGF,

while this suppressive effect did not alter PDGFRa or b
abundance or activation [43].

The limitations of this approach include the potential

heterogeneity of the cells in culture. Under these culture

conditions, two cell types, which resemble smooth muscle

cells and vascular endothelium, grew from the liver tissue

[37], while epithelial cells were no longer present in these

subcultures [36, 37]. Moreover, using this culture method,

early events of HSC activation cannot be traced and

investigated, since it takes weeks for the cells to grow out

of the liver tissue and onto plastic surface.

Isolation of human HSCs using density gradient

centrifugation

Friedman [23] first successfully isolated, cultured, and

characterized human HSCs (lipocytes) from normal human

livers. Isolation of human HSC (fat-storing cells) was also

reported in other studies using density gradient centrifu-

gation method [31, 44, 45]. In general, researchers isolated

human HSCs from wedge sections of human liver
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unsuitable for transplantation within 48 h. Sections of

donor liver were isolated by catheter perfusion [23], or

finely minced [44, 45], and digested using pronase and

collagenase, followed by density gradient centrifugation

using Larex (Stractan) or other gradient medium to remove

other non-parenchymal cells. HSCs isolated with this

method were reported to be highly viable and with purity

of * 90% [23, 44]. In some studies, HSCs isolated from

density gradient centrifugation were further enriched and

purified by centrifugal elutriation [46].

The isolated hHSCs display vitamin A autofluorescence

with numerous lipid droplets in the perinuclear zone [47].

Retinoid droplets were maintained for 9 days on uncoated

plastic, with subsequent loss of vitamin A droplets and

progression to a fibroblastic morphology with expression of

matrix constituents including a-SMA on day 14 in culture

on uncoated plastic. Conversely, cells cultured on base-

ment membrane-like gel remained clustered and retained

vitamin A fluorescence. Transmission EM demonstrated

abundant retinoid droplets, prominent rough ER, and

prominent microfilaments. Cytoskeletal and matrix protein

expression investigation reported that desmin expression

was negative in hHSCs within 2–3 day culture, and only

seen in cells in longer-term culture ([ 7 days) with poly-

clonal but not monoclonal primary antibody. Vimentin,

collagens I, III, IV, FN, and laminin were identified

[23, 47]. Researchers found that these hHSCs respond to

vasoconstrictors such as thrombin, angiotensin-II, and

endothelin-1, suggesting their role in regulating sinusoidal

blood flow [44]. The cultured hHSCs produced monocyte

chemotactic protein-1 (MCP-1) [45], and responded to

TGFb1 with increased PDGFRb [48]. It has been demon-

strated that density gradient isolated human HSCs can be

reverted to a quiescent-like phenotypes through synergistic

action of epidermal growth factor (EGF), fibroblasts

growth factor 2 (FGF2), dietary fatty acids (oleic acid,

palmitic acid) and retinol, as demonstrated by the abundant

presence of retinyl ester-positive intra-cytoplasmic lipid

droplets, and low expression levels of activation markers

[31].

Density gradient separation remains the most widely

used approach for HSC isolation, but this method targets

the buoyancy of vitamin A-rich HSCs. This could result in

inefficiency on isolating ‘activated’ HSCs. It has been

demonstrated that upon liver injury, large number of HSCs

were retrieved from higher density gradient layers in rat

[34].

NPC stepwise-separation method

Recently, a detailed protocol for human liver hepatocytes,

NPC (non-parenchymal) fractions including Kupffer cells,

liver endothelial cells, and HSCs was reported [49, 50]. In

this method, NPCs were purified by Percoll density gra-

dient centrifugation. Kupffer cells (KCs), liver endothelial

cells (LECs) and hepatic stellate cells (HSCs) were sepa-

rated using specific adherence properties and magnetic

activated cell sorting (MACS). Specifically, KCs were

isolated through adherence separation step since they

adhere on cell culture plastics within a short period of time;

then LECs were isolated from HSCs using MACS with

CD31 micro beads; unlabeled HSCs were collected as the

pass-through of the separation column during the MACS

procedure. Using this method, HSCs with purity of * 93%

can be achieved, which were GFAP positive.

Fluorescent-activated cell sorting

Using the HSC characteristic of retinoid droplet storage, a

pure HSC population was obtained by sorting of HSC

based on endogenous vitamin A fluorescence with high

side scatter (SSC) of incident light [51, 52]. The disad-

vantage of this method is the lower yield, higher cost, and

requires a fluorescence-activated cell sorting (FACS). This

method, however, remains valuable for obtaining pure

hepatic stellate cells. Importantly, in human HSC isolation,

a major concern is hepatocyte contamination, especially

from a steatotic liver, in which contaminated hepatocytes

also generate strong autofluorescence, making the sorting

purification of HSCs challenging.

Liver slice culture

Liver slice culture offers some unique advantages and has

been used in various studies. The precision-cut liver slice

model maintains cell–cell and cell–matrix interactions and

therefore preserves the native physiologic milieu of resi-

dent liver cells [53] (Emilia Gore et al. 2017 keystone

symposium) [54]. It was reported that slices of adult human

[55] liver were cultured at the air–fluid interface for up to

28 days, with stellate cells positive for a-SMA and retic-

ulin [53]. Using this method, the research demonstrated

distinguished expression pattern of a-SMA, PDGFRb and

Thy-1 in normal, cirrhotic and cholestatic livers [56].

Co-culture method

A recent study reported a 3D organotypic co-cultivation

system for hepatocyte and non-parenchymal cells (NPCs).

Using long-term cell co-culture, density gradient centrifu-

gation and MACS, high purity and good separation of

endothelial cells (ECs), Kupffer cells (KCs), dendritic cells

(DCs), invariant natural killer T (iNKT) cells were

obtained and then added back in a biogel into a 3D culture.

In this system, HSCs were identified by desmin and GFAP
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expression, and most of the HSCs were a-SMA positive

[57].

Human HSC markers (Table 1, Fig. 1)

Rodent studies have identified specific markers for HSCs.

The most prominent proteins identified in rodent HSCs

include desmin, GFAP, and a-SMA (when activated)

[58, 59]. However, rodents and human HSCs not only show

dramatic morphological discrepancy, but also the protein

expression profile of human HSCs is quite different from

mouse HSCs. In particular, immunostaining does not

identify desmin or GFAP-positive cells in quiescent human

HSCs [60, 61]. Therefore, it is important to identify

specific markers for human HSCs.

Morphologic identification

Transmission electron microscopy remains the gold stan-

dard for identification of HSCs based on location, cyto-

plasmic processes, lipid droplet content, rough

endoplasmic reticulum, and bundles of microfilament

[23, 62]. Morphologic features by light microscopy include

presence of lipid droplets and stellate (star) shape of the

cells. The most characteristic morphologic feature of HSCs

in a normal liver is their storage of vitamin A in the form of

cytoplasmic retinoid droplets [4]. These cytoplasmic lipid

droplets are readily identifiable in live biopsies [63, 64].

Loss of retinoid is a prominent feature accompanying

stellate cell activation. However, it was reported that in

patients with normal liver histology, only 75% of the

perisinusoidal cells contain lipids [65].

Cytoskeletal proteins

Desmin

Yokoi et al. discovered desmin in rat HSCs [58]. Since

then, desmin has been widely used as a ‘gold standard’ for

identifying HSCs in rodent liver. However, data of desmin

on HSC studies obtained in human subjects have been

contradictory [38, 64, 66, 67]. Some studies have shown

that perisinusoidal liver cells in normal adult liver tissue

are devoid of desmin expression [66, 68], and desmin

immunostain has been reported to be negative in fibrotic

human livers [67, 69, 70]. While others have suggested

positive desmin immunoreactivity in normal [38] or cir-

rhotic human livers [66]. As well, in isolated human HSCs,

the results are not consistent. Positive immunostaining for

desmin has been observed in primary isolated human HSCs

in some studies [23, 31, 38], while negative immunoreac-

tivity for desmin was reported in others [61, 71].

Alpha-SMA (a-SMA)

This is used as a reliable marker of activated and myofi-

broblastic HSCs. This cytoskeletal protein is absent from

other resident liver cells except portal myofibroblasts and

vascular smooth muscle cells [42, 66]. In normal and

Table 1 Mouse HSC and human HSC markers

Marker Rodents Human liver tissue Isolated human HSCs Isolated human HSCs

Density gradient centrifugation

Quiescent Activated Normal Diseased Explants Initial Later passage

Desmin ? ? ? or - ? or - ? - ? or weak or -

GFAP ? ? - or ? ? - ? ?

P75 ? ? ? ? - ? or -

Trk-C ? ? ? ? -

N-CAM - ? ? ? ? or -

PDGFRb ? ? - ? ? ?

CRBP-1 ? ? ? ?

CYGB ? ? ? ?

LRAT ? – ? ?

a-SMA - ? ? or - ? ? - ?

Vimentin ? ? ? ? ?

FAP - ? ?

NT-3 ? ? ? ? ?

SYN ? ? ? ? -
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pathological adult human livers, positive immunostaining

of a-SMA was identified in fat-droplet-containing HSCs,

and increased cell number and intensity of the staining

signal was observed in the specimens with chronic liver

disease [66, 68, 72]. Some studies reported no a-SMA

immunoreactivity detected in normal human liver [42, 73].

Expression of vimentin, vinculin, procollagens I, III, col-

lagen IV, V, laminin, and fibronectin are identified in

human HSCs [23, 39, 64, 70].

Neural markers

Stellate cells are directly adjacent to nerve endings [74],

and studies have identified neurotrophin receptors [75] with

functional studies confirming neurohumoral responsiveness

of HSCs [18, 76, 77].

GFAP (glial fibrillary acidic protein)

Rodent HSCs express GFAP [59, 61]. In normal human

liver tissue, GFAP immunoreactivity was absent [42].

However, a small subpopulation of periportal cells was

reported as GFAP-positive in normal human liver in a

different study [78]. In cirrhotic livers, GFAP was detected

in focal clusters of cells in the periseptal regions of the

regenerative nodules [42]. Positive GFAP staining was also

identified in HSCs in fibrotic/cirrhotic livers [69]. Isolated

human HSCs were reported as GFAP positive in some

studies [49, 50, 61, 71], while no GFAP immunoreactivity

was detected in isolated HSCs from cirrhotic liver explants

[42].

NGFRp75 (surface marker) (nerve growth factor receptor

p75)

Studies showed that human HSCs express the low-affinity

nerve growth factor receptor p75, which was detected in

perisinusoidal cells in normal donor liver sections. Also in

fibrotic and cirrhotic livers, intense staining of p75 was

observed immunolocalized with a-SMA-positive HSCs,

and no p75 expression was observed in hepatocytes

[69, 75, 79]. Quiescent (freshly isolated) HSCs did not

express p75; its expression first became detectable in

activated HSC after 7 days of culture in rat, and after

14 days of culture by Western-blot analysis in activated

human HSCs [79]. P75 immunostain has shown inconsis-

tent results in several human HSC cultures [61].

Trk-C (surface marker) (NTRK3, neurotrophic receptor

tyrosine kinase receptor 3)

Notably, Trk-C is expressed in both rodent and human

HSCs in normal and varying pathologic conditions

[69, 75]. Vascular smooth muscle cells also express Trk-C

[80]. However, lost expression of Trk-C was reported in

cultured human HSCs [61].

α
-S

M
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Human HSCsMouse HSCs

Fig. 1 Immunofluorescence staining for GFAP, desmin, and a-SMA of primary mouse HSCs and primary human HSCs
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N-CAM (surface marker) (neural cell adhesion molecule)

N-CAM was found to be present in periportal and inter-

mediate-zonal human HSCs. Such intralobular hetero-

geneity of N-CAM expression might be related to the

different maturational stages of the HSCs [81]. N-CAM-

positive HSCs were also demonstrated in cirrhotic human

livers co-localized with a-SMA [69]. N-CAM immunostain

has shown inconsistent results in cultured human HSCs

[31, 61].

NT-3 (neurotrophin-3)

NT-3 was detected in human HSCs in normal or various

pathologic conditions; for example, positive immunos-

taining for NT-3 was observed in HSCs lining the sinusoids

in human liver with alcoholic cirrhosis [69]. Weak

immunoreactivity of NT-3 was also detected in hepatocytes

in cryosections of human liver [75]. Positive NT-3 staining

was observed in isolated human HSCs [61].

Retinol processing proteins

CRBP-1 (cellular retinol binding protein-1)

CRBP-1 is a carrier protein of intracellular retinol. Diffuse

light staining by immunohistochemistry for CRBP-1 was

seen in the cytoplasm of hepatocytes, while much more

intense positive signal for HSCs were observed in rat [82].

In formalin-fixed paraffin embedded human live tissues,

positive CRBP-1 staining was observed in lobular HSCs

without reacting with smooth muscle cells and cholangio-

cyte positivity [70]. CRBP-1 was downregulated in human

livers with advanced fibrosis, presumably due to a loss of

vitamin A [64].

CYGB/STAP (cytoglobin/stellate cell activation-associated

protein)

Cytoglobin was discovered by a proteome analysis of rat

HSCs [83]. In the rat liver, Cygb is expressed in the qui-

escent HSCs and is increased when these cells were acti-

vated in fibrotic liver tissues. In normal human liver,

CYGB-positive cells have similar distribution as in normal

rat liver; however its expression is not increased around

inflammatory lesions, which is not consistent with the

observation in the inflammatory regions of rat liver [84].

Other hepatic constituent cells in liver lobules such as

Kupffer cells, endothelial cells, hepatocytes, and bile-duct

epithelial cells are negative for Cygb immunostaining [85].

Quiescent stellate cells, but not portal myofibroblasts,

express both CYGB and CRBP-1 in normal human liver. In

fibrotic and cirrhotic livers, it was shown that the

distribution of CYGB was mutually exclusive with the

distribution of Thy-1, and FBLN2 [64]. Thy-1? cells were

located within the periportal tract in normal human liver

[86], and its expression was observed in the fibrotic septa

of cirrhotic liver [56]. Co-staining of Thy-1 and CD248

was detected in isolated human hepatic stellate cells [87]. It

has been reported that cytoglobin expression is correlated

with a more quiescent phenotype of HSCs and is regulated

by extracellular matrix proteins dependent on FAK sig-

naling in rat HSC-T6 cell line [88].

LRAT (lecithin retinol acyltransferase)

This enzyme is responsible for all retinyl ester synthesis

within the liver and plays an indispensable role in the

formation of HSC lipid droplets [63, 89], and was identi-

fied as a specific marker for HSCs [24]. LRAT-positive

staining was demonstrated in the space of Disse of normal

human liver, and was suggested to be recognized as a

quiescent HSC marker in human tissue [73]. LRAT?/

CRBP-1? HSCs were demonstrated to contribute to portal

fibrosis in human liver specimens in viral hepatitis [29].

Other membrane proteins and markers

FAP: (fibroblast activation protein)

FAP is a cell surface-bound protease of the prolyl

oligopeptidase gene family expressed at sites of tissue

remodeling. FAP mRNA and immunoreactivity were

detected in cirrhotic, but not normal human livers. FAP

colocalized with a-SMA in vivo and in isolated HSCs

in vitro [42]. It was suggested that FAP expression was

related to the severity of liver fibrosis [90].

PDGFRb (plate-derived growth factor receptor b)

The PDGF receptor was the first membrane receptor

identified on HSCs. Human stellate cells contain high

levels of both PDGF a- and b-receptors, whereas rat cells
contain predominantly the PDGF b-receptor
[38, 43, 91–93]. PDGFRb expression was identified in both

quiescent and activated HSCs in rodents [91, 94, 95]. In

cirrhotic human liver, PDGFRb expression was markedly

increased [28]. Using precision-cut liver slices, PDGFRb
expression was observed in fibrotic septa of cirrhotic liver

before culture and was maintained after culture [56].

PDGFRb mRNA was also detected in hHSCs grown from

human liver tissue explants [38], and could be used as an

activated HSC marker [84].

J Gastroenterol (2018) 53:6–17 11

123



B7-H1 (PDL1 or programmed death ligand-1)

HSC expresses the co-stimulatory molecule on activated

but not resting HSCs [96].

SYN (synaptophysin)

This neural marker was present in perisinusoidal HSCs in

human normal liver biopsies, and increased in pathological

conditions such as chronic biliary disease and chronic

hepatitis C [69, 97, 98].

ABCRYS (alpha B-crystallin)

In normal and cirrhotic human livers, perisinusoidally

located, stellate-shaped cells were stained positive for

ABCRYS [61, 69, 71]. Cultured human HSCs, isolated

from normal donor livers, were also shown positive

ABCRYS immunoreactivity [71].

Human hepatic stellate cell lines (Table 2)

There are obvious disadvantages in obtaining and usage of

primary HSCs, particularly primary human HSCs, such as

the heterogeneity of isolated cell populations and cellular

characteristics, limited supply, considerable variations of

cell preparation in different laboratories, as well as the

isolation equipment and techniques requirements.

Immortalized HSC lines were established and have been

used in a wide range of research. These immortalized cell

lines provide unlimited resource supply, homogeneity, and

are suitable for genetic manipulation studies. They reca-

pitulate many activated HSC features, and can serve as a

useful tool for mechanistic investigation of HSC function

in hepatic fibrosis and liver pathophysiological processes.

The immortalized HSC lines currently in use have been

generated from primary HSC through spontaneous

immortalization during long-term culture, or by transfor-

mation with the simian virus 40 large T-antigen (SV40T),

or ectopic expression of human telomerase reverse tran-

scriptase (TERT). Notably, none of the published cell lines

are reported to be tumorigenic. Considering these cells are

‘genetically modified’, careful evaluation of the reported

studies is always warranted [18, 99].

The LI90 line

The LI90 cell line is the first reported human HSC line

derived from a human hepatic epithelioid hemangioen-

dothelioma [100]. LI90 cells express a-SMA, vimentin,

collagen types I, III, IV, V, and VI, fibronectin, laminin,

and MMPs [101]. They are desmin negative and do not

express endothelial or monocyte/macrophage-lineage

markers. When exposed to medium supplemented with

retinoids, LI90 cells accumulate vitamin A-containing lipid

droplets [100].

Table 2 Characteristics of human hepatic stellate cell lines

Human

HSC line

name

Derivation resource Derivation method Expression markers Transition to

quiescent

phenotype

LI90 Human hepatic

epithelioid

hemangioendothelioma

Outgrowth from the diseased

tissue

a-SMA, vimentin, collagen types I, III, IV, V,

and VI, fibronectin, laminin and MMPs

Yes

TWNT-1

TWNT-4

LI90 cell line Retrovirally induced human

telomerase reverse

transcriptase

Col1a1, HGF; PDGFRb, a-SMA, Col1a1 Yes

hTERT Normal human liver Retroviral expression of the

human telomerase reverse

transcriptase

PDGFRa and b, GFAP, Col1a1 and a-SMA,

etc.

Yes

LX-1 Normal human liver SV40 T antigen a-SMA, vimentin, GFAP, PDGFR-b, Ob-RL,

DDR2, MMP-2, TIMP-1, MT1-MMP,

neuronal genes

Yes

LX-2 Normal human liver Spontaneous immortalization in

low serum condition

Same as LX-1 Yes

GREF-X Cirrhotic human liver Polyoma virus large T antigen a-SMA, vimentin, collagen I, IV, V and VI,

fibronectin, laminin, MMP-2

Yes

HSC-Li Normal human liver Retrovirus SV40LT HGF, VEGF receptor 1, Col1a1, Col1a2, a-
SMA, PDGFR-b, vimentin, TGF-b1

Yes
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TWNT-1 and TWNT-4 cell line

The TWNT-1 [102, 103] and TWNT-4 [104] cell lines

were derived from retrovirally induced human telomerase

reverse transcriptase into the LI90 cell line, since the par-

ental LI90 cells were observed to enter replicative senes-

cence. TWNT-1 cells synthesized Col1a1, HGF, and could

uptake acetylated low-density lipoproteins, and TWNT-4

expressed PDGFRb, a-SMA, Col1a1.

hTERT HSC line

Schnabl et al. described a cell line immortalized by ectopic

expression of the human telomerase reverse transcriptase

(hTERT) gene in primary HSCs isolated from surgical

specimens of normal liver. Extensive characterization of

gene and protein expression revealed that this cell line has

a similar gene expression profile as the activated human

HSC including PDGFRa and b, GFAP, collagen1a1, and a-
SMA [105, 106]. Importantly, this cell line undergoes

transition to quiescent status when cultured in a basement

membrane-like matrix.

LX-1 and LX-2

LX-1 and LX-2 are the most utilized human HSC lines.

LX-1 was generated by transformation with SV40 T anti-

gen, and LX-2 was obtained through spontaneous immor-

talization in low serum culture [107]. Both cell lines

express a-SMA, vimentin, GFAP, PDGFRb, discoidin

domain receptor 2 (DDR2), and leptin receptor OB-RL.

Both cell lines also express matrix remodeling factors,

including MMP-2, TIMP-1, TIMP-2, MT1-MMP, and

multiple neuronal genes. Both cell lines express mRNA for

procollagen 1a1 and HSP47, and they retain key features of
HSC such as accumulating retinol and converting it to

retinyl ester [26, 108–110].

GREF-X

This cell line was established by immortalizing human

liver myofibroblasts, obtained from explants of human liver

and transfected with a plasmid containing the coding

sequencing of polyoma virus large T antigen expressed

under the control of the early promoter of cytomegalovirus

(CMV) [111]. GREX-X cells stain positive for a-SMA and

vimentin, and express collagen types I, IV, V, and VI,

fibronectin, and laminin, and secrete MMP-2. Importantly,

GREF-X cells are able to take up and esterify retinol, and

respond to TGFb1 [111].

HSC-Li

Recently, a human HSC line was established by immor-

talizing the primary human HSCs isolated from surgical

specimen of adult liver donors using the simian virus 40

large T antigen (SV40LT) for application in a co-culture

system with immortalized human hepatocytes in vitro

[112]. HSC-Li cells were longitudinally spindle-like and

contained fat droplets in their cytoplasm as observed under

electron microscopy. It expresses mRNAs for hepatocyte

growth factor (HGF), VEGF receptor 1 (Flt-1), Col1a1,
and Col1a2, and positive for a-SMA, PDGFRb, and

vimentin proteins.

All of these cell lines should be categorized as myofi-

broblast-like cells since they contain few or no lipid dro-

plets, express a-SMA, and synthesize collagen type I and

fibronectin.

Conclusions

In the normal liver, HSCs comprise 5–8% of total rat liver

cells [113]. In mouse liver, HSCs comprise a population of

8–10% of total liver cells, but rapidly expand in response to

chronic fibrogenic injury corresponding to * 15% of total

liver cells [114]. Pathogenic mechanisms responsible for

development of hepatic fibrosis and liver failure are poorly

understood. Newer studies are showing that there might be

differences in pathways that are involved in hepatic fibrosis

that are etiology dependent. For example, HSCs are iden-

tified as a major source of myofibroblasts in hepatotoxic-

induced liver fibrosis, such as alcohol or CCl4. Following

chronic injury, HSCs activate into myofibroblast-like cells,

acquiring contractile, pro-inflammatory, and fibrogenic

properties. They have also been shown to inactivate and

acquire a quiescent-like phenotype, which might help with

regression of liver fibrosis [114, 115]. As well, blockage of

certain proteins in HSC activation pathways might prove to

have therapeutic implication in human diseases

[98, 116–118]. Mouse model studies and advanced HSC

isolation techniques have contributed to the elucidation of

this cell’s functions. However, species-differences are

critical to translational research. Protein expression pat-

terns of normal and activated HSCs are not identical among

species, which imposes challenges on the translational

research, and therefore it is imperative to develop tools and

techniques for investigating human HSCs to confirm and

extend studies in rodent models.
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