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Abstract The biological characteristics of cancers depend

mostly on genetic alterations in the cancer cells of individuals.

Gastric cancers show a high frequency of DNA aneuploidy, a

phenotype of chromosomal instability. Compared to diploid

tumors, gastric carcinomas with aneuploidy have been shown

to have high proliferative activity and high metastatic or

invasive potential; these characteristics lead to a poor prog-

nosis. It has been suggested that an abnormal spindle assembly

checkpoint is involved in DNA aneuploidy, but the underlying

mechanism is still unclear. This review, in order to determine

whether gastric carcinomas that display aneuploidy are asso-

ciated with a poorer prognosis than diploid tumors, and to

discuss the biological mechanisms that induce aneuploidy,

summarizes the results of studies on DNA ploidy in gastric

cancer published in the English literature. Analysis of DNA

ploidy in gastric cancer may provide clinically useful infor-

mation from diagnostic, therapeutic, and prognostic stand-

points. Further investigations may be needed to clarify the

relationship between chromosome instability and DNA ploidy.
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Introduction

Gastric cancer is one of the most common causes of death

among patients with malignant diseases around the world.

DNA aneuploidy is one of the most frequent genetic

aberrations in gastric cancer. However, the molecular

mechanisms and roles of DNA aneuploidy are controver-

sial topics. Because fresh biopsy samples or resected

specimens can be obtained from gastric cancers, various

genetic analyses have been conducted on samples collected

worldwide. Gastric cancer is a chronic proliferative disease

with multiple genetic and epigenetic alterations [1, 2]. This

review summarizes the genetic and chromosomal altera-

tions that have been found in gastric cancer. We focus on

aneuploidy in particular, give an outline of the mechanisms

involved in the development of aneuploidy, and discuss the

significance and future of research on DNA aneuploidy in

gastric cancer.

Genetic alterations in gastric cancer

Multiple genetic and epigenetic alterations in oncogenes,

tumor suppressor genes, cell-cycle regulators, cell adhesion

molecules, DNA repair genes, genetic instability factors, and

telomerase activation are implicated in the multistep process

of gastric carcinogenesis. The specific combination of alter-

ations differs in the 2 histological types of gastric cancer,

suggesting that intestinal-type and diffuse-type carcinomas

have distinct carcinogenetic pathways. Chromosomal insta-

bility (CIN); in particular, loss of heterozygosity (LOH),

genomic amplifications, and DNA aneuploidy, are frequently

observed in intestinal-type gastric carcinoma [3, 4]. Numeri-

cal abnormalities in specific chromosomes have been reported

for chromosomes 1, 7, 8, 9, 17, 20, X, and Y in gastric tumors

[5]. Although the relationship between the numerical abnor-

mality in each chromosome and gastric carcinogenesis has not

been elucidated, several reports have demonstrated that

aneuploidy is related to cancer progression. Alterations in
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chromosome 17 have been shown to be related to tumor

progression and malignant potential in primary gastric cancer

[6], and numerical abnormalities in chromosomes 3, 10, 11,

12, 17, and Y have also been shown to cause dramatic dif-

ferences in outcomes [7]. Wu et al. [8], in a comparative

genomic hybridization analysis, reported that frequent

abnormalities were found in advanced cancers, including

gains on the 8q chromosomal arm and losses on the 16q

chromosomal arm. Other combinations of gains and losses

have also been reported [9]. LOH is the deletion of one allele

among paired chromosomes. LOH on chromosome 6 could be

associated with an unfavorable prognosis [10]. Simultaneous

alteration showing LOH on chromosome 16q and gains on 8q

was also reported to result in poor outcomes [11].

Tumor suppressor gene mutations or LOH have been

reported in over half of all human cancers, and they appear

to occur in the early stages of cancer, indicating the

important role that such mutations may play in the carci-

nogenesis of various organs [12]. LOH of the gene

encoding phosphate and tensin homolog (PTEN) was

observed in 17.1% of patients diagnosed with gastric can-

cer in our previous analysis [13]. p53 mutations were also

found in more than 20% of gastric cancer samples,

accompanied by LOH [12]. Genetic instability has long

been considered an integral component of human neopla-

sias. In a small fraction of tumors, mismatch repair (MMR)

deficiency leads to microsatellite instability (MSI) at the

nucleotide sequence level [14]. In other tumors, an

abnormal chromosome number (aneuploidy) has suggested

genomic instability, but the nature and magnitude of the

postulated instability are still matters of conjecture [15].

MSI is manifested as length variation in microsatellite

sequences caused by MMR gene deficiency; MSI is found

in around 20% of gastric cancer patients [16–20]. Gastric

cancer with high-frequency MSI (MSI-H) represents a

well-defined subset of carcinomas showing distinctive

clinicopathological features. In colon cancer, tumors with

MSI-H are characteristic of hereditary nonpolyposis colo-

rectal cancer syndrome, which, in the majority of cases, is

associated with an early age of onset and is caused by

germline mutations in one of the MMR genes [21–24]. In

contrast, the MSI-H phenotype in gastric cancer is pre-

dominantly caused by epigenetic hypermethylation of the

hMLH1 MMR gene rather than being caused by germline

mutations in one of the MMR genes [14, 25–27]. Aneu-

ploidy is known to be associated with non-MSI tumors in

both colon cancer and gastric cancer [28–31].

What is DNA aneuploidy?

DNA aneuploidy is a state in which cells have an abnormal

number of chromosomes. Usually, CIN has been divided

into numerical CIN and structural CIN forms. Numerical

CIN includes DNA amplification and an abnormal number

of chromosomes, and structural CIN includes DNA trans-

location and LOH. The term ‘‘DNA aneuploidy’’ means an

abnormal number of chromosomes, but recently the term

has been used to indicate both forms of CIN in a wide sense

(Table 1). More than a century ago, David Paul Hansemann

observed that cancer cells generally had an abnormal

number of chromosomes [32]. In 1997, Lengauer et al. [15]

reported that DNA aneuploidy was seen in 85% of colo-

rectal cancers. This form of CIN is thought to reflect a

continuing cellular defect that persists throughout the

lifetime of the cancer cell and is independent of MSI, a

recessive trait [15]. DNA aneuploidy is an important phe-

notypic characteristic of cancer cells; however, whether or

not DNA aneuploidy may be a cause of carcinogenesis is

still controversial. Recent evidence indicates that persistent

missegregation of chromosomes results in gains and losses

of chromosomes and may be an important cause of aneu-

ploidy. This form of chromosome instability may contrib-

ute to tumor development and progression by facilitating

LOH and the phenotypic expression of mutated tumor

suppressor genes by favoring polysomy of chromosomes

that harbor oncogenes [33]. Single nucleotide polymor-

phism array techniques can reveal all chromosomal alter-

ations. DNA from aneuploid tumors shows alterations in

almost all chromosomes, including DNA amplification and

LOH (Fig. 1). Kawaguchi et al. [34] have reported that

DNA aneuploidy is linked with gain of 8p23 and loss of

22q11 in gastric cancers. Gain or loss of specific chromo-

somal regions might have enough of an impact to generate

the aneuploid phenotype. DNA aneuploidy is less frequent

in early gastric cancer. Therefore, previous studies of early

gastric cancers suggested that in pure diploid superficial

carcinomas, genetic instability might lead to a cell clone

that has undergone a ploidy shift, becoming more aggres-

sive [35–37]. However, DNA ploidy in advanced gastric

carcinoma is less heterogeneous than that in early gastric

cancer. These observations suggest that gastric cancer

tumor progression leads to the development of a dominant

and more aggressive aneuploid cell clone [37]. Sasaki et al.

Table 1 Chromosomal instability

Numerical chromosomal instability

DNA amplification

Abnormal number of chromosome (loss)

Abnormal number of chromosome (gain); DNA aneuploidy

Structural chromosomal instability

Partial duplication

Partial deletion; Loss of heterozygosity

Inversion

DNA translocation
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[38] have shown that there is heterogeneity even in intra-

mural gastric cancer. In addition, these results support the

notion that aneuploid cells are generated from tumor

stem cells, which selectively expand as aggressive tumors

[39, 40].

Gastric cancer and DNA aneuploidy

DNA aneuploidy in gastric cancer has been reported

since the 1980s [41]. Well-differentiated and moderately

differentiated carcinomas display aneuploid patterns more

frequently than poorly differentiated tumors [4, 42–45],

though some reports have not agreed with that conclusion

[36, 46].

Adenocarcinoma of the proximal portion of the stomach

[gastroesophageal (GE) junction and cardia] is increasing

in incidence. DNA aneuploidy is more common in GE-

cardia tumors than in body-antrum tumors [47], and tumors

displaying DNA aneuploidy have a greater proliferative

activity, correlating with the Ki-67 index [44, 48]. Gastric

adenoma, chronic gastritis, and intestinal metaplasia have

also been investigated using flow cytometry [49], and these

conditions show frequent chromosomal alterations [3],

while none of the normal mucosae show aneuploidy [50].

DNA ploidy has also been reported in patients with pri-

mary gastric lymphoma. However, the impact of DNA

ploidy on survival is still controversial [51, 52].

Is DNA aneuploidy a prognostic factor for gastric

cancer?

Aneuploidy, as detected by flow cytometry, has been

demonstrated as a useful prognostic marker during the

progression of gastric carcinogenesis, due to the high

proliferative activity associated with these tumors, leading

to increased metastatic potential, poor prognosis, and

shorter survival rates than rates in patients with diploid

tumors [48, 53]. To date, numerous reports have been

published that demonstrate the importance of DNA aneu-

ploidy in gastric cancer (Table 2). Almost all of these

reports have shown that DNA aneuploidy is associated with

the prognosis of gastric cancer. However, the clinical

impact of aneuploidy is debatable [54]. DNA aneuploidy is

significantly correlated with lymph node metastasis, but not

with tumor penetration [48, 55–57]. Although their case

volume was low, Nesi et al. [58], in a prospective study,

showed that aneuploidy was a prognostic factor in gastric

cancer. Furthermore, even in multivariate analysis, DNA

ploidy has been shown to be a prognostic factor [51, 59,

60]. However, some reports have demonstrated that DNA

aneuploidy might be associated with a significantly shorter

survival only in patients with intestinal-type tumors [61] or

only in patients with diffuse-type cancer [62]. Taken

together, this evidence strongly supports the hypothesis

that aneuploidy is associated with the prognosis of gastric

cancer.

Molecular mechanisms of DNA aneuploidy in gastric

cancer

Defects in two distinct processes are considered to be the

main causes of aneuploidy; namely, a failure in the cen-

trosome-duplication cycle leading to multiple centrosomes,

and a dysregulation of the cell division control machinery

resulting in lagging chromosomes, mainly elicited by a

weakened or an over-activated mitotic checkpoint also

known as the spindle assembly checkpoint [63]. Figure 2

Fig. 1 Typical results of single

nucleotide polymorphism arrays

in gastric cancer. The left panel
shows the result of single

nucleotide polymorphism (SNP)

arrays of DNA from diploid

gastric cancers. The right panel
shows the result of SNP arrays

of DNA from aneuploid gastric

cancers. There are numerous

chromosomal changes in the left
panel
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shows the spindle checkpoint kinases and chromosomal

separation. This checkpoint is the mechanism that delays

the separation of sister chromatids until all the chromo-

some kinetochores are correctly attached to the spindle.

BUB1 is a human homolog of the yeast mitotic checkpoint

gene that plays an important role in chromosome segrega-

tion. Mutations in BUB1 have not been found in gastric

cancer [64], but the protein encoded by BUB1, BUBR1, is

overexpressed in gastric cancer [65–68]. We studied the

expression of BUBR1 by immunohistochemistry in 181

gastric cancer samples. Ninety-one (50.3%) cases had high

expression of BUBR1, and those cases were significantly

correlated with the presence of DNA aneuploidy (P \ 0.05).

Also, high expression of BUBR1 was significantly correlated

with deep invasion, lymph node metastasis, liver metastasis,

and poor prognosis [65]. Transfection of gastric cancer cell

lines with full-length BUBR1 resulted in changes to the

ploidy pattern. BUBR1 forms a complex with Bub3, mitotic

arrest deficient 2 (Mad2), and cell division cycle 20 (CDC20)

at the spindle assembly checkpoint, thus inhibiting CDC20

activity [69]. In gastric cancer cells with high BUBR1

expression, the formation of this complex might be com-

promised, and the spindle assembly checkpoint may be

overridden, resulting in DNA aneuploidy. In contrast, the

overexpression of MAD2 in gastric cancer is not associated

with aneuploidy or with any of the disease’s clinicopatho-

logical characteristics [70]. However, mutations in the

MAD2 gene were reported in gastric cancer, and overex-

pression of mutant Mad2 in HeLa cells led to the appearance

of aneuploid cells [66]. We investigated the relationship

between Mad2 expression and aneuploidy. Aneuploidy in

gastric cancer was significantly correlated with high

expression of Mad2 protein (unpublished data), and Mad2

overexpression was found in gastric tumors harboring p53

mutations, indicating that p53 mutations may cause the

upregulation of Mad2 and result in the generation of aneu-

ploid cells within the tumor. The tumor-amplified kinase

BTAK was cloned from breast cancer cells and mapped on

chromosome 20q13 as a target gene for this amplification in

human breast cancers. Transfection of BTAK in near-diploid

gastric cancers induced the formation of another aneuploid

cell population as well [71].

Helicobacter pylori infection

H. pylori infections have been reported to be associated

with changes in DNA content and cellular proliferative

Table 2 DNA aneuploidy and

patient prognosis

ND not determined
a Early gastric carcinomas (T1)

were selected

Year Method Number

of cases

Rate of

aneuploidy

(%)

Relationship with

prognosis

References

1988 Microspectophotometry 254 24 Poor prognosis [91, 92]

1989 Flow cytometry 70 61 Poor prognosis [93]

1990 Flow cytometry 117 30.8 Poor prognosis [55]

1990 Flow cytometry 493 53 Poor prognosis [94]

1991 Flow cytometry 125 34 Poor prognosis [95]

1991 Microspectophotometry 66 96 Poor prognosis [96]

1993 Flow cytometry 74 43 Poor prognosis [97]

1993 Flow cytometry 84a 39 ND [35]

1994 Flow cytometry 104 36.5 Not prognostic [57]

1995 Flow cytometry 63 44 Poor prognosis [98]

1995 Flow cytometry 97 – Poor prognosis [99]

1995 Flow cytometry 270 62.9 Poor prognosis [89]

1996 Flow cytometry 216 – Poor prognosis [56]

1996 Flow cytometry 52 42 Poor prognosis [100]

1996 Flow cytometry 127 84.3 High rate in advanced cancer [101]

1997 Flow cytometry 161 43.5 Poor prognosis [102]

1997 Flow cytometry 130 – Poor prognosis [60]

1997 Flow cytometry 289 36 Poor prognosis only in

diffuse-type cancer

[62]

1998 Flow cytometry 66 41 Poor prognosis [103]

1998 Flow cytometry 76 62 Poor prognosis [59]

2000 Laser scanning cytometry 183 56 High rate in advanced cancer [104]

2001 Flow cytometry 270 35.9 Not prognostic [105]
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activity [72, 73]. Chronic H. pylori infections were shown

to be responsible for genomic instability in a subset of

cases of H. pylori-positive chronic atrophic gastritis, and

eradication of H. pylori infections might reverse genomic

instability [74, 75]. Aneuploidy levels increased incre-

mentally across the histological series from patients with

gastritis to those with H. pylori-positive gastritis and those

with atrophy/intestinal metaplasia (IM) [76, 77]. Methyla-

tion at E-cadherin was detected in patients with H. pylori

infections, and H. pylori eradication therapy could reverse

methylation in patients with chronic gastritis [78]. In dif-

fuse gastric carcinoma, despite common E-cadherin gene

(CDH1) mutations, CDH1 LOH was absent from most

tumors [79–81]. CDH1 promoter methylation was found to

be the second hit in more than half of the sporadic diffuse

gastric carcinoma cases harboring CDH1 mutations [79].

E-cadherin methylation is an early event in gastric carci-

nogenesis and can be initiated by H. pylori infection.

H. pylori eradication therapy could reverse the methylation

[78, 82]. The relationship between p16 methylation and

H. pylori infections in precancerous gastric lesions was

also investigated in a population-based study in China. The

study showed that p16 methylation was significantly

associated with H. pylori infections in precancerous gastric

lesions [83].

Relationship between p53 mutations and DNA

aneuploidy

Tumor-suppressor proteins such as p53, APC, and RB have

been described to combine key regulatory functions of

signaling pathways with protection from CIN [63]. Aneu-

ploidy and inactivation of p53 frequently coincide in

human cancers, but increasing evidence has shown that

loss of p53 by itself is not the primary cause of aneuploidy

[84]. The relationship between DNA ploidy and p53

mutations is still controversial [85]. 17p (p53) LOH and

increased 4N or aneuploidy are closely associated with the

early stages of gastric carcinogenesis [86]. A significant

association was also found between increased 4N or

aneuploidy and 17p (p53) LOH in all precancerous gastric

lesions. However, no association between H. pylori

infection and 17p (p53) LOH or increased 4N/aneuploidy

in precancerous gastric lesions was reported. Recent

analysis showed that LOH without copy number changes

at the p53 locus was observed in p53 mutant esophageal

squamous cell carcinomas. This copy-neutral LOH might

be the major mechanism for inactivation of the intact allele

in esophageal squamous cell carcinogenesis associated

with p53 mutations [87]. Our data suggest that copy-neu-

tral LOH, occurring because of CIN, might be the major

mechanism for inactivation of the intact allele in esopha-

geal squamous cell carcinogenesis associated with p53

mutations. Crypt isolation has enabled the separation of

tumor tissues from stromal tissues, and thus, the DNA

content in tumor cells can be accurately assessed [88, 89].

Furthermore, S-phase fractions were found to be more

useful indicators than DNA aneuploidy if the crypt isola-

tion method was used [88]. Another report clearly showed

that diploid tumors generally did not display LOH or MSI,

whereas, using the crypt isolation technique, it was found

that aneuploid and multiploid tumors were associated with

LOH and MSI [28].

Future perspectives

DNA aneuploidy is associated with the carcinogenesis and

prognosis of gastric cancer. Therefore, there has been

considerable interest in targeting cell-cycle checkpoints,

particularly in emerging and alternative anticancer strate-

gies [90]. Several molecules that inhibit cell-cycle kinases

have been developed and clinically screened as potential

anticancer agents, but none of these agents has been

approved for commercial use [90]. The development of

selection markers that lead to the choice of appropriate

therapies for patients will be the primary focus of future

research. Such development may lead to new treatments for

gastric cancer in the future.

Fig. 2 Spindle checkpoint kinases and chromosomal separation. a In

the mitotic stage, the spindle extends from both spindle poles to the

kinetochore and adds tension to sister chromatids toward the 2 poles.

If the tension applied to the sister chromatids is lacking in

prometaphase, the mitotic checkpoint complex (MCC), formed by

mitotic arrest deficient 2 (Mad2)-cell division cycle 20 (CDC20)-

BUB-BUBR1, inactivates CDC20 and obstructs the separation of the

chromosomes. b When there is equal tension, the MCC is removed,

and CDC is activated. c Activated CDC20 stimulates the anaphase-

promoting complex/cyclosome (APC/C), and activated APC/C poly-

ubiquitylates and degrades securin, which inactivates separase.

d Finally, separase cuts cohesin, which connects sister chromatids,

and the chromosome is separated
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