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Iron is a ubiquitous element in the environment and 
plays an important role in several biological conditions. 
It is an essential element for all living organisms, be-
cause it is required in several metabolic processes, in-
cluding DNA synthesis, oxygen transport, and energy 
production.1 However, excess iron can be harmful to the 
organism, in part through the generation of free radi-
cals. Excess divalent iron generates free radicals, mainly 
via Fenton chemistry,2 that is, the formation of highly 
reactive hydroxyl radicals through its reaction with 
H2O2. Recent works have demonstrated the molecular 
mechanisms of iron metabolism (see Fig. 1 for a map of 
iron metabolism). Dietary trivalent iron is reduced to 
divalent iron by the duodenal cytochrome b.3 Divalent 
iron is absorbed by intestinal cells via the divalent metal 
transporter (DMT1)4 in the brush-border membrane, 
and then transferred to the portal blood fl ow via ferro-
portin 1 (FP1)5 in the basolateral surface. It is oxidized 
to trivalent iron by hephaestin6 on the basolateral sur-
face. Trivalent iron binds to transferrin and then is 
transported to the liver and bone marrow. On the he-
patocyte membrane, transferrin receptor (TfR) 17,8 and 
TfR29 bind to two diferric transferrin molecules, leading 
to internalization of the complex into endosomes. Tri-
valent iron is released from the complex in the endo-
some at low pH. It is reduced to divalent iron in the 
endosome, and then this divalent iron is absorbed by 
hepatocytes via DMT1. Hydroxyl radicals are formed 
via Fenton chemistry. Excess trivalent iron is stored as 
ferritin in the cytoplasm or as hemosiderin in lysosomes. 
Iron homeostasis is tightly regulated in all organisms. 
The peptide hormone hepcidin, which plays a central 
role in the regulation of iron homeostasis, derives from 
hepatocytes; hepcidin is believed to be the central iron 
sensor in mammals.10–12 Hepcidin binds to FP1 and in-
hibits cellular iron effl ux by inducing internalization of 

FP1.13 Iron-induced oxidative stress may be negligible 
in healthy persons, but it can induce organ damage in 
some sensitive hosts.

Some patients with chronic hepatitis (CH), regardless 
of etiology,14 have iron overload, particularly those 
with chronic hepatitis C (CHC).15 Electron microscopic 
studies have shown that most patients with CHC have 
iron-induced oxidative stress, as demonstrated by the 
presence of lysosomal iron stores detected by X-ray 
microanalyzer.16 An iron-rich diet provokes biochemi-
cal and pathological exacerbation of liver injury in 
chronic hepatitis C virus (HCV)-infected chimpanzees.17 
In line with this fi nding, iron reduction therapy by phle-
botomy18,19 or dietary iron restriction20,21 has been found 
to reduce hepatic infl ammation and to lower amino-
transferase levels in CHC patients.

What are the molecular mechanisms underlying he-
patic iron overload in CHC patients? We investigated 
the expression of TfR1, TfR2, FP1, and hepcidin mes-
senger RNA in the livers of patients with chronic hepa-
titis B (CHB), CHC, and controls. TfR2 was higher in 
the livers of CHC patients that in those of CHB pa-
tients.22 Hepcidin was lower in CHC patients than in 
CHB patients.23 Hepcidin and TfR2 may play a role 
in the pathogenesis of iron overload in CHC patients. 
Decreased hepcidin levels and increased TfR2 levels 
contribute to delivery of iron to hepatocytes from mac-
rophage iron stores and intestinal mucosa. Iron homeo-
stasis is disturbed in CHC patients

Hydroxyl radicals cause accumulation of 8-hydroxy-
2′-deoxyguanosine (8-OHdG)24 during DNA and lipid 
peroxidation15,25 in the cytoplasm of hepatocytes. This is 
believed to contribute to the pathogenesis of carcino-
genesis and liver injury progression in CHC patients. 
Nitric oxide is also involved in the process of chronic 
infl ammation-mediated carcinogenesis.26 Nucleic acid 
damage by reactive nitrogen and oxygen species 
may also constitute important causative factor of 
HCV-related hepatocarcinogenesis. We measured 8-
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nitroguanine and 8-OHdG in the livers of CHC patients 
before and after interferon therapy.27 We found strong 
immunoreactivity of 8-nitroguanine and 8-OHdG in the 
livers from CHC patients (Fig. 2). 8-Nitroguanine is 
extremely unstable on DNA, and depurination easily 
occurs, leading to formation of apurinic sites.28 Apurinic 
sites and 8-OHdG on DNA can cause G to T transver-
sions.29 Indeed, mutations of p53, β catenin, and other proto-
oncogenes and tumor suppressor genes are frequently 
observed in HCV-associated hepatocellular carcinoma 
(HCC).30 Recent studies have also demonstrated a caus-

ative link between moderate iron overload by iron sup-
plementation and HCC in mice transgenically expressing 
the full HCV polyprotein.31 Hepatic iron accumulation, 
by feeding a diet containing carbonyl iron, induces mi-
tochondrial alterations, hepatic steatosis, fatty acid oxi-
dation, formation of 8-OHdG, and tumor development 
in mice. This study demonstrated the existence of a 
critical interaction between HCV proteins and iron in 
the development of HCV-related HCC.31

As a result of the publication of a multicenter, pro-
spective, randomized, controlled clinical trial showing 

Fe2+

Fe3+

Fe2+ Fe2+ Fe3+

Fe3+

Fe3+

Duodenum

Enterocyte

ferritin

Fe2+

Apotransferrin

Portal Blood Flow (Plasma)

Hepatocyte

Fe3+Transferrin /

Ferritin

Transferrin
receptor 1, 2

( TfR 1, TfR2 )

FP 1 

Divalent metal
transporter 1

( DMT 1 )

Ferroportin 1
( FP 1 )

Hepcidin
25aa

Hephaestin

Duodenal cytochrome b (Dcytb)

Fe2+

Fe3+

Liver

Fe2+

Suppress

Macrophage

DMT 1 

Fe3+
EndosomeFe2+

Hemosiderin
•OH

Fig. 1. Metabolic map of iron

Fig. 2. 8-Nitroguanine and 8-hydroxy-2′-deoxyguanosine (8-OHdG) accumulation in the liver tissue from a chronic hepatitis C 
patient. 8-Nitroguanine immunoreactivity is strongly observed in the nuclei and weakly in the cytoplasm of hepatocytes, whereas 
8-OHdG immunoreactivity is observed mainly in the nuclei (arrow 1, hepatocyte; arrow 2, lymphocyte; and arrow 3, Kupffer 
cell). Scale bar = 100 µm
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the usefulness of phlebotomy for the treatment of CHC 
patients,32 Japanese national health insurance started 
covering phlebotomy for CHC patients in April 2006. 
Iron reduction therapy by phlebotomy has become the 
standard treatment for CHC patients in Japan, and it 
has been reported to defi nitely reduce lipid peroxida-
tion,33 hepatic content of 8-OHdG,24 and oxidative stress 
in CHC patients. The study by Tanaka et al.34 in this is-
sue of the Journal of Gastroenterology shows the effi -
cacy of this therapy for compensated HCV-related liver 
cirrhosis (LC-C) patients. The authors demonstrate that 
iron reduction therapy by phlebotomy and dietary iron 
restriction signifi cantly reduces serum aminotransferase 
and α-fetoprotein (AFP) levels in LC-C patients. High 
AFP is a major risk factor for the development of 
HCC.35 Therefore, decreasing serum AFP levels by iron 
reduction therapy may be an important means of pre-
venting the development of HCV-related HCC. The 
authors also show adverse effects of iron reduction 
therapy. Two of 22 LC-C patients developed ascites, 
probably owing to decreased serum albumin levels. 
Tanaka et al.34 believe that iron reduction therapy 
should be performed only in patients with a serum al-
bumin concentration of more than 3.6 g/dl. To avoid 
adverse effects in LC-C patients treated with phleboto-
my, the reduction of blood volume and interval between 
phlebotomies should be taken into account in patients 
with hypoalbuminemia. Small-volume (100-ml) phle-
botomies should be repeated monthly. Clinical applica-
tion of erythrocytapheresis to decompensated LC-C 
patients should also be considered as an alternative 
therapy to deplete excessive iron accumulation.

Iron homeostasis in patients with HCV-related 
chronic liver diseases is unbalanced. Therefore, patients 
with this disease should avoid ingestion of foods with 
excessive iron content21 or commercially available high-
energy “healthy foods”36 rich in protein and vitamins, 
as reported by Patek et al.37 Dietary iron restriction20,21 
(an iron intake of 6 mg/day or less), an energy intake of 
30 kcal/kg per day, a protein intake of 1.1–1.2 g/kg per 
day, and 20% of energy derived from fat are recom-
mended for patients with HCV.
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