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its early stage?
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from an initial attack of chronic pancreatitis. The major-
ity are diagnosed several years later, when unequivocal 
evidence, such as pancreatic stones, an abnormal pan-
creatogram, and exocrine and endocrine insuffi ciency, 
appears (Fig. 1). The progression of the disease varies 
considerably among individuals.1–4 Some patients have 
a very long asymptomatic period, or never experience 
pain, while others have pancreatic stones at the initial 
attack of pain. It is not known why the progression of 
this disease is so variable. Clinically, alcohol is the lead-
ing cause of chronic pancreatitis. However, only a lim-
ited number of alcoholics (2%–3%) develop alcoholic 
pancreatitis.5 The high individual variability and low 
incidence of chronic pancreatitis strongly suggest that 
yet unidentifi ed genetic and environmental factors are 
important for the pathogenesis of this disease. It is ex-
pected that once the genetic predispositions are 
identifi ed, it may help in earlier recognition of chronic 
pancreatitis or patients at risk.

Pathogenesis of chronic pancreatitis

There are two major hypotheses for the pathogenesis of 
chronic pancreatitis: the “necrosis–fi brosis” and “pro-
tein plug” hypotheses (Fig. 2). The necrosis–fi brosis 
hypothesis is that chronic pancreatitis is the result of 
repeated episodes of acute pancreatitis.6 Sarles et al.,7 
on the other hand, have claimed that chronic pancrea-
titis begins within the lumen of the pancreatic ducts, that 
is, the formation of protein plugs and stones from pan-
creatic stone protein (PSP).8 Chronic contact of the 
stones with pancreatic duct cells produces epithelial 
damage, resulting in stenosis, cyst formation, and paren-
chymal atrophy distal to the obstructed ducts. Recent 
molecular and genetic evidence suggests that both path-
ways can contribute to the pathogenesis of chronic 
pancreatitis and that the two theories are not mutually 
exclusive.

Diagnosis of chronic pancreatitis in its early stage is an 
extremely diffi cult task. If the genetic predispositions 
are identifi ed, it may help make possible the earlier 
diagnosis of chronic pancreatitis or the detection of 
patients at risk. There are two major hypotheses about 
the pathogenesis of chronic pancreatitis known as the 
“necrosis–fi brosis” and “pancreatic stone protein” hy-
potheses. Recent molecular and genetic evidence sug-
gests that both pathways contribute to the pathogenesis 
of chronic pancreatitis. Chronic pancreatitis may be 
caused by either increased proteolytic activity [the cati-
onic trypsinogen (PRSS1) gene] or decreased protease 
inhibition (the pancreatic secretory trypsin inhibitor 
(PSTI) gene]. The impaired pancreatic duct function 
[cystic fi brosis transmembrane conductance regulator 
(CFTR) gene] may also be involved in the pathogenesis 
of the disease. Except for PRSS1 mutations, the known 
genetic risk for chronic pancreatitis is not high. The high 
individual variability and low incidence of chronic 
pancreatitis suggest that yet unidentifi ed genetic and 
environmental factors are important. Further genetic 
analysis is necessary for understanding the pathogenesis 
of chronic pancreatitis, which may be helpful for the 
earlier diagnosis of the juvenile- or young-onset 
disease.
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Introduction

Diagnosis of chronic pancreatitis in its early stage is an 
extremely diffi cult task. When a patient visits a clinic for 
the fi rst time, we cannot distinguish acute pancreatitis 
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Acinar factors

The discovery of the cationic trypsinogen (PRSS1) 
gene as a cause of hereditary pancreatitis favors the 
necrosis–fi brosis hypothesis.9 The R122H mutation, for 
example, eliminates a key hydrolysis site of trypsin, 
which is part of the trypsin-inactivation mechanism. 
Once activated, the mutant trypsin remains active with-
in the pancreas, activates all other digestive enzymes, 
and leads to autodigestion and infl ammation, that is, 
acute pancreatitis. Chronic pancreatitis is commonly 

seen in these patients, which suggests that recurrent 
acute pancreatitis may lead to chronic pancreatitis.

Witt et al.10 have found a strong association of muta-
tions in the pancreatic secretory trypsin inhibitor (PSTI) 
or serine protease inhibitor Kazal type 1 (SPINK1) 
gene with idiopathic chronic pancreatitis in children and 
adolescents. However, SPINK1 mutations are common 
in the normal population, and the chronic pancreatitis 
risk associated with the N34S mutation is not high 
(∼1%), suggesting that these mutations are disease 
modifi ers.11 Interestingly the G191R mutation in the 

Fig. 1. Progression and diagnosis of 
chronic pancreatitis by imaging and 
functional studies. US, ultrasound; 
EUS, endoscopic ultrasonography; 
CT, computed tomography; ERCP, 
endoscopic retrograde cholangiopan-
creatography; MRCP, magnetic reso-
nance cholangiopancreatography; 
BT-PABA, N-benzoyl-l-tyrosyl-p-
aminobenzoic acid; ELT1, elastase 1; 
OGTT, oral glucose tolerance test; 
CCK, cholecystokinin

Fig. 2. Pathogenesis of chronic 
pancreatitis. Both acinar and ductal 
factors and their related genes are 
involved
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PRSS2 gene, which renders the mutant anionic trypsin 
sensitive to autolysis by introducing a new tryptic cleav-
age site, appears to protect the carrier against chronic 
pancreatitis.12 Thus, chronic pancreatitis may be caused 
by either increased proteolytic activity or decreased 
protease inhibition. As the majority of patients with idi-
opathic or hereditary chronic pancreatitis do not show 
a PSTI or PRSS1 mutation, other genetic factors must 
also be involved.

Ductal factors

An association of the cystic fi brosis transmembrane 
conductance regulator (CFTR) gene with chronic pan-
creatitis13,14 strongly suggests that impaired pancreatic 
duct function may also be involved in the pathogenesis 
of this disease. The CFTR gene encodes a 1480-amino 
acid chloride-channel protein that is regulated by cAMP. 
Bicarbonate ion is secreted into the duct lumen by the 
action of CFTR in the apical membranes.15 Water is 
transported into the lumen via the AQP1 water channel 
following the osmotic gradient created by bicarbonate 
transport.16 In the absence of CFTR, the pancreatic duct 
cells cannot secrete fl uid and bicarbonate and hence 
cystic fi brosis (CF) of the pancreas develops.

As in CF, plug formation within the intra- and inter-
lobular ducts is one of the earliest fi ndings in chronic 
pancreatitis. PSP, also known as the regeneration (reg) 
protein,17 is the major component of the core protein of 
pancreatic stones as well as of the protein plugs.8,18 
Based on the assumption that PSP inhibits pancreatic 
stone formation, Sarles et al.19 proposed the renaming 
of PSP as “lithostathine.” Although later studies did not 
support his “lithostathine” hypothesis, the PSP/reg pro-
tein has a very unique character. After tryptic cleavage 
of the N-terminal undecapeptide, the resultant C-
terminal peptide of the PSP/reg protein, named pancre-
atic thread protein (PTP), rapidly polymerizes into 
insoluble fi brils at pH 5–9.20,21 The thread protein is 
highly resistant to a wide spectrum of proteases in pan-
creatic juice21 and thus contributes to protein plug for-
mation within the ducts. Upon intraductal activation of 
trypsinogen, decreased protease inhibition caused by 
PSTI mutations may facilitate conversion of the PSP/
reg protein to the insoluble PTP (Fig. 2).

It is not known exactly how the CFTR mutations lead 
to the development of chronic pancreatitis. A partial 
loss of CFTR function may reduce ductal fl uid secretion 
in the vicinity of acini and thus may increase the con-
centrations of enzymes and other proteins such as PSP/
reg protein. The elevated concentration of Ca2+ in pan-
creatic juice in the early stage of chronic pancreatitis, 
together with that of hexosamine,22,23 probably promotes 
the deposition of CaCO

3
 within and around the plugs.

Genetic aspects of chronic pancreatitis in the Japanese

The same PRSS1 (R122H and N29I) and PSTI muta-
tions (N34S and R67C) found in the white populations 
have been identifi ed in Japanese kindred with heredi-
tary pancreatitis24,25 and in patients with juvenile and 
familial chronic pancreatitis.26,27 As CF is extremely rare 
in Japan, CFTR mutations may not be related to Japa-
nese chronic pancreatitis. In an initial screening study, 
common CF-causing mutations were not identifi ed in 
either patients with chronic pancreatitis or control sub-
jects.28 However, non-CF causing mutations (Q1352H 
and R1453W) are highly associated with chronic pan-
creatitis. Furthermore, these mutations are on the same 
allele as the M470V variant, which has low (∼60%) in-
trinsic chloride channel activities.29 The Q1352H muta-
tion in the M470 background causes a 60%–80% 
reduction in CFTR-dependent Cl− currents and com-
pletely abolishes them in the M470V variant.30 There-
fore, as in whites, CFTR mutations/polymorphisms are 
likely to be associated with chronic pancreatitis in 
Japanese, although mutations may differ depending on 
ethnic origins.

Recurrent pancreatitis by protein plugs may lead to 
chronic pancreatitis

As discussed above, protein plugs are one of the earliest 
fi ndings in alcoholic chronic pancreatitis. There are sev-
eral reports that protein plug formation may be respon-
sible for recurrent pancreatitis in adolescence, which 
leads to histologically proven chronic pancreatitis with-
out calcifi cation of the plugs.31 Figure 3 illustrates test 
results for a 53-year-old man with alcoholic chronic pan-
creatitis. He consumed 75–110 g/day of ethanol for over 
30 years and had his fi rst acute pancreatitis attack at the 
age of 47. After several attacks of pain, he developed a 
cyst in the pancreatic head and a narrowing of the main 
pancreatic duct and dilatation of the distal duct. He 
underwent pylorus-preserving pancreatoduodenectomy. 
Although he had no X-ray-positive pancreatic stone, the 
histology showed chronic pancreatitis with visible pro-
tein plugs in the branches of the duct. They were com-
posed mainly of protein (>98%) and fatty acid calcium. 
He continued drinking after the operation and devel-
oped acute pancreatitis again (Fig. 3A). Magnetic reso-
nance cholangiopancreatography (MRCP) during the 
fi rst admission revealed a round defect near the orifi ce 
of the pancreas (Fig. 3B). The next MRCP was taken 4 
months later, during the second attack of acute pancrea-
titis. The orifi ce of the duct was completely obstructed, 
and the main pancreatic duct was dilated (Fig. 3C). Re-
current pain that continued after admission disappeared 
after intravenous administration of secretin. Four 
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months later, the dilatation of the main duct disap-
peared but a round defect remained within the duct 
(Fig. 3D). His genetic analysis revealed the R1453W 
mutation in the CFTR gene but none in the PSTI gene. 
Although the relationship of CFTR mutations and pro-
tein plug formation remains to be elucidated, the pro-
tein plugs appear to cause chronic pancreatitis after 
repeated attacks of acute pancreatitis.

Perpetual stimuli are necessary for the development of 
chronic pancreatitis

There are number of animal models of chronic pancrea-
titis, both spontaneous and drug-induced, but their pan-
creatic fi brosis appear to be different from that in 
humans.32 Pancreatic fi brosis, which is progressive and 
irreversible in humans, is usually transient in animal 
models and decreases after cessation of the chemicals. 
A complete ligation of the dog main pancreatic duct 
induces atrophy of the pancreas, while an incomplete 
one causes pancreatic stone formation and histology 
similar to that in human chronic pancreatitis.33 Decline 
in exocrine and endocrine function in this model is pro-
gressive, as in humans.34 Thus, these animal models tell 
us that perpetual stimuli, either chemical or mechanical, 
are necessary for the development of chronic pancrea-
titis. In humans, continued drinking is a necessary condi-
tion, though not suffi cient, for the development of 
alcoholic chronic pancreatitis. In addition, small but 

constant genetic propensities must be present, though 
the responsible genes have not been elucidated yet.

Genetic risk for chronic pancreatitis

In children and adolescents, in whom the infl uence of 
environmental factors is minimal, genetic factors prob-
ably play an important role in determining susceptibility 
to chronic pancreatitis and its progression. Among car-
rier individuals with the R122H or N29I mutation in the 
PRSS1 gene, approximately 80% develop acute pan-
creatitis before the age of 20 years, and of these, 40% 
may develop chronic pancreatitis. Assuming that the 
genetic risk is constant throughout life, the cumulative 
incidence of chronic pancreatitis in individuals with this 
type of genetic background follows curve A in Fig. 4. 
Environmental factors such as smoking and alcohol 
drinking may shift the curve to A’ by doubling the risk. 
However, about 20% of the carriers never develop pan-
creatitis throughout their lives,35 suggesting that inap-
propriate activation of trypsinogen within the pancreas 
is extremely rare in this subset of the population.

Judging from the incidence of chronic pancreatitis in 
various countries (4–10/100 000 persons), the genetic 
risk of chronic pancreatitis in the general population is 
very low (curve C in Fig. 4). Therefore, the majority of 
individuals never develop pancreatitis even if alcohol or 
smoking raises the risk (curve C’). Even among those 
who are carriers of PSIT or CFTR mutations, which 

A C

B D
Fig. 3. A Abdominal CT of a 53-
year-old man with alcoholic chronic 
pancreatitis who suffered a relapse of 
acute pancreatitis after pylorus-
preserving pancreatoduodenectomy. 
The pancreas was edematous with 
surrounding effusions. There was no 
calcifi cation in the pancreas. B MRCP 
obtained after recovery from the fi rst 
relapse (A). C MRCP obtained dur-
ing the second relapse (4 months af-
ter B). D MRCP obtained 4 months 
after the second relapse (C)
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increases the risk 50-fold (curve B) or 900-fold when 
both genes are affected,36 the majority never develop 
chronic pancreatitis. Still, although there is a strong as-
sociation of PSIT mutations with familial and juvenile 
chronic pancreatitis,10,11,27 the association of the N34S 
mutation with early disease onset may be weak or ab-
sent.37 Obviously the pathogenesis of chronic pancrea-
titis is multifactorial, and at the moment, we can only 
make a statistical inference regarding the risk of chronic 
pancreatitis. Further genetic analysis is necessary for 
understanding the pathogenesis of chronic pancreatitis, 
which may be helpful for the earlier diagnosis of the 
juvenile- or young-onset type of the disease.
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