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Introduction

Gastric cancer is the fourth most common malignancy
worldwide.1 In 2000, 870 000 people were diagnosed
with the disease, while 650000 patients died from it.1,2 In
most countries, patients diagnosed with gastric cancer
have advanced-stage disease3,4 leading to a poor prog-
nosis. While the overall 5-year survival rate of gastric
cancer patients is about 20%,1,3,4 that of patients with
distant metastases is usually less than 5%.3,4 For patients
with advanced-stage gastric cancer, neoadjuvant or ad-
juvant chemotherapy with 5-fluorouracil, doxorubicin,
and cisplatin is currently under investigation.1,3 Despite
the use of the latest chemotherapy, advanced gastric
cancer is still difficult to treat. These issues indicate
the necessity for the development of a new therapeutic
modality, and gene therapy represents one of those
developmental efforts.

Adenoviral vectors (Ads) have been applied for gene
delivery of various cancers because of their high effi-
ciency. However, in some fields, including gastrointesti-
nal cancer, the efficiency of adenoviral vector-based
gene delivery is extremely limited, due to low expres-
sion of the Coxsackie-adenovirus receptor (CAR). We
have endeavored to overcome this problem by applying
virotherapy with conditionally replicating adenoviruses
(CRAds) and fiber modification.

CRAds were designed to selectively replicate in
tumor cells.5–8 Two basic strategies have been used
to enable selective replication. Mutation-type CRAds,
such as ONYX-015 or Ad∆24, can replicate in tumor
cells that have p539,10 or retinoblastoma protein muta-
tions, respectively.11 Promoter-controlled CRAds are
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controlled with tumor-specific promoters (TSPs) to
drive the expression of an essential gene (e.g., E1a)
required for Ad replication.12–16 In terms of safety, it is
important to avoid vector toxicity in normal organs
caused by the ectopic expression of an effector gene, or
nonspecific replication in the case of CRAds. Because
the liver clears the majority of adenoviruses adminis-
tered systemically, avoiding hepatotoxicity is very im-
portant. This dilemma is especially relevant in gastric
cancer, because blood flow from the stomach goes di-
rectly into the portal vein and flows to the liver.17 Thus,
for promoter-controlled CRAds, a “tumor-on/liver-off”
promoter profile is needed to achieve liver-untargeting
and avoid liver toxicity.

We have reported eight “tumor-on/liver-off” TSPs
for adenoviral gene therapy. Vascular endothelial
growth factor receptor-1 (fms-like tyrosine kinase-1;
Flt-1) promoter was reported in teratocarcinoma.18,19

Midkine (MK) promoter was tested in pediatric solid
tumors,20,21 ovarian cancer,22 pancreatic cancer,23 and
cholangiocarcinoma.24 Cyclooxygenase-2 (Cox-2) pro-
moters were reported in gastrointestinal cancers.22–25

Secretory leukocyte protease inhibitor (SLPI) promoter
was used in ovarian cancer.26,27 Vascular endothelial
growth factor (VEGF) promoter and gastrin-releasing
peptide (GRP) promoter were reported in lung cancer
and cholangiocarcinoma.24,28 In adenoviral vectors, all of
these promoters demonstrated “tumor-on/liver-off” se-
lectivity for each target. Particularly for gastric cancer,
only several TSPs have been reported. However, a
side-by-side evaluation has not been done for these
promoters. Precise comparison of these promoters is
necessary to determine the optimal promoter for
gastric cancer CRAd construction.

Another issue to address regarding the use of
adenoviral vectors for gastric cancer is infectivity
enhancement. We have achieved increased infecti-
vity of CAR-negative cells, which is the case for gastric
cancer, by modifying the fiber region of adenoviral
vectors. We have reported that both an RGD-4C
motif incorporation in the HI-loop of the adenoviral
fiber-knob region29–32 and replacement of the adeno-
virus type 5 knob with that of adenovirus type 324,33–37

showed improvement in infectivity for low-CAR
expressing cell lines. These fiber modifications repre-
sent potential strategies to augment adenoviral trans-
duction in gastric cancer cells and would therefore
enhance the efficiency of CRAds against this type of
tumor.

In this study, we evaluated promoters for CRAd rep-
lication control and fiber modifications for the enhance-
ment of CRAd efficacy in gastric cancer. Our data
establish the utility of infectivity-enhanced TSP-driven
CRAds as candidate therapeutic agents for gastric
cancer.

Materials and methods

Cell culture

MKN1, MKN28, MKN45, MKN74, NUGC4 (Human
Science Research Resources Bank JCRB0252,
JCRB0253, JCRB0254, JCRB0255, JCRB0834, Osaka,
Japan), MKN7 (Riken Cell Bank RCB0999, Ibaraki,
Japan), and STKM1 (generously provided by Shunsuke
Yanoma (Kanagawa Cancer Center, Research Institute,
Yokohama, Japan) gastric cancer cell lines were grown
in Roswell Park Memorial Institute (RPMI) 1640 me-
dium (Mediatech; Herndon, VA, USA) with 10% fetal
calf serum (HyClone; Logan, UT, USA). BT-474 (Cox-
2-negative breast cancer cell line; American Type
Culture Collection [ATCC], HTB-20) was cultured in
RPMI 1640 with bovine insulin (0.01 mg/ml; Life Tech-
nologies, Rockville, MD, USA). LS 174T (MK-negative
colon cancer cell line; ATCC, CL-188) and Hep G2
(SLPI-negative hepatocellular carcinoma cell line;
ATCC, HB-8015) were maintained with Dulbecco’s
modified Eagle’s medium (Mediatech) containing 10%
fetal calf serum. BEAS-2B (VEGF-negative and
Flt-1-negative normal human bronchial epithelial cell
line; ATCC, CRL-9609) was maintained with BEGM
BulletKit (Cambrex, Walkersville, MD, USA). All
media, except for BEGM BulletKit were supplemented
with penicillin (100IU/ml), and streptomycin (100 mg/
ml). Cells were incubated at 37°C and 5% CO2 under
humidified conditions.

Adenoviral vectors

Non-replicative adenoviral vectors expressing the
firefly luciferase gene (Luc) under the cytomegalovirus
promoter (AdCMVLuc), cox2M promoter (AdCox2-
MLuc),23–25 cox2L promoter (AdCox2LLuc),23–25 MK
promoter (AdMKLuc),20,21,23,24,38 GRP promoter
(AdGRPLuc),28,39,40 VEGF promoter (AdVEG-
FLuc),23,41 SLPI promoter (AdSLPILuc),26,27 and Flt-1
promoter (AdFlt-1Luc)18,19 have been reported previ-
ously. CRAdCox2F, MKE1, and GRPE1 have E1 ex-
pression cassettes controlled by the cox2, MK, and GRP
promoters, respectively. Ad5RGDLuc1 has an RGD
motif in the HI-loop of the fiber-knob region, while
Ad5/3Luc1 has a replacement of its adenovirus type 5
knob with an adenovirus type 3 knob. Both viruses are
nonreplicative, and contain a cytomegalovirus (CMV)-
driven Luc-like unmodified AdCMVLuc. Similarly,
RGDCRAdCox2F and 5/3CRAdCox2F are cox2
promoter-controlled CRAds with RGD fiber
modification and 5/3 chimeric fiber modification respec-
tively. Wild-type Ad5 viruses without fiber modification
(Ad5Wt), with RGD fiber modification (RGDWt), and
with 5/3 chimeric fiber modification (AdMG553) were
utilized as controls.
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All adenoviral vectors were constructed by homolo-
gous recombination in Escherichia coli,42 using shuttle
vectors constructed from pShuttle and pGL3-basic
(Promega, Madison, WI, USA). Thus, all vectors have
the same backbone except for the TSPs, E1 region, or
fiber.

The viruses were propagated in E1-transcomple-
menting 911 cells and 293 cells, purified by ultracen-
trifugation in double cesium chloride density gradient,
and subjected to dialysis. The titers for the viruses were
determined by optimal absorbance measurement of dis-
sociated virus DNA at A260nm and by using a plaque-
forming assay. The viral particle (vp)/plaque forming
unit (pfu) ratios for these vectors were within the range
of 20–100.

Analysis of promoter activity

To assess the activity of the TSPs in an adenoviral
context, 5 � 104 cells of each gastric cancer cell line
per well were plated on 24-well plates and cultivated
overnight. The next day, cells were infected at 50pfu/
cell with AdMKLuc, AdCox2MLuc, AdCox2LLuc,
AdVEGFLuc, AdSLPILuc, AdGRPLuc, Ad Flt-1Luc,
or AdCMVLuc in Dulbecco’s modified Eagle’s medium
with 5% fetal calf serum (infection medium). Two hours
later, the infection medium was replaced with the ap-
propriate growth medium. After 48h of infection, the
cells were lysed by Cell Lysis Buffer (Promega) and
the resultant lysates were analyzed with the Luciferase
Assay System (Promega). The protein concentration
was determined with the DC protein assay (Bio-Rad,
Hercules, CA, USA).

In vitro analysis of the cytocidal effect of
TSP-driven CRAds

To analyze the cytocidal effect of TSP-driven
CRAds, cell viability was determined by a 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay.
Gastric cancer cell lines, BT-474 (Cox-2-negative cell
line), and LS 174T (MK-negative cell line) were
plated on 96-well plates at a density of 3 � 103 cells
per well. After overnight culture, cells were infected
with nonreplicative control (AdCMVLuc), CRAds
(CRAdsCox2F, MKE1, GRPE1), and Ad5 wild-type
(Ad5Wt) in infection medium at 0.1vp/cell for 2h.
Then, the infection medium was replaced with the ap-
propriate growth medium. An MTS assay (CellTiter 96
Aqueous Non-Radioactive Cell Proliferation Assay;
Promega) was performed on days 0, 1, 3, 6, 10, and 15
after infection.

Flow cytometry for CAR and integrin expression in
gastric cancer cell lines

Cells were dislodged with 1% trypsin/ethylene diamine-
tetraacetic acid (EDTA) and resuspended in SM buffer
(phosphate-buffered saline [PBS], 0.1% sodium azide,
1% bovine serum albumin [BSA]) at 3 � 105 cells/mL.
One million cells were incubated with 1.5µg/ml
of mouse anti-human CAR monoclonal antibody,
RmcB43(ATCC), mouse anti-human integrin αv�3
monoclonal antibody, LM609 (Chemicon International,
Temecula, CA, USA), and mouse anti-human integrin
αv�5 monoclonal antibody, P1F6 (Chemicon Inter-
national), or mouse immunoglobulin (negative control)
in 100µl of SM buffer for 1 h at 4°C. Cells were
washed with SM buffer twice and incubated with 1.5µg/
ml of secondary fluorescein isothiocyanate (FITC)-
labeled goat anti-mouse immunoglobulin G serum
(Jackson Labs, West Grove, PA, USA) in 100µl of SM
buffer for 30min at 4°C. After washing the cells with
SM buffer twice, 1 � 104 cells were analyzed by flow
cytometry.

Infectivity enhancement with fiber modification

To analyze infectivity enhancement with fiber modifica-
tion, luciferase expression adenoviral vectors with or
without fiber modification were applied. The day before
infection, 5 � 104 gastric cancer cells per well were
plated in 24-well plates. The next day, cells were in-
fected with Ad5Luc1, Ad5RGDLuc1, and Ad5/3Luc1
at 50vp/cell in infection medium. After 2-h incubation,
the infection medium was replaced with the appropriate
growth medium. Forty-eight hours later, the cells were
lysed and lysates were analyzed for luciferase activity.
The protein concentration was determined with the DC
protein assay (Bio-Rad).

In vitro analysis of cytocidal effect of fiber-modified
TSP-driven CRAds

Cytocidal effect was analyzed in vitro by staining the
cells with crystal violet. One day after 2.5 � 104 cells per
well were plated on a 12-well plate, cells were infected
with or without fiber-modified Cox-2 CRAds at 0.01vp/
cell and controls in infection medium. The viruses in-
cluded the nonreplicative controls AdCMVLuc,
Ad5RGDLuc1, and Ad5/3Luc1; the wild-type controls
Ad5Wt, RGDWt, and AdMG553 (with 5/3 chimeric
fiber); and CRAdCox2F, RGDCRAdCox2F, and
5/3CRAdCox2F. Two hours after infection, the infec-
tion medium was replaced with the appropriate growth
medium. When total cell death was observed by micro-
scope for cells infected with Cox-2 CRAds with or
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without fiber modification, the cells were fixed with
buffer-formaldehyde for 10 min and stained with 1%
crystal violet in 70% ethanol. Stained cells were washed
with tap water three times and dried.

In vivo antitumor effect analysis

Antitumor effect was analyzed in vivo by using MKN28
gastric cancer subcutaneous xenografts. The cells (3 �
106 per injection site) were inoculated into the flanks of
female BALB/cAnNCr-nu/nu mice (Frederick Cancer
Research, Frederick, MD, USA) (6–8 weeks of age).
After tumor establishment (6- to 8-mm diameter), a
single virus dose (5 � 109 vp) of CRAds and control
vectors was injected intratumorally. The condition of
mice was monitored daily and the tumor diameter
was measured every 3 days. The tumor volume was
calculated as: tumor volume � width2 � length/2. The
mice with PBS and AdCMVLuc were killed 30 days
after viral injection, due to over-sized tumors which
cannot be maintained according to animal protocol
guidelines.

Results

Cox-2M, Cox-2L, and MK promoters are promising
for gastric cancer cell lines

To optimize CRAds for gastric cancer, we first com-
pared the transcriptional activites of the candidate

TSPs. Compared to the luciferase activity of the CMV
promoter, those of MK (80.6 � 63.3%), Cox-2M (38.0 �
24.0%), and Cox-2L (37.1 � 25.0%) promoters showed
high levels. On the other hand, SLPI (21.6 � 16.8%),
GRP (11.3 � 11.9%), VEGF (10.9 � 20.4%), and
Flt-1 (1.0 � 2.3%) promoters had minimal activities
(Fig. 1).

Cox-2, MK, and GRP CRAds show significant
cytocidal effect in gastric cancer

We investigated the cytocidal effect of TSP-driven
CRAds in gastric cancer cell lines. Viable cells infected
with MKE1, CRAdCox2F (promising promoter-driven
CRAd), and GRPE1 (weak promoter-driven CRAd)
were quantitated with an MTS assay. Ad5Wt (adenovi-
rus type 5 wild-type) and AdCMVLuc (nonreplicative
adenovirus) were used as positive and negative controls,
respectively. CRAdCox2F showed significant cytocidal
effect in four gastric cancer cell lines (MKN28, MKN45,
NUGC4, and STKM1) while MKE1 showed cell killing
in three cell lines (MKN28, MKN45, and STKM1).
GRPE1 caused a cytocidal effect in two gastric cancer
cell lines (MKN45 and STKM1). None of the tested
CRAds showed much cell killing in MKN1, MKN74, or
MKN7 by MTS assay (Fig. 2). Cox-2 CRAd demon-
strated no cytocidal effect in negative control cell lines,
while MK and GRP CRAds killed negative cells on day
10 (data not shown). In the context of the in vitro cyto-
cidal effect, Cox-2 CRAd was the most promising for

Fig. 1. Promoter activities in gastric cancer cell lines. Each cell line was infected with tumor-specific promoter (TSP)-driven
luciferase vectors at 50 pfu/cell and the luciferase activity was analyzed 48h after infection. The results are standardized by
protein concentration and shown as percentages relative to cytomegalovirus (CMV) promoter luciferase activity. 1, midkine
[MK]N1; 2, MKN7; 3, MKN28 (gastrin-releasing peptide [GRP]-negative cell line); 4, MKN45; 5, MKN74; 6, NUGC4; 7, STKM-
1 (gastric cancer cell line); 8, LS174T (MK-negative colon cancer cell line); 9, BT474 (cyclooxygenase 2 [Cox2] negative breast
cancer cell line); 10, HepG2 (secretory leucocyte protease inhibitor [SLPI]-negative hepatocarcinoma cell line); 11, BEAS-2B
(vascular endothelial growth factor [VEGF]- and fms-like tyrosine kinase-1 [Flt-1]-negative cell line)
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gastric cancer, while MK and GRP CRAds also showed
considerable cytocidal effect, but less selectivity.

Various levels of CAR expression in gastric
cancer cell lines

Because the expressions of CAR and integrins are the
major determining factors of adenoviral gene transfer
efficiency, their levels were analyzed by flow cytometry
in gastric cancer cell lines. MKN1 (1.36%), MKN7
(5.57%), MKN28 (9.16%), MKN74 (4.20%), NUGC4
(2.89%), and STKM1 (8.06%) showed low CAR
expression (thick solid lines in Fig. 3a), while MKN45
(44.72%) indicated intermediate CAR expression (Fig.
3a). Expression of αv�3 integrin (thin solid lines in Fig.
3b) was shown to be low in MKN7 (1.65%), MKN28
(7.45%), MKN45 (1.76%), MKN74 (1.64%), NUGC4
(1.29%), and STKM1 (1.25%), while expression was
moderate in MKN1 (21.33%). MKN1 (0.78%), MKN45
(3.37%), MKN74 (6.68%), and NUGC4 (3.80%)
showed low expression of αv�5 integrin (thick solid
lines in Fig. 3b), while MKN7 (16.10%), MKN28
(19.94%), and STKM1 (11.60%) showed moderate ex-
pression (Fig. 3b).

5/3 Chimeric fiber modification improves infectivity in
gastric cancer

Infectivity enhancement in gastric cancer cells by fiber
modification (RGD modification and 5/3 chimera) was
analyzed by a luciferase assay. The luciferase activity
of Ad5/3Luc1 was dramatically higher than that of
Ad5Luc1 in seven out of seven gastric cancer cell lines
(P � 0.05). On the other hand, enhancement by RGD
modification was minimal. While the luciferase activity
of Ad5RGDLuc1 was significantly higher in MKN45
(1.95-fold) and NUGC4 (1.93-fold; P � 0.05), there was
no significant increase in other gastric cancer cell lines
(Fig. 4). These results suggest that 5/3 chimeric fiber
modification can significantly increase infectivity in gas-
tric cancer compared to both RGD-modification and no
modification.

5/3CRAdCox2F shows significant cytocidal effect in
gastric cancer cell lines in vitro

To analyze the enhanced oncolytic potency due to fiber
modification, gastric cancer cell lines were infected
with TSP-driven CRAds with and without fiber
modification and then stained with crystal violet (Fig.
5). 5/3CRAdCox2F showed the strongest cytocidal ef-
fect in six out of seven gastric cancer cell lines (MKN1,

Fig. 2. Cytocidal effect of conditionally replicating adenoviruses (CRAds). Cytocidal effect was analyzed by quantitating viable
cells, using an MTS assay. Each cell line was infected with TSP-driven CRAds at 0.1vp/cell and assayed over the course of 15
days. The conversion of MTS into formazan was measured by absorbance (optical density; OD) at 490 nm. CRAdCox2F (closed
circles) showed a cytocidal effect in four out of seven cell lines (MKN28, MKN45, NUGC4, and STKM1). MKE1 (closed squares)
demonstrated cell killing in three out of seven cell lines (MKN28, MKN45, and STKM1). GRPE1 (closed triangles) showed a
cytocidal effect in only two cell lines (MKN45 and STKM1). There was no significant difference between no-virus (open circles)
and CRAds in MKN1 and MKN74. No killing effect was seen in MKN7 until day 15. Crosses, AdWt300; open diamonds,
AdCMVLuc
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Fig. 3a,b. Expression of a Coxsackie-adenovirus receptor (CAR) and b αv�3 and αv�5 integrin in gastric cancer cell lines.
Receptor expression levels were analyzed by flow cytometry. Cells were incubated with anti-CAR, anti-αv�3, or anti-αv�5
integrin monoclonal antibodies. a Expression of CAR (solid lines) was low (1.4%–9.2%) in six out of seven cell lines (MKN1,
MKN7, MKN28, MKN74, NUGC4, and STKM1), but moderate (45%) in one cell line (MKN45). b Expression of αv�3 integrin
(thin solid lines) was extremely low (1.3%–7.5%) in six out of seven cell lines (MKN7, MKN28, MKN45, MKN74 NUGC4, and
STKM1) but moderate (21.33%) in MKN1. Expression of αv�5 integrin (thick solid lines) was low (0.8%–6.8%) in four cell lines
(MKN1, MKN45, MKN74, and NUGC4) and moderate (12%–20%) in three cell lines (MKN7, MKN28, and STKM1). Dotted
lines, negative control; FITC, fluorescein isothiocyanate

Fig. 4. Infectivity enhancement in gastric cancer cells by ge-
netic fiber modification. The effect of infectivity enhancement
was analyzed by using CMV promoter-driven luciferase ex-
pression vectors with unmodified, RGD modified, and 5/3
chimeric fiber. Two days after infection at 50 vp/cell, the cells
were analyzed for luciferase expression. In all gastric cancer
cell lines, the 5/3 chimeric vector (Ad5/3Luc1; black bars)
showed 3.2- to 208-fold more transduction compared with
fiber-unmodified vector (Ad5Luc1), while the RGD-modified
vector (Ad5AGDLuc1; striped bars) demonstrated 0.7–1.9-
fold increase in infectivity. White bars, Ad5Luc1

a

b



H.A. Ono et al.: Adenoviral vectors for GC treatment 37

Fig. 5. Cytocidal effect of fiber-modified CRAds in gastric cancer cells. The cytotoxicity of Cox-2 CRAds was analyzed by crystal
violet staining. E1-deleted vectors (AdCMVLuc, Ad5RGDLuc1, and Ad5/3Luc1; nonreplicative) did not show any cell killing.
The wild-type vectors (Ad5Wt, RGDWt, and AdMG553) killed all cells. Cox-2 CRAds with 5/3 chimeric fiber showed the
strongest cytocidal effect in six out of seven gastric cancer cell lines (MKN1, MKN7, MKN28, MKN45, MKN74, and NUGC4),
while demonstrating weaker cytocidal effect in only one cell line (STKM1). Cox-2F CRAd with RGD-modified fiber showed a
cytocidal effect similar to that of unmodified Cox-2F CRAd

MKN7, MKN28, MKN45, MKN74, and NUGC4).
RGDCRAdCox2F demonstrated minimal enhance-
ment of the cytocidal effect, which was comparable to
unmodified CRAdCox2F, in all gastric cancer cell lines.

With respect to infectivity enhancement to improve cell
killing by TSP-driven CRAds, 5/3 chimeric fiber modifi-
cation showed the strongest cytocidal effect in gastric
cancer cell lines.
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5/3CRAdCox2F shows significant antitumor effect
in vivo

The in vivo antitumor effect of fiber-modified CRAds
was analyzed by using MKN28 gastric cancer subcuta-
neous xenografts. After establishment of the tumor
(6- to 8-mm diameter), the CRAds and control viruses
(5 � 109 vp) were injected into the tumors, and the
tumor size was monitored. On day 30, the groups with
RGDCRAdCox2F and 5/3CRAdCox2F showed signifi-
cant antitumor effect (P � 0.01; analysis of variance
[ANOVA]), while the therapeutic effect of Cox2CRAd
without fiber modification (CRAdCox2F) was not
statistically significant (P � 0.05; ANOVA) in com-
parison to the groups with untreated and nonreplicative
luciferase expression vector. On day 60, both the
RGDCRAdCox2F and 5/3CRAdCox2F groups showed
more antitumor effect than the CRAdCox2F group.
Relative to CRAdCox2F, 5/3CRAdCox2F demon-
strated a stronger antitumor effect (P � 0.01; ANOVA)
in contrast to RGDCRAdCox2F, which showed no
significant difference (P � 0.05; ANOVA). Interest-
ingly, the group with 5/3CRAdCox2F showed a stron-
ger antitumor effect than that seen with the wild-type
one, and this was the only group to show statistically
significant shrinkage on day 60 in comparison with day
0 (P � 0.01; ANOVA; Fig. 6). The in vivo data indicate
that, while the unmodified and RGD-modified Cox-2
CRAd demonstrated minimal killing effect, Cox-2
CRAd with 5/3 fiber modification showed a remarkable
antitumor effect.

Discussion

CRAds represent a novel and promising approach for
treating neoplastic diseases.7,44,45 One of the advantages
of CRAds is the minimal initial dose required, because
progeny virus produced by selective replication would
spread throughout the tumor.6 To achieve this effect,
CRAds were designed to replicate only in tumor cells,
leaving normal tissues intact. These strategies include
mutation-type CRAds and promoter-controlled-type
CRAds.5 The ∆24 adenovirus and ONYX-015 are ex-
amples of the former type, which show tumor killing
effect in some cancers.10,11,46–57 However, the stringency
of replication control in these CRAds is still under dis-
cussion.58–61 In this study, because we aimed to increase
the infectivity of adenovirus by fiber modification and,
therefore, enhance cell killing, tight replication control
was critical to maintain a good safety profile. For this
purpose, promoter-controlled type CRAds may offer
advantages, especially in light of the fact that well-
characterized TSPs have been investigated in adenovi-
ral cancer gene therapy to avoid damage to normal host

tissues, especially the liver. While numerous studies
have employed these TSPs in a CRAd context for vari-
ous cancers, the application of TSP-CRAds for gastric
cancer is limited.62 In this sense, further investigation of
CRAds as therapeutic agents is needed in this field.

In this study, we investigated candidate TSPs to con-
trol CRAd replication and fiber modifications to en-
hance the infectivity of CRAds for gastric cancer. The
carcinoembryonic antigen and epithelial glycoprotein-2
promoters are the only TSPs in adenovirus reported for
gastric cancer,63–69 in the contrast to the many TSPs
reported for other cancers. We have reported that the
Flt-1, MK, Cox-2, SLPI, VEGF, and GRP promoters in
adenovirus showed liver-off and tumor-on activity in
malignant tumors. Our reported promoters therefore
merited evaluation for the treatment of gastric cancer
because of their strong activities and their documented
overexpression in gastric cancer (Flt-1 in 84.6% of
cases,70 MK in 67% of cases,71,72 and Cox-2 in 70% of
cases73–75).

With regard to promoter activity in gastric cancer cell
lines, the MK, Cox-2M, and Cox-2L promoters showed
high expression levels, justifying further investigation of

Fig. 6. In vivo antitumor effect of fiber-modified CRAds in a
gastric cancer model. MKN28 subcutaneous xenografts in
nude mice were treated with a single intratumoral injection of
5 � 109 vp of each virus. Mice treated with phosphate-buffered
saline (PBS; open circles) and nonreplicative control viruses
were killed on day 30 due to over-sized tumors. Compared to
the nonreplicative control (AdCMVluc; open diamonds) on
day 30, Cox-2 CRAds with unmodified fiber (CRAdCox2F;
closed circles) showed no statistically significant effect
(P � 0.05; analysis of variance [ANOVA]), while
RGDCRAdCox2F (closed squares) and 5/3CRAdCox2F
(closed triangles) demonstrated stronger antitumor effect,
with statistical significance (P � 0.01; ANOVA).
RGDCRAdCox2F showed a stronger antitumor effect
(P � 0.05; ANOVA) compared to Cox-2 CRAds with
unmodified fiber, while 5/3CRAdCox2F induced a much
stronger, statistically significant antitumor effect (P � 0.01;
ANOVA). The group with 5/3CRAdCox2F was the only
group showing statistically significant tumor shrinkage on day
60 compared with day 0 tumor size (P � 0.01; ANOVA).
Crosses, AdWt
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these promoters in CRAds (Fig. 1). Notably, the Cox-
2M and Cox-2L promoters demonstrated minimal activ-
ity in a Cox-2-negative cell line (BT474). CRAdCox2F
showed strong cytocidal effect and selectivity in four
gastric cancer cell lines, while MKE1 showed cell killing
in three gastric cancer cell lines, based on MTS assay
results. The cytocidal effect of TSP-CRAds was roughly
correlated with the predetermined cell line specific pro-
moter activity, except for MKN 45, which responded
differently to the viruses, possibly due to high CAR
expression (Fig. 3a). Crystal violet assays correlated
with the MTS assay data for both CRAdCox2F (Fig. 5)
and MKE1 (data not shown). It is important to note that
although MKE1 was almost as effective as CRAdCox2F
in terms of oncolytic effect in gastric cancer cells, the
promoter selectivity of MK was poor relative to Cox-2,
as evidenced by its higher activity in the liver20,25 and by
its nonspecific killing of MK-negative cells (data not
shown). This observation rationalized our choice of
Cox2 CRAds as the most promising TSP-driven CRAds
for gastric cancer among those tested and, therefore,
justified the further exploration of these agents for
infectivity enhancement.

The infectivity of CRAds is one of the most impor-
tant factors determining therapeutic efficiency, because
effective infection of the surrounding cancer cells by the
progeny virus is crucial for the spread of CRAds. For
adenoviral infection, the Coxsackie-adenovirus recep-
tor (CAR) level of the cell is a crucial factor for virus
binding. Most of the gastric cancer cell lines we tested
showed very limited expression of CAR (Fig. 3a). An-
other factor that affects adenoviral infection is the avail-
ability of αv�3 and αv�5 integrins. In most of the gastric
cancer cell lines examined, αv�3 integrin expression was
low, but αv�5 integrin was moderately expressed in
three gastric cell lines (Fig. 3b). For low-CAR express-
ing gastric cancer cells, infectivity improvement is
needed to achieve effective tumor killing.

We have previously reported that adenoviral vectors
with an RGD-4C motif in the HI-loop of the fiber knob
region enhanced infectivity.29–32 These data indicate that
RGD fiber modification can possibly increase the infec-
tivity of adenoviral vectors in gastric cancers. In two out
of seven gastric cancer cell lines in the present study, an
RGD-modified vector showed infectivity improvement,
but the enhancement was minimal. The limited expres-
sion of αv�3 and αv�5 integrins in gastric cancer cells
(Fig. 3b) may explain this observation.31 Interestingly,
the above results showed a discrepancy between the
expression of integrins and the infectivity improvement
of RGD-modified virus; however, there are some other
factors (such as heparan sulfate glycosaminoglycans76,77)
which may influence the infectivity of adenovirus. We
have also demonstrated that adenoviral vectors with
their type 5 knob replaced with a type 3 knob can

greatly improve infectivity.33–37 In contrast to RGD fiber
modification, 5/3 chimeric fiber modification dramati-
cally improved infectivity in all of the gastric cancer
cells (Fig. 4).

Based on the encouraging results obtained with 5/3
chimeric fiber modification, we tested TSP-driven
CRAds with and without fiber modification to achieve
enhanced killing efficiency. In this experiment, 5/
3CRAdCox2F showed a dramatic improvement in cyto-
cidal effect in six out of seven gastric cancer cell lines
(Fig. 5). STKM1 was the only cell line which showed
low cytocidal effect with 5/3CRAdCox2F compared to
RGDCRAdCox2F. This result is reasonable, because
STKM1 was the only cell line which demonstrated less
infectivity enhancement by 5/3 fiber modification com-
pared to the other cell lines (Fig. 4).

We further investigated the 5/3 fiber modified Cox2
CRAds in vivo. In a subcutaneous xenograft model of
gastric cancer, the therapeutic effect of unmodified,
RGD-modified, and 5/3-modified CRAds was analyzed
after a single intratumoral injection. On day 30, the
group with RGDCRAdCox2F and 5/3CRAdCox2F
showed significant therapeutic effect compared with
unmodified CRAdCox2F. However, there were no
significant differences between the fiber-modified
Cox2CRAds and Ad5 wild type. On day 60, all replica-
tive vectors suppressed the growth of established gastric
cancer tumors. However, 5/3CRAdCox2F was the
only vector which elicited significant tumor shrinkage,
whereas none of the other vectors, including Ad5Wt,
showed such an effect. In vivo, the oncolytic effect due
to infectivity enhancement with 5/3 fiber modification
was much more evident than that observed in the in
vitro experiments. This suggests that 5/3 fiber modifica-
tion confers a clear benefit for the antitumor effect of
Cox2CRAds (Fig. 6).

Our strategy of using 5/3 fiber-modified Cox-2
CRAds addresses two key issues related to the clinical
utility of adenoviral vectors; efficiency and safety. First,
the use of the optimal Cox-2 promoter to drive CRAd
replication yielded a strong killing effect in gastric can-
cer cells. This oncolytic effect was further enhanced by
the use of 5/3 fiber modification to improve infectivity.
Not only was the combination of Cox-2 CRAds and
infectivity enhancement fruitful for tumor-killing effi-
ciency but also the strategy may also resolve safety
problems associated with adenoviral vectors. Common
to all viral-based approaches is the challenge of over-
coming the host innate immune response towards the
vector itself.78,79 With our strategy, the use of CRAds
would require a much lower amount of administered
virus relative to a nonreplicative strategy, because
CRAds are designed to amplify themselves from the
initial dose. Moreover, the improved cytocidal effect
due to 5/3 fiber modification may decrease the necessary
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amount of injected virus even further, avoiding a
negative innate immune response towards the vector.
Another safety issue to consider is toxicity in normal
organs due to the ectopic replication of oncolytic
adenoviruses. We have specifically chosen the Cox-2
promoter to avoid this situation. The Cox-2 promoter’s
selectivity would provide targeted adenoviral replica-
tion in gastric cancer cells and, hence, tumor killing, but
minimal activity in normal organs. Combining this tran-
scriptional targeting with 5/3 fiber modification would,
therefore, yield an enhanced locoregional tumor killing
effect.

In the present study, we optimized TSP-driven
CRAds with fiber modification for gastric cancer. We
have shown that Cox-2 CRAd can effectively kill gastric
cancer cells and that 5/3 chimeric fiber modification can
significantly increase this cytocidal effect. Thus, the
combination of Cox-2 CRAd and 5/3 fiber modification
represents a potentially effective and safe virotherapy
agent for gastric cancer.
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