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Topics: Management of severe acute pancreatitis — new aspects

Cytokine storm in acute pancreatitis

Rohit Makhija and Andrew N. Kingsnorth

University of Plymouth, Level 07, Derriford Hospital, Derriford Road, Plymouth, PL6 8DH, UK

treatment that can downregulate the powerful inflam-
matory processes.

The epidemiological data reveal the incidence of AP
to vary from 48 to 238 cases per million population.1 Of
these cases, severe AP accounts for about 10%–25%2,3

with the overall mortality from AP remaining at about
9%–20% over the past few decades.1,4,5 Of the patients
who die, 60% do so within the first 6 days following
admission, and the major cause of death, among them, is
pulmonary complications such as adult respiratory dis-
tress syndrome (ARDS).1 The majority of deaths after
the first week are from infectious causes such as infected
pancreatic necrosis and septicemia.5 The two common
causes of AP are gallstones, accounting for 40%–50%
of cases, and ethanol, which accounts for around
20%–30% of cases.6 About 10% of cases have a diverse
etiology, such as hyperlipidemia, viral infection, drugs,
hypercalcemia, and ductal obstruction.7

After the initial injury to the pancreatic acinar cell,
whatever the triggering factor, events take a similar
path for all patients with AP. The disease progression
can be viewed as a three-phase continuum: local inflam-
mation of the pancreas, a generalized inflammatory re-
sponse, and the final stage of sepsis, with multiple organ
damage. The disease process can extend to any of the
three phases, and is often resolved after the local inflam-
matory process, resulting in mild AP. After the initial
pancreatic acinar cell injury, inflammatory cells adhere
to the endothelium due to the expression of various
adhesion molecules, such as vascular cellular adhesion
molecule-1 (VCAM-1) and P- and E-selectins, etc. This
propagates an exponentially increasing response which
occasionally spirals out of control to give rise to severe
AP and terminates in death.

Key cells involved in elaborating the inflammatory
mediators are the pancreatic acinar cells, the endothe-
lial cells, neutrophils, lymphocytes, and the macro-
phages/monocytes. A variety of inflammatory
mediators of different chemical and functional classes
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Introduction

Acute pancreatitis (AP) is a commonly encountered
intra-abdominal catastrophe and is a world-wide prob-
lem. At the present time, no specific therapy has been
shown to be uniformly effective in reducing the mortal-
ity, or indeed, the morbidity resulting from it. The cur-
rent principles of treatment of AP remain the same as
in the previous century, using supportive therapy. The
constituents of supportive therapy have undergone a
number of refinements; however, as yet, there is no
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are elaborated in the inflammatory process, such as
arachidonic acid metabolites, nitric oxide, cytokines,
and reactive oxygen species. These elicit responses re-
sulting in increased vascular permeability, modulation
of leukocyte trafficking, localized tissue destruction,
and generalized inflammation, with damage to kidney,
lung, and various other organs. The initial clinical re-
sponse to pancreatitis is a systemic inflammatory re-
sponse (SIRS), which, if abnormally persistent,
develops into a worsening scenario of tissue damage
and sepsis resulting in multiple organ dysfunction syn-
drome (MODS).8 The spectrum of inflammatory re-
sponses of the body has been further studied in the past
few years. These responses vary from SIRS that can
progress on to MODS or take the more indolent form of
a compensatory anti-inflammatory syndrome (CARS).9

The current understanding is that SIRS is the
proinflammatory response and CARS is the anti-
inflammatory response that results in a prolonged pe-

riod of depressed immune function and increased sus-
ceptibility to infections.10 The initial SIRS cascade oc-
curs over the first week of illness and its resolution is the
crucial step in deciding the further course of events. The
primary mediators of this process are the cytokines such
as interleukin-1 (IL-1), tumor necrosis factor (TNF),
and interleukin-8 (IL-8), among others (Fig. 1). The
pro-inflammatory process is counterbalanced by the
anti-inflammatory response that inhibits T-cell mitogen-
esis and decreases cytokine production.

Cytokines: in the eye of the storm

The cytokines are a family of low-molecular weight pro-
teins (16–25kDa) that are secreted by a multitude of
cells. They are usually not found in normal tissue but
are produced in response to stimuli via receptor-
induced pathways. Cytokine secretion is a very closely

Fig. 1. An overview of the
development of the inflam-
matory cascade after induc-
tion of acute pancreatitis.
Activation of the various
inflammatory cells leads to
elaboration of various pro-
and anti-inflammatory media-
tors and chemokines. An im-
balance in this pathway leads
to widespread tissue damage
and mortality via multiple
organ dysfunction syndrome
(MODS) and septicaemia.
IL-1, Interleukin-1; TNF,
tumor necrosis factor; IL-1ra,
interleukin-1 receptor an-
tagonist; MCP-1, monocyte
chemoattractant protein-1;
RANTES, regulated on acti-
vation, normal T cell ex-
pressed and secreted; SIRS,
systemic inflammatory re-
sponse syndrome; ARDS,
adult respiratory distress
syndrome
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regulated process and the expression of most cytokines
is modulated by transcription factors such as nuclear
factor kappa B (NFkappaB). Few cytokines are consti-
tutively expressed; for example, macrophage migration
inhibitory factor (MIF). All cytokines cause their effects
via highly specific cell-surface receptors. Most cytokines
have pleiotropic activity and show multiple functional
effects on a variety of target cells. There is immense
redundancy within the system such that many cytokines
can share similar biologic effects and in the absence
of any one cytokine, others can fill the gap. This is of
major consequence to the potential use of cytokine-
antagonistic therapy, and single-cytokine antagonism
has not proven to be of clinical benefit in trials.11 T-
helper (Th) cells are differentiated by the spectrum of
cytokines they produce. Th1 cells are involved in cell-
mediated defense mechanisms, including defense
against intracellular pathogens, and they produce TNF-
α, interleukin-2 (IL-2), and interferon-γ. Th2 cells se-
crete IL-4, IL6, IL-10, and IL-11 and modulate humoral

immunity via B-cell responses12 (Fig. 2). Various factors
can influence the polarization of the Th cells, including
the cytokine profile of the milieu in which Th cells un-
dergo transdifferentiation. Th1 and Th2 cytokine prod-
ucts reciprocally downregulate each other.13,14

Tumor necrosis factor α (TNF-α)

TNF-α is a cytokine that is derived from a number of
cells, but its main sources are the macrophages and
monocytes. It interacts with a number of other
cytokines such as IL-1, interleukin-6 (IL-6), and platelet
activation factor (PAF) and has a pivotal role in the
inflammatory response.15 It has a short plasma half-life,
of 14–18 min, due to rapid clearance by the liver, gas-
trointestinal tract, and kidney, making its presence
difficult to assess by serum assays. Therefore absent or
low levels of TNF in serum do not correlate well with
actual events in the internal milieu. While it is difficult
to measure TNF levels in peripheral blood, certain

Fig. 2. Antigen-presenting
cells elaborate cytokines
that influence the differen-
tiation of naïve CD4� T
cells into T-helper1 (Th1)
and Th2 subsets. The
cytokine products of these
subsets reciprocally down
regulate the differentiation
of the opposite subset. IL-2,
Interleukin-2; IFN-γ, inter-
feron-γ; TNF, tumor necro-
sis factor; NK, natural killer



404 R. Makhija and A.N. Kingsnorth: Cytokine storm in acute pancreatitis

studies have shown increased TNF levels in 30%–40%
of patients with AP.16,17

TNF is secreted as a 26-kD transmembrane protein,
and the extracellular domain is cleaved off enzymati-
cally by TNF-α converting enzyme (TACE) to release
the 17-kD active soluble form. TACE is a member of
the ADAM (a disintegrin and metalloproteinase) fam-
ily of proteins that have some homology with cell adhe-
sion molecules.18 Two receptors have been described for
TNF, with molecular weights of 55kDa and 75kDa.19

Both the p55 (TNFR-I) and the p75 (TNFR-II) receptor
act to increase nuclear translocation of NFkappaB,
which increases the expression of a variety of genes by
binding to their promoter regions. The levels of these
soluble receptors act as markers of TNF activity and
these have been described to be elevated in AP, indicat-
ing a significant role for TNF,20 especially in AP with
MODS.21 In addition, the p55 receptor is involved in the
induction of programmed cell death via recruitment of
MORT-1 protein and other cell-death factors.22 Cell
death is also promoted by the presence of TNFR asso-
ciated death domains (TRADDS). It is possible that
TNF-mediated apoptosis is the pathway by which other
inflammatory mediators might act, such as intercellular
adhesion molecule-1 (ICAM-1).23 Pancreatic acinar
cells have been shown to produce TNF and to respond
to it.24,25 In experimental conditions, AP induces TNF
gene expression, beginning at 1h and peaking at 6h
from the initial insult, and the infiltrating macrophages
show increased reactivity to anti-TNF antibodies.26

Cytokine secretion studies in primary mononuclear cell
cultures from patients with AP have shown increased
in-vitro production of TNF as compared with normal
controls.27

Genetic studies into the role of polymorphisms
within the TNF gene have so far not proven any in-
creased susceptibility to AP;28 however, some associa-
tion has been found with the TNFa6 allele in chronic
pancreatitis.29

Experimental studies have shown some promise
with anti-TNF therapy. Recombinant soluble TNFR-I,
acting as a competitive inhibitor, significantly reduced
cytokine levels, pancreatic edema, and inflammatory
markers as well as mortality in rats. Interestingly, this
reduction in mortality was greatest if the treatment was
given after pancreatitis had set in, as compared with at
an earlier time.30 Similar results were observed using
polyclonal anti-TNF antibody in rats, with a significant
reduction in mortality.31,32 The future role of anti-TNF
therapy in pancreatitis is unclear at present. More work
needs to be done in TNF blockade in experimental
pancreatitis in order to assess whether this fulfils its
promise. Infliximab is an IgG1 anti-TNF monoclonal
antibody that binds to TNF with high specificity and is
currently being used for Crohn’s disease (FDA licensed

in the United States since 1998). This may be effective
in pancreatitis and studies are awaited.

Interleukin-1

IL-1, a proinflammatory cytokine, is an important me-
diator of the inflammatory changes of pancreatitis. It
initiates the inflammatory cascade and activates the
endothelium, allowing migration of neutrophils into the
post-venule space where they degranulate. IL-1 thereby
results in neutrophil degranulation, expression of adhe-
sion molecules, and chemokine activity. It has synergis-
tic effects with TNF-α; however, it differs from TNF-α
in that it does not cause apoptosis directly. IL-1 activity
involves two receptors: IL-1R-I and IL-1R-II, as well as
IL-1-related accessory protein (IL-1R-AcP).33,34 Initia-
tion of signal transduction requires IL-1�. IL-1R-I, and
IL1R-AcP, as is revealed by studies involving their anti-
bodies.33 IL-1R-I and Drosophila Toll receptor have
significant homology of structure. This is indicative of
the fact that IL-1R-1 and toll-like receptors (TLRs) are
derived from common ancestors with certain similarity
of structure as well as function.35 IL-1R-II serves as a
“decoy” for IL-1 as it binds tightly to IL-1 and prevents
signal transduction.36 IL-1 receptor antagonist (IL-1ra)
competitively inhibits receptor binding and prevents
signal transduction. IL-1 receptor binding initiates sev-
eral biochemical changes, for example, phosphorylation
of mitogen-associated protein kinases (MAPK), activa-
tion of phosphatases and phospholipases, increased
transcription of cyclooxygenase-2, and nuclear translo-
cation of transcription factors such as NFkappaB and
activator protein-1 (AP-1).37,38 IL-1 is secreted in its pre-
cursor form, pro-IL�-1, which is activated by IL-1� acti-
vating enzyme (ICE), which also activates IL-18.39 ICE
has now been renamed caspase-1 as over ten members
of the caspase family have since been identified with
different substrates.

There is ample evidence of IL-1 involvement in in-
flammatory cascades of pancreatitis. Its activities result
in the clinical manifestations of SIRS.40 Experimental
studies show increased production and an important
role of IL-1 in the early phases of pancreatitis.41–43 Stud-
ies using IL-1 receptor gene knockout mice show that
IL-1R-I is required for propagation of pancreatitis.44

Intra-peritoneally administered IL-1ra decreases mor-
tality and histologic destruction, as well as reducing
inflammatory markers in pancreatitis induced by a cho-
line-deficient, ethionine-supplemented diet. This effect
was seen when treatment was started at the time of
induction of diet, as well as when treatment was started
1.5 days later.45 Experimental pancreatitis is signifi-
cantly attenuated by pretreatment with ICE inactivator
(VE-13045), resulting in decreased histologic grading
of pancreatitis and mortality, while IL-1 mRNA levels
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were increased 120-fold. This was also seen in ICE-
knockout mice.46 Similar results were noted by intra-
peritoneal application of ICE-inhibitor up to 12h after
the induction of pancreatitis.47 Using acinar cell lines, it
has been demonstrated that caspase-1/ICE is involved
in acinar cell necrosis; however, it does not affect
apoptosis, which is mediated by TNF-α.48

In human AP, IL-1 levels are difficult to measure
and IL-1ra is thought to reflect in-vivo IL-1 activity.
Several studies have shown increased IL-1Ra levels in
AP, especially when organ failure is superimposed.16,49

Functional genetic polymorphisms of IL-1 have been
explored as a possible determinant of severity of
pancreatitis; however, no convincing association has
been demonstrated so far,28 although an association be-
tween IL-1ra gene polymorphisms and AP has been
demonstrated.50 Mononuclear cell cytokine production
showed a significant decrease in the IL-1ra/IL-1�
ratio in the patients with severe AP, as compared with
mild AP.28 The imbalance was primarily due to a differ-
ential production of IL-1ra rather than IL-1. This im-
plies that those patients who produce higher levels of
IL-1ra relative to IL-1 have milder pancreatitis. This
may be the basis for further work in exploring the alter-
ation of this ratio, rather than modulating IL-1 or IL-1ra
in isolation.

A phase III trial of recombinant human IL-1Ra in-
fused for 72h showed no mortality benefit in a study
involving 893 patients with sepsis.51 This may have been
due to the 100 :10 000 ratio of IL-1ra/IL-1 required in
order to inhibit the biological effects of IL-1.

Promising areas of research include further delinea-
tion of the role of caspase-1 and IL-1R-II, which may be
therapeutic targets of the future. Caspase-1 inhibitors,
in particular, have been shown to be of benefit when
given up to 12 h after the induction of pancreatitis,
which mimics the clinical situation. Other areas of inter-
vention include manipulation of gene transcription and
intracellular processing.

Interleukin 10

IL-10 is a naturally occurring anti-inflammatory
cytokine that modulates Th cell transdifferentiation
into the Th2 subset and also forms a part of the Th2
response and is primarily synthesised by the Th2 cells,
monocytes, and B cells. It decreases the release of the
proinflammatory Th1 cytokines52 and reduces DNA
binding of NFkappaB after lipopolysaccharide (LPS)
stimulation.53 In primates injected with sublethal doses
of endotoxin, IL-10 reduces cytokine levels, but does
not affect the coagulation/fibrinolytic pathway.54 In cul-
tured monocytes, IL-10 increases IL-1ra and TNF P-75
receptor production and reduces IL-8 and monocyte
chemoattractant protein-1 (MCP-1) levels.55

In experimental studies, IL-10 has been shown to
decrease levels of inflammatory markers and reduce the
severity of pancreatitis,56,57 and this was also seen in
studies using IL-10 knockout mice.58 In experimentally
induced pancreatitis, IL-10 levels parallel serum TNF
levels and anti-IL-10 treatment reduces lung injury and
pancreatic acinar necrosis, as well as reducing mortality
from 42% to 0%.59,60 Synthetic IL-10 agonist pretreat-
ment reduced lung injury and mortality from experi-
mental pancreatitis.61

In humans, IL-10 levels have shown variable associa-
tion with tissue injury and severity of pancreatitis.
Pezzilli et al.62 showed that healthy subjects had unde-
tectable IL-10 levels, while in AP patients, serum IL-10
levels were increased on the first day of the disease and
then progressively decreased in the following days. On
the first day of the AP, patients with the mild disease
had serum levels of IL-10 significantly higher than those
in patients with severe disease. This implies that an
effective anti-inflammatory response early on in the
course of the disease may help in reducing its severity.
In other studies, plasma IL-10 levels were correlated
with the severity of pancreatitis and could be used as a
marker for severity prediction.16,63,64 Two recent trials
have shown contrasting results for IL-10 in post-
endoscopic retrograde cholangio pancreatography
(ERCP) pancreatitis. In both trials, patients received
recombinant IL-10 or placebo before ERCP and had
their course followed. One study reported no difference
in clinical outcome between the two groups. However,
they did not have any patients with severe pancreatitis.65

In the other trial, patients having therapeutic ERCP
received placebo or IL-10 in two different doses — 4µg/
kg or 20 µg/kg. Their study revealed no difference in
inflammatory markers between the groups; however, a
significant reduction in the severity of pancreatitis was
seen with IL-10 at the higher dose. These results remain
significant, despite a lower (not significant) use of thera-
peutic interventions and precut techniques in the
placebo group.66 While IL-10 seems to have potential as
an anti-inflammatory agent, in some situations, such as
meningococcemia and pneumococcemia, high IL-10
levels have been associated with increased mortality
from infectious causes.67,68

Genetic control of IL-10 secretion may have a role
to play in modifying the severity of pancreatitis, as
polymorphic areas do exist within the IL-10 gene.
Unpublished work from our laboratory has failed to
show any correlation between disease severity and the
IL-10 microsatellite locus or the promoter region
polymorphisms.

Clearly, IL-10 holds the promise of a global diminu-
tion of the cytokine response, and further work is
needed on its use in AP.
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Interleukin 6

IL-6 is a cytokine that is produced in a spectrum of
immunologically active cells, such as monocytes/
macrophages, endothelial cells, and fibroblasts, in re-
sponse to stimuli. It is also produced in the pancreatic
tissue after experimentally induced pancreatitis,42 as
well as by periacinar myofibroblasts in response to
TNF-α and IL-1�.69 It is important in the generation of
the acute-phase reactants by hepatocytes and appears
to be the main driving impulse directing their secre-
tion.70,71 IL-6 levels are elevated in pancreatitis and
serve as markers of severity of pancreatitis, in addition
to paralleling the course of the disease.1,72–74 IL-6 levels
can also help to predict the possibility of pulmonary
complications.49 In this aspect, IL-6 is superior to C-
reactive protein (CRP) or �-2 microglobulin and has
been shown to rise 12–24h before other inflammatory
markers.63,75,76 Mononuclear cell production of IL-6 is
higher in patients with pancreatitis when compared with
healthy volunteers.77 When comparing patients with
complicated versus uncomplicated pancreatitis, IL-6
production from mononuclear cells is much higher in
the complicated group.27 Post-ERCP pancreatitis serves
as a good model for human pancreatitis and allows ob-
servation of the changes from time to initial injury. Af-
ter ERCP, IL-6 has been shown to rise within 6h, as well
as to correlate with the incidence of abdominal pain.78

In patients with proven post-ERCP pancreatitis, IL-6
levels are higher in severe compared with mild pancre-
atitis and rise within 12h.79

The role of IL-6 is essentially a diagnostic one, in that
it helps in early severity stratification of pancreatitis.
This enables the patients at higher risk to undergo in-
tensive monitoring and early identification of complica-
tion. As laboratory medicine develops further, this
could eventually be the ideal test to select high-risk
patients in whom various newer modalities of treatment
for pancreatitis can be applied.

Platelet activating factor

Platelet activating factor (PAF) is a proinflammatory
cytokine elaborated by inflammatory cells, such as
endothelial cells, macrophages, and neutrophils. It in-
creases vascular permeability, increases leukocyte traf-
ficking, and causes tissue injury.80 Administration of
PAF causes pancreatitis,81 and its antagonism amelio-
rates pancreatic damage and lung injury in pancreatitis,
as well as decreasing mortality in experimental models of
AP.80,82–85 PAF-acetylhydrolase (PAF-AH) is the en-
zyme responsible for the inactivation of PAF. Studies
using recombinant PAF-AH have shown improvements
in pancreatitis as well as in lung injury.86 Lexipafant
(British Biotech, Oxford, UK), a powerful PAF antago-

nist, has undergone clinical trials recently. The initial
trials showed a decrease in the incidence of organ failure,
as well as improved clinical scoring and a reduction in
inflammatory markers.1,87 However, the phase III trial
did not show any improvement in organ failure rate or
mortality.11 This may have been due to the presence of
ongoing organ failure in many patients at the time of
recruitment into the study (within 72h) and therefore,
there may be better results if Lexipafant is infused at the
time of presentation, before organ failure has developed.

Chemokines

The chemokine family consists of small molecules that
are involved in leukocyte activation and trafficking into
areas of inflammation and infection. They can be struc-
turally subdivided into two main subfamilies: CXC, in
which the first two of four conserved cysteine residues
have an intermediary amino acid (IL-8), and the CC
subfamily (MCP-1), in which the first two cysteine
residues are adjacent.88 Many chemokines have been
implicated in various aspects of the propagation of pan-
creatitis. MCP-1 and RANTES (regulated on activa-
tion, normal T cell expressed and secreted) have been
shown to be released from pancreatic acinar cells by the
effect of ethanol.89 The role of chemokines extends be-
yond leukocyte attraction; they are increasingly being
recognized as modulators of immune responses by the
selective recruitment of Th1 and Th2 cells.90,91

Interleukin 8. IL-8 is synthesized by monocytes, en-
dothelial cells, and neutrophils, among other cells.
It is a chemokine that is responsible for neutrophil
chemoattraction, degranulation, and release of elastase.
Among patients with AP, IL-8 production closely paral-
lels serum neutrophil elastase levels.92 IL-8 levels are
associated with the severity of pancreatitis and can be
used as predictive markers.1,63,93 Mononuclear cell pro-
duction of IL-8 is increased in patients with AP versus
controls77 in complicated versus uncomplicated pan-
creatitis.27 The ratio of IL-10 to IL-8 is decreased in
patients with severe versus mild pancreatitis, showing
that an imbalance in anti-inflammatory and proin-
flammatory cytokines influences severity.94 The present
position of IL-6 and IL-8 is that they are excellent pre-
dictive markers of outcome and used as such in research
studies. Their clinical use is limited by the lack of an
efficient, cheap, and easily accessible laboratory assay
method at present.

Other cytokines

A number of other cytokines have been studied and are
currently under investigation as possible mediators of
inflammatory damage in AP.
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IL-2 is known to be a Th1 subset product and an
essential component of the normal immune response. In
mice, induced AP is associated with lowered IL-2 pro-
duction; this is further lowered by intraperitoneal
endotoxin, and is accompanied by 90% mortality. This
high mortality rate is attenuated by recombinant IL-2.95

Soluble IL-2 receptor (sIL-2R) levels are elevated in
AP and more so in severe AP,96 and peak sIL-2R is
predictive of lethal outcome in AP.49 In patients with
post-ERCP pancreatitis, soluble IL-2R levels peak at 6
days following ERCP.97 This supports a role of IL-2 in
the inflammatory processes of AP.

IL-4 is a powerful modulator of Th cell trans-
differentiation into the Th2 subset and has an
anti-inflammatory role in the body. Like IL-10, it
downregulates proinflammatory cytokine production
and, therefore, may have a role in ameliorating tissue
damage in pancreatitis. Polymorphisms of this gene
have been associated with colitis98 and may be of impor-
tance in influencing the course of AP. A trial involving
gene transfer therapy of IL-4 and IL-10 is currently
underway for the treatment of colitis, and the results of
this would be illustrative for other fields.99

IL-11 is a Th1 subset product that has anti-
inflammatory effects. In mice, recombinant IL-11 ame-
liorated the histological severity of AP in the early
stages and decreased TNF mRNA levels in pancreatic
tissue.100 In humans, IL-11 levels are elevated in severe
AP more than in mild AP.63

IL-18 is a substrate for caspase-1, in addition to IL-1,
and plays an important role in the pro-inflammatory
Th1 response by co-stimulating interferon-γ produc-
tion. A cohort study has recently demonstrated an
association between IL-18 levels and complicated pan-
creatitis.101 This serves to underline the importance of
caspase-1 as a future target of study, as well as therapeu-
tic modulation.

Future directions

From the work done so far a number of possible direc-
tions for future work have emerged.

There are a number of emerging mediators, recep-
tors, and metabolizing enzymes that could have an im-
portant role in the inflammatory cascades which result
in complicated AP. These would include macrophage
migration inhibitory factor, IL-18, and caspase-1. Their
roles need to be explored and defined.

As seen from the Lexipafant study, single-cytokine
antagonism is less likely to be successful due to the
overwhelming level of redundancy within the inflamma-
tory cascade. A number of anti-inflammatory cytokines
have emerged, and their roles are currently under study.
Further research is needed into the areas that include

IL-4, IL-11, and IL-1ra. The roles and biology of these
cytokines are known in other disease conditions and
they are candidates for study in pancreatitis. Trials of
IL-10 in clinically predicted severe AP would be the
next appropriate step after the encouraging results in
preventing post-ERCP pancreatitis.

The genetic control and modulation of the cytokine
network is an interesting field with many areas yet unex-
plored. A number of polymorphisms exist within the
human genome, and many of these lead to functional
alterations in the protein product which they encode
for. Among these, PAF-AH has a missense mutation,
which is found in 4% of the Japanese population. This
has been associated with a number of diseases, among
which is an increased incidence of aortic aneurysmal
disease.102 It would be interesting to see if this has any
associations with AP. The results of gene transfer
therapy trials of IL-4 and IL-10 in colitis may be rel-
evant to AP.
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