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Review article

Mechanisms of reperfusion injury after warm ischemia of the liver

Hartmut Jaeschke

Department of Pharmacology, Pharmacia & Upjohn, Inc., 301 Henrietta Street, Kalamazoo, MI 49007, USA

Abstract: The review highlights recent advances in our under-
standing of basic mechanisms of reperfusion injury after warm
hepatic ischemia. Kupffer cells play a central role as the initial
cytotoxic cell type and as a source of many proinflammatory
mediators. Subsequently, neutrophils are activated and re-
cruited into the liver. Factors and conditions are outlined that
determine whether neutrophils undergo apoptosis without
causing damage or migrate out of the sinusoids and attack
parenchymal cells. In addition to the inevitable inflammatory
response during reperfusion, microcirculatory perfusion
failure, due to an imbalance between the actions of vasodila-
tors and vasoconstrictors, also has a serious impact on
reperfusion injury. A better understanding of the basic patho-
physiology will reveal potential targets for therapeutic inter-
ventions and will show us how to avoid risk factors that may
aggravate reperfusion injury.
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Introduction

Warm hepatic ischemia-reperfusion injury occurs
during surgical resections, liver transplantation, and
hemorrhagic shock. This can lead to local damage in the
liver, but also, if severe enough, to systemic organ dys-
function. This review focuses on the basic mechanisms
of reperfusion injury as they have been worked out in a
variety of experimental models. Although these mecha-
nisms of injury may be discussed separately, it is impor-
tant to recognize that each component can contribute to
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a variable degree to the overall injury. The exact contri-
bution can vary greatly depending on the experimental
conditions, e.g., length of ischemia or priming of inflam-
matory cells by endotoxin/sepsis.

Kupffer cells

Reactive oxygen species

Interest in mechanisms of reperfusion injury increased
dramatically with the hypothesis that xanthine oxidase-
derived reactive oxygen species might be responsible
for the pathophysiology.1 The initial, simplistic view was
that these oxygen radicals generated during reperfusion
cause cell damage by lipid peroxidation (LPO). A large
number of investigations using mainly antioxidant inter-
ventions appeared to support this hypothesis.2 How-
ever, more detailed mechanistic studies into the role of
reactive oxygen-mediated liver injury clearly argued
against LPO as a relevant injury mechanism. Some of
the experimental evidence against this hypothesis was
that no relevant intracellular oxidant stress could be
found in the reperfused liver either in vitro3 or in vivo.4

Furthermore, hepatocytes can detoxify a tremendous
amount of reactive oxygen5 even when subjected previ-
ously to ischemia.3 Finally, the extent of LPO necessary
to cause significant liver cell damage is by far higher
than that ever measured during reperfusion.6 These
data do not exclude the possibility that, under certain
pathophysiological conditions, there can be an intra-
cellular oxidant stress in hepatocytes. Indeed, after ex-
tended periods of hypoxia or ischemia, intracellular
reactive oxygen formation can be detected.7 Under
these circumstances xanthine oxidase and mitochondria
contribute to the intracellular oxidant stress.7,8 How-
ever, a prerequisite for intracellular reactive oxygen for-
mation is serious ischemic damage to the hepatocyte.7

These are conditions under which cells probably will not
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be able to survive, with or without intracellular oxidant
stress.

The lack of intracellular reactive oxygen formation
under pathophysiologically relevant conditions has
directed interest towards oxidant stress in the hepatic
vasculature.4 Kupffer cells (KC) were rapidly identified
as the critical source of reactive oxygen during the
initial phase of reperfusion injury in vivo.9,10 Reducing
the capacity of KC to produce reactive oxygen by
gadolinium chloride and methyl palmitate effectively
protected against reperfusion injury,9,11 suggesting an
important role of vascular oxidant stress in the patho-
physiology. Nevertheless, based on the evidence
discussed above, it appears unlikely that oxygen radical-
induced LPO is the main injury mechanism. Recent
experiments using protease inhibitors suggest that pro-
teases also may play a role in the KC-mediated injury
phase,12 indicating potentially synergistic effects of
these cytotoxic mediators.13 Additional effects of
reactive oxygen generated by KC could be to modulate
the activation of redox-sensitive transcription factors
such as nuclear factor (NF)-κB and activator protein-1
(AP)-1 in endothelial cells (EC) and hepatocytes,14,15

thereby regulating proinflammatory genes.16

Although KC can be activated by subjecting them to
hypoxia with subsequent reoxygenation,17,18 reactive
oxygen formation under these conditions is only
moderate and of short duration.18 However, the initial
activation in vivo is potentiated by the generation
of complement factors, leading to prolonged oxidant
stress.19 Since complement activation also affects neu-
trophils, the complement cascade represents multiple
opportunities to effectively attenuate reperfusion injury
during both the early and the later phases.19 Interest-
ingly, complement factors not only activate inflamma-
tory cells but also initiate defense mechanisms in the
liver. Although first recognized during ischemia-
reperfusion,4,9 an increased efflux of glutathione (GSH)
from hepatocytes with subsequent oxidation in plasma
was also shown during endotoxemia.20 Since there is no
cell damage during the early phase of endotoxemia, it
was concluded that the increased GSH levels in plasma
were not caused by nonspecific leakage of cellular con-
tents but had to be caused by increased release through
the GSH transporter. This conclusion was supported by
the finding that depletion of complement eliminated
this efflux.20 Thus, there appears to be a defense system
in place that is activated by the same mediators, i.e.
complement factors, that also stimulate reactive oxygen
formation of KC, thereby protecting the hepatic vascu-
lature from damage by KC. This hypothesis was further
supported by the demonstration of a protective effect of
extracellular GSH in the sinusoids against reperfusion
injury.21 Furthermore, hydrogen peroxide was identified
as the relevant oxidant under these conditions.21

Proinflammatory cytokines

In addition to reactive oxygen and proteases, KC are
the major source of cytokines during reperfusion.
Tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-
1), are generated during reperfusion.22,23 Eliminating
TNF-α by using neutralizing antibodies effectively at-
tenuated the second phase of hepatic reperfusion in-
jury.22 Since this injury phase is mediated to a large
degree by neutrophils,24 these findings indicate that the
dominant effect of these primary cytokines is to activate
neutrophils. Indeed, TNF-α and IL-1, together with
complement factors (C5a) and platelet activating factor
(PAF), can induce neutrophil sequestration in the
liver.25–28 Moreover, TNF-α and C5a can upregulate Mac-
1 (CD11b/CD18),28,29 an adhesion molecule that is criti-
cal for neutrophil-mediated liver injury.30,31 TNF-α and
IL-1 are also potent activators of transcription factors
and a number of proinflammatory genes, e.g.,
chemokines and adhesion molecules. Kupffer cells have
always been considered the primary source of cytokine
formation during reperfusion. However, recent data
showed that splenectomy can reduce TNF-α formation
and protect against reperfusion injury.32 These findings
suggest that either extrahepatic sources have to be con-
sidered or that signals from outside the liver may be
involved in KC activation in vivo. In line with these
observations is a recent publication demonstrating a
critical regulatory role of CD41 T-lymphocytes in gen-
erating proinflammatory cytokines during hepatic
ischemia-reperfusion injury.33 Consistent with the hy-
pothesis that the main effect of these cytokines is neu-
trophil and EC activation, depletion of CD41
T-lymphocytes reduced neutrophil accumulation during
reperfusion and protected against the later, neutrophil-
dependent injury phase.33 Other recent data suggest
that platelet activating factor (PAF) could also play a
regulatory role in TNF-α and chemokine production.34

Thus, the activation of KC during reperfusion, espe-
cially in terms of cytokine release, is not well under-
stood and needs further investigation.

Neutrophils

A role of neutrophils in the pathophysiology of warm
hepatic ischemia-reperfusion injury was first recognized
by demonstrating a beneficial effect of neutropenia.24

However, evidence quickly accumulated suggesting that
the neutrophil-induced injury phase starts hours after
the KC-mediated injury. For example, neutropenia only
during the first 5–6 h of reperfusion did not protect,
despite reducing the number of neutrophils in the tissue
by 60%.24 These results were supported recently with a
study showing that only about 30% of all neutrophils in
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liver during endotoxemia transmigrate and contribute
to the injury.35 Furthermore, despite the priming of
early neutrophils in the liver,10 neutrophils contribute to
the oxidant stress36 and to mediator formation, e,g., of
leukotriene B4

37 and 12-hydroxyeicosatetraenoic acid,6

only at later times. Moreover, antibodies against TNF-
α22 and chemokines38 protected only against the second-
ary injury phase (.6h). In line with these findings are
reports showing that antibodies against adhesion
molecules such as Mac-131 or intercellular adhesion
molecule (ICAM)-139 are still beneficial, even if admin-
istered during the KC-mediated injury phase. These
data together support very strongly the hypothesis that
neutrophils contribute to the injury several hours after
initiation of reflow. Based on these findings, it is clear
that interventions directed against KC have to be initi-
ated before, or at the latest, at the beginning of reflow,
whereas interventions against neutrophils can be ad-
ministered later. The apparently delayed response of
neutrophils is caused by the multiple steps required in
that mechanism. For a neutrophil to damage a hepato-
cyte, mediators have to be generated that recruit
neutrophils into the liver, adhesion molecules have to
be upregulated, and mediators have to be formed that
induce neutrophil transmigration and adherence to pa-
renchymal cells.

Recruitment of neutrophils into the liver vasculature

As discussed in part above there are a number of
acute inflammatory mediators that cause neutrophil
accumulation in sinusoids. These include the comple-
ment factor C5a,19,29 TNF-α,25,27,28,40 IL-1,28 PAF,26,34 and
C-X-C chemokines.38,41,42 Although some factors may
act directly, e.g., C5a, others may act by inducing the
generation of other mediators.34 Although accumulated
neutrophils were shown to be activated and
primed,19,26,40 there is limited evidence that these leuko-
cytes actually cause relevant injury while sequestered in
sinusoids. In vitro experiments using an isolated liver
system showed that virtually all isolated neutrophils,
even without stimulation, get stuck in the liver vascula-
ture during their first pass through the liver.43,44 How-
ever, these neutrophils do not cause injury under these
circumstances.43,44 Only if these leukocytes are artifi-
cially stimulated with phorbol ester can a neutrophil-
mediated injury be detected.43,44 These data
demonstrate the safety margin needed to avoid unnec-
essary organ damage. The mediators discussed above
are generated quite frequently in response to trauma,
infection, and endotoxemia. Based on the animal data
one would expect that in each case neutrophils accumu-
late in the vasculature of the liver and other organs.
However, in most cases these neutrophils will undergo
apoptosis and will be removed by KC without harm.45

Still, a controversial topic is the question of how neu-
trophils actually accumulate in the liver. In the general
vasculature, various families of adhesion molecules,
e.g., selectins, integrins, and the immunoglobulin super
family, are responsible for neutrophil rolling and firm
adherence in postcapillary venules.46 Although P-
selectin47 and ICAM-148 appear to be relevant for neu-
trophil adherence in postsinusoidal venules, recent data
strongly suggest that, at least during endotoxemia and
ischemia-reperfusion, the neutrophils relevant for the
injury are actually accumulating in sinusoids.35 In these
capillaries, neutrophil sequestration does not depend
on â2 integrins27 or on ICAM-127,48 or selectins.47 These
results were obtained at time points when neutrophils
do not contribute to the injury. During the neutrophil-
mediated injury phase antibodies to adhesion molecules
may well protect and reduce the number of cells in the
liver. However, since mediators generated during the
injury contribute to neutrophil recruitment at later
phases, these data do not allow the conclusion that ad-
hesion molecules are actually necessary for neutrophil
sequestration in sinusoids. In contrast, mechanical
factors appear to be involved in this process.49 These
include cell swelling and injury in sinusoids during an
inflammatory response,49 generation of vasoconstric-
tors,50 and reduced deformability of neutrophils
exposed to inflammatory mediators.51

Adhesion molecules and transmigration

If the sinusoidal endothelial cell layer is intact, transmi-
gration of the neutrophil requires adhesion molecules,
e.g., ICAM-128 and vascular cell adhesion molecule-1
(VCAM-1),52 but not platelet endothelial cell adhesion
molecule-1 (PECAM-1).53 Even under conditions of
ischemia-reperfusion with significant endothelial cell
damage, only denudation of the sinusoids would make
the parenchymal cell accessible without transmigration.
This difference is reflected by observations that anti-
bodies against lymphocyte function associated antigen
(LFA-1, CD11a/CD18) only protect against endotoxin-
induced neutrophil injury, but not during ischemia-
reperfusion.54 In contrast, antibodies against the
adhesion molecule Mac-1 (CD11b/CD18), which is
mainly responsible for inducing a cytotoxic response
(i.e., degranulation, reactive oxygen formation)
protected in both models.30,31,54 Moreover, antibodies
against ICAM-1, the counterreceptor for both â2

integrins, are protective in both situations.28,39,55 Never-
theless, even with damaged but still present endothelial
cells, transmigration may still be required.

Adhesion molecule pairs critical for transmigration of
neutrophils in the liver include â2 integrins/ICAM-128

and â1 integrins/VCAM-1.52 ICAM-1 is constitutively
expressed on endothelial cells and KC, but not on hepa-
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tocytes, and can be upregulated on all liver cell types.56

Cytokines, i.e., TNF-α, IL-1, and IFN-γ, have been
identified as the most potent stimuli.56 In contrast,
VCAM-1 is not expressed on any control liver cells, but
can be transcriptionally induced on all endothelial cells
and KC.52 PECAM-1, which is critical for neutrophil
transmigration in many organs, is not expressed on sinu-
soidal endothelial cells and appears to play no role in
hepatic neutrophil transmigration.53

Although the expression of adhesion molecules is
important for neutrophil migration, a gradient of
chemotactic factors is necessary for a neutrophil to
move. The recent discovery of several families of
chemokines provided significant progress in our under-
standing of the pathophysiology of reperfusion injury.
The C-X-C chemokine family, which represents
members that are selectively chemotactic for neutro-
phils, includes IL-8, growth-related oncogene (Gro),
cytokine-inducible neutrophil chemoattractant (CINC,
rat), epithelial neutrophil activating protein-78 (ENA-
78, rat, human), and KC (mouse). It is interesting that
hepatocytes can generate large amounts of these C-X-C
chemokines41,57 and therefore can provide a chemotactic
gradient for neutrophil transmigration. In support of
this hypothesis it was shown that overproduction of
CINC in hepatocytes causes hepatic neutrophil seques-
tration, transmigration, and injury.42 There is increasing
evidence in models of hepatic warm ischemia-
reperfusion of enhanced generation of C-X-C
chemokines during reperfusion and that antibodies
against these mediators attenuate the neutrophil-
mediated reperfusion injury.38,58,59 In addition to
chemokines, there appear to be other injury-related
mediators (e.g., lipid peroxidation products) that may
act as chemoattractants, especially at later time points
when proinflammatory mediators are exhausted.60 Uni-
dentified factors released by parenchymal cells under-
going apoptosis can also induce transmigration.61

Adherence to parenchymal cells and mechanism
of injury

Experiments with isolated cells suggest that reactive
oxygen formation and injury to hepatocytes involves
Mac-1 on neutrophils and ICAM-1 on hepatocytes.62 A
more detailed analysis of adherence indicated that both
â2 integrins participate in the binding to hepatocytes.63

Surprisingly, only LFA-1 used ICAM-1 as a
counterreceptor; Mac-1 appeared to bind to a constitu-
tively expressed ICAM-1-independent ligand. The
binding of neutrophils to hepatocytes was dependent on
the presence of low levels of IL-8.63 One of the most
controversial topics is the molecular mechanism of neu-
trophil-mediated killing of hepatocytes. For an in-depth
discussion, the reader is referred to a recent review.64

Briefly, in vivo there is substantial evidence for a role of
reactive oxygen as well as proteases in the pathophysiol-
ogy. However, isolated neutrophils appear to kill hepa-
tocytes predominantly through proteases.65 One reason
for the necessity to generate reactive oxygen in vivo
is to inactivate plasma anti-proteases.65 Other proin-
flammatory effects of reactive oxygen are to activate
redox-sensitive transcription factors such as NF-κB and
AP-1, which are involved in the transcriptional regula-
tion of cytokine and chemokine formation and adhesion
molecule expression.14 In addition to these proinfl-
ammatory effects, it appears that reactive oxygen can
activate intracellular signalling pathways, leading to cell
death.66 These pathways can be blocked by hormones
such as atrial natriuretic peptide (ANP) and cyclic
guanosine monophosphate (cGMP).67 Both ANP and
cGMP also protect against hepatic reperfusion injury.68

Microcirculatory failure

The development of delayed perfusion failure in the
hepatic microcirculation during reperfusion has been
well documented.69–71 In general, the longer the ischemic
episode, the more severe the microcirculatory distur-
bances, which correlate well with cell injury during
reperfusion.70,71 Because of the accumulation of neutro-
phils in sinusoids, it was initially hypothesized that,
similar to the “no-reflow” phenomenon in the heart,
sinusoidal plugging was responsible for this problem.
However, recent evidence clearly argues against this
concept.43,72 Large numbers of neutrophils stuck in sinu-
soids did not affect sinusoidal perfusion in an isolated
perfused rat liver system.43 During reperfusion in vivo,
most sinusoids that contained neutrophils were still
conducting flow.72 The passage of cells through sinu-
soids with stagnant neutrophils was delayed but not
blocked,72 suggesting that sinusoidal neutrophil seques-
tration did not directly cause perfusion failure. The
more likely reason for the microcirculatory perfusion
failure is an increase in the formation of vasoconstric-
tors and vasodilators and potentially disease-mediated
altered vascular responsiveness, which can lead to local
imbalance and, consequently, ischemic injury.73 Mount-
ing experimental evidence supports this concept. First,
removal of the vasodilator nitric oxide (NO) aggravated
reperfusion injury, which could be reversed by adding
exogenous NO.74 Moreover, stimulating NO production
with l-arginine during reperfusion attenuated portal
hypertension and reperfusion injury.75 Other vasodila-
tors were also shown to be beneficial.76 On the other
hand, the potent vasoconstrictor endothelin-1 (ET-1) is
produced during reperfusion.77 ET-1 can cause sinusoi-
dal constriction and perfusion failure by contraction of
Ito cells.50.78 Consequently, ET-1 antiserum,79 a mono-



406 H. Jaeschke: Mechanisms of reperfusion injury

clonal anti-endothelin antibody,80 or an ET receptor
antagonist,81 improved hepatic microvascular blood
flow during reperfusion, attenuated tissue damage, and
improved survival. Similarly, a receptor antagonist of
the vasoconstrictor thromboxane attenuated reperfu-
sion injury.82 In addition to the imbalance between
vasodilator and vasoconstrictor formation, microcircu-
latory disturbances can also be triggered by activation
of the coagulation cascade and fibrin deposition during
reperfusion.83

Clinical implications

A number of different injury mechanisms have been
discussed that can contribute to various degrees to the
overall pathology of reperfusion injury in the liver and
may also cause distant organ damage. Based on these
advances in our understanding of the pathophysiology,
it is critical to limit microvascular disturbances and to
minimize the inevitable inflammatory response during
reflow to the point where it does not develop into a self-
aggravating process. Reducing the warm ischemia time
as much as possible will be beneficial. However, even
short periods of ischemia can activate and prime inflam-
matory cells. As long as these cells are in a hyperactive
state, the patient is at risk that during a second insult
(e.g. endotoxemia, sepsis, or additional trauma) there is
massive aggravation of the inflammatory response and
injury. This was demonstrated in an animal model,
where a 20-min period of ischemia-reperfusion caused
only mild oxidant stress and injury. However, in combi-
nation with a low dose of endotoxin, a massive potentia-
tion of oxidant stress and injury was observed.84 In
contrast, if the inflammatory cells are in a hypoactive
(refractory) state, the defense mechanisms against
bacterial infection are impaired and the patient is also
at risk. Because of the documented importance of the
inflammatory response for the pathophysiology of
reperfusion injury, the state of the immune system
before ischemia, as well as additional insults affecting
the immune system during reperfusion, will ultimately
determine the severity of reperfusion injury.
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