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for other gastrointestinal cancers, the survival rate
for pancreatic cancer remains dismal, emphasizing the
need for a better understanding of pancreatic cancer
biology, which can provide the basis for the develop-
ment of newer biomarkers and targets for therapeutic
intervention.

Over the past two decades, tremendous effort has
been devoted to identifying genetic alterations (at both
the chromosomal and nucleotide levels) in pancreatic
cancer, and these efforts have led to the discovery of
gross chromosomal losses and gains at selected loci
and mutations/deletions of oncogenes and tumor-
suppressor genes, including KRAS2, CDKN1A/p16,
TP53, SMAD4/DPC4/MADH4, and BRCA2.2–5 In addi-
tion to these genetic changes, many alterations in gene
expression and specific signaling pathways (such as the
aberrant activation of the Hedgehog and Notch path-
ways) have been described in pancreatic cancer and its
precursors.6–19

In recent years, the field of cancer epigenetics has
attracted considerable interest among researchers and
clinicians, especially after the introduction of tools for
studying DNA methylation, such as the polymerase
chain reaction (PCR) amplification of bisulfite-modified
DNA. It is now apparent that epigenetic alterations,
including DNA hyper- and hypomethylation, and the
associated transcriptional changes of the affected genes
are central to the evolution and progression of various
human cancers.20 With the use of genome-wide screen-
ing technologies, as well as conventional candidate gene
approaches, we and other groups have identified a num-
ber of genes that are affected by aberrant DNA methy-
lation in pancreatic cancer. Importantly, the detection
of DNA methylation alterations has been proposed for
cancer risk assessment, and for the early detection of
cancer, as well as for tumor classification and prognosti-
cation; these alterations have also been suggested as
therapeutic targets.20–25 In this article, we will review
recent advances in our understanding of the epigenetic
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Introduction

In the United States, more than 30000 people develop
pancreatic cancer each year and almost an equivalent
number of patients die of this disease, making pancre-
atic cancer the fourth leading cause of cancer death.1

Pancreatic ductal adenocarcinoma is an extremely ag-
gressive and devastating neoplasm, which often invades
to and destroys surrounding stromal components, in-
cluding lymphatic, vascular, and perineural systems,
ultimately metastasizing to distant organs. In contrast to
the improvements in survival that have been realized
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features associated with pancreatic neoplastic progres-
sion, focusing on their biological and clinical relevance.

Aberrant hypermethylation in pancreatic cancer

Aberrant hypermethylation of promoter cytosine-
phospho-guanine CpG islands is closely linked to gene
silencing and loss of tumor suppressor function in
cancer.20 The first detailed analysis of aberrant DNA
hypermethylation in pancreatic cancer was reported in
1997 by Schutte et al.,26 who demonstrated aberrant
hypermethylation of the p16/CDKN1A gene in a subset
of pancreatic cancers. The p16 methylation was found
exclusively in the wild-type alleles and was associated
with gene silencing,26 suggesting DNA methylation as
an alternative pathway to inactivate this important
tumor-suppressor gene in pancreatic cancer. Ueki
et al.27 analyed a large panel of 45 pancreatic cancers for
the methylation status of multiple genes (including p16
and hMLH1) and CpG islands previously identified as
aberrantly methylated in other cancers. This study was
the first to show that specific genes are selectively
hypermethylated in pancreatic cancer.27 The results also
revealed that a small subset (14%) of pancreatic cancers
have a higher prevalence of DNA methylation, sugges-
tive of the presence of a CpG island methylator (CIMP)
phenotype.23,27 Subsequent studies have demonstrated
that pancreatic cancers with methylation of the highest
proportion of CpG islands in a gene panel are larger in
size and are found in older patients,28 though distinct
biological, clinical, or pathological differences have not
yet been identified to support the use of a CIMP
classification for pancreatic cancer. Nonetheless, nu-
merous studies in recent years have demonstrated that
the methylation-induced silencing of biologically rel-
evant genes in pancreatic cancer is common and
influences tumor behavior. Indeed, many investigators
have used candidate gene approaches to identify vari-
ous tumor-suppressor or cancer-related genes that
undergo aberrant methylation in pancreatic cancer, in-
cluding APC,29 TSLC1/IGSF4,30 SOCS-1,31 cyclin D2,32

RASSF1A,33 WWOX,34 RUNX3,35 CDH13,36 DUSP6,37

and HHIP (Hedgehog interacting protein).38 The intro-
duction of genome-wide screening techniques has en-
abled us to search for novel sites for epigenetic
alterations in pancreatic cancer. First, Ueki et al.28 used
methylated CpG island amplification coupled with
representational difference analysis (MCA/RDA) to
isolate a number of CpG islands differentially
methylated in pancreatic cancer. One of the CpG
islands identified was located in the 5′ region of the
gene preproenkephalin (ppENK), encoding for a native
opioid peptide with growth-suppressor properties,39,40

which was found to be aberrantly methylated in the vast

majority (>90%) of pancreatic cancers.28,41 Aberrant
methylation at p16, ppENK, and others was also detect-
able at various frequencies in pancreatic intraepithelial
neoplasias (PanINs) and in intraductal papillary
mucinous neoplasms of the pancreas (IPMNs), known
precursors to invasive adenocarcinoma;42,43 also, the ab-
errant methylation increased progressively with advanc-
ing stage of the neoplasms.41,44 These findings suggest
that aberrant methylation at some loci occurs at rela-
tively early stages and accumulates during pancreatic
neoplastic progression. Sato et al.45 used oligonucle-
otide microarrays to search for novel methylation sites
in pancreatic cancer. This high-throughput approach
identified a total of 475 candidate genes that were in-
duced by a DNA methyltransferase inhibitor (5-aza-2′-
deoxycytidine 5-Aza-dC) in four pancreatic cancer cell
lines, but not in HPDE, a non-neoplastic pancreatic
ductal epithelial cell line, and subsequent analyses con-
firmed aberrant hypermethylation of 11 genes in a large
number of established and primary pancreatic cancer.45

One of the genes identified was UCHL1/PGP9.5, a
member of the carboxyl-terminal ubiquitin hydrolase
family, and this gene was recently shown to be methy-
lated in other cancers, including head and neck46 and
esophageal squamous cell carcinoma.47 Importantly, the
methylation status of UCHL1 was an independent
prognostic factor for patients with esophageal cancer,
emphasizing an important role of this gene in tumor
progression.47 Another gene of interest identified in
this study was Reprimo, a p53-induced mediator of
cell-cycle arrest at the G2 phase.48 Reprimo was
aberrantly hypermethylated in over 80% of pancreatic
cancers, which is in striking contrast to the frequent
hypomethylation and overexpression of 14-3-3sigma,
another p53-induced mediator of G2/M cell cycle arrest,
in pancreatic cancer.49 Recently, Takahashi et al.50 ex-
tensively studied the methylation status of Reprimo in a
wide spectrum of malignant tumors (total of 645 tumors
representing 16 tumor types) and found frequent me-
thylation in certain tumor types. In separate studies, we
demonstrated the aberrant methylation and silencing of
two additional genes (SPARC and TFPI-2), selected
from the list of candidate methylation genes, in a vast
majority of pancreatic cancers.51,52 Using methylation-
sensitive-representational difference analysis (MS-
RDA), Hagihara et al.53 successfully discovered 27 CpG
islands that were aberrantly methylated and 13 genes
that were silenced in pancreatic cancer. Finally, a global
gene expression comparison of IPMNs and normal
pancreatic ductal epithelium led to the identification of
CDKN1C/p57KIP2 as a gene commonly downregulated
in pancreatic ductal neoplasms through one or more
of the following mechanisms: CDKN1C promoter
hypermethylation and histone deacetylation, and/or
loss of the CDKN1C-expressing allele, as evidenced by
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loss of heterozygosity (LOH) of the CDKN1C locus and
hypomethylation of LIT1, an imprinting control region
that silences CDKN1C when LIT1 is hypomethylated
and expressed.54

Mechanisms of aberrant hypermethylation in cancer

Although several lines of evidence suggest that aberrant
DNA hypermethylation in cancer is maintained by
DNA methyltransferase activity,55,56 the mechanism by
which such methylation occurs at specific loci during
carcinogenesis remains unclear. The most likely sce-
nario is that DNA methylation initially arises at discrete
CpG sites independent of gene expression, but then
spreads into promoter CpG islands, presumably
through a loss of balance between factors that promote
and those that protect against methylation spreading.57

This model was supported by a study showing that
GSTP1 methylation in prostate cancer cells was initi-
ated by a combination of transcriptional gene silencing
(by removal of the Sp1 sites) and seeds of methylation
that subsequently spread across the promoter CpG
island.58 It has been also suggested that establishing the
transcriptional silencing of a gene involves a close inter-
play between DNA methylation and histone modifica-
tions, and that methylation change in cancer can be a
secondary event that may occur as a consequence of
genetic or other events, such as the loss of transcription
factor(s), that alter the transcriptional activities of af-
fected promoters. For example, the leukemia-
promoting PML-RAR fusing protein, which functions
as a transcriptional regulator of retinoic acid (RA)
target genes, has been shown to induce RARb2 gene
hypermethylation and silencing by recruiting DNA
methyltransferases to target promoters.59 Bachman et
al.60 have demonstrated, in a model system where DNA
methyltransferase genes are disrupted in a colorectal
cancer cell line, that histone modifications (methylation
of histone H3 lysine-9) are the primary events associ-
ated with the re-silencing of the p16 gene that occurs
prior to DNA methylation. In addition, a recent study
has shown that the loss of estrogen receptor (ER) α
expression by RNA interference results in the silencing
of downstream target genes (including progesterone
receptor [PR]) through the recruitment of polycomb
repressors and histone deacetylases to their promoters,
followed by the progressive accumulation of DNA me-
thylation in their promoter CpG islands.61 These find-
ings have suggested that, at least at some genetic loci,
initial silencing events lead to chromatin modifications
that may predispose promoter CpG islands to
hypermethylation. However, it is not known whether
this is true for all the CpG islands that are aberrantly
methylated in cancer. Finally, recent evidence suggests

that RNA interference, a highly conserved system
mediating sequence-specific RNA degradation, can also
drive the transcriptional silencing of target genes by
inducing DNA methylation in human cells,62,63 raising
the possibility that microRNA alterations which occur
during cancer development could also contribute to ab-
errant DNA methylation in cancer.64

Functional consequences of aberrant
hypermethylation in pancreatic neoplastic progression

Among the substantial number of hypermethylated
genes identified in pancreatic cancer, several may be
functionally involved in tumor growth, invasion, me-
tastasis, and chemoresistance (Table 1). One typical
example is the classic tumor-suppressor gene p16, which
undergoes methylation-induced silencing in almost all
those pancreatic cancers (around 15%–20% of cases)
that do not have bi-allelic genetic inactivation of p16.
For many genes, there is ample evidence that their
anti-cancer functions are silenced by methylation and
not by genetic inactivation. For example, there is grow-
ing evidence that SPARC, a gene identified as silenced
in most pancreatic cancers in association with aberrant
methylation, has inhibitory effects on the growth of
pancreatic and other cancers in vitro and in vivo.51,65

Moreover, a recent study identified a novel function of
SPARC as a sensitizer to chemotherapy and radiation
therapy, suggesting the potential usefulness of SPARC-
based gene or protein therapy for refractory pancreatic
cancers.66 Interestingly, SPARC is overexpressed in
stromal fibroblasts adjacent to cancer cells and its ex-
pression in these fibroblasts may be regulated through
tumor-stromal interactions,51 though the biological
significance of SPARC expression in the cancer stroma
remains unknown. WWOX (WW domain containing
oxidoreductase), a candidate tumor-suppressor gene
that maps to the common fragile site FRA16D, was
recently shown to be inactivated in pancreatic cancer
by genetic (deletion) and/or epigenetic (promoter
hypermethylation) mechanisms, and transfection of
WWOX induced apoptosis and inhibited the colony for-
mation of pancreatic cancer cell lines lacking WWOX
expression.34 Another gene of interest in TFPI-2 (tissue
factor pathway inhibitor 2), encoding for a broad-
spectrum serine proteinase inhibitor, which was found
to be commonly inactivated by aberrant methylation
in pancreatic cancer.52 Restored expression of TFPI-2
in nonexpressing pancreatic cancer cells resulted in
marked suppression of their proliferation, migration,
and invasive potential in vitro.52 Finally, recent studies
have shown that BNIP3, a hypoxia-inducible proapop-
totic gene, is silenced in pancreatic cancer,67 and loss
of BNIP3 function may increase cellular resistance to
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hypoxia-induced cell death67 and to certain chemothera-
peutic agents, including gemcitabine.68,69 These studies
together suggest that the epigenetic inactivation of
selected genes is an important mechanism that con-
tributes to the aggressive phenotypes of pancreatic
cancer.

On the other hand, it is also notable that genes whose
expression should favor neoplastic progression, such
as COX2 and CXCR4, have been shown to be
downregulated in a subset of pancreatic cancers in
association with promoter hypermethylation.70,71 The
biological significance of aberrant methylation in these
potential cancer-promoting genes is unknown, but this
phenomenon could be part of a genome-wide process of
CpG island hypermethylation that occurs during pan-
creatic carcinogenesis.23,27

Gene hypomethylation in pancreatic cancer

DNA hypomethylation is another major form of epige-
netic alteration in human cancer.72 This epigenetic alter-
ation is detected both at the genomic level (global
hypomethylation) and at specific sequences (regional or
site-specific hypomethylation), such as normally methy-
lated repeat sequences and 5′ regions of certain genes.73

Global DNA hypomethylation has been considered to
occur, at least in part, as a result of altered folate me-
tabolism, and has been linked to genetic instability 74

and tumorigenesis.75 Despite the lack of evidence sup-
porting a causal relationship between folate status and
DNA methylation abnormalities in cancer,76 the defi-
ciency of nutrients essential for methylation (such as
vitamin B12 and folate) is associated with an increased
risk of several cancers, including pancreatic cancer.77 In
addition, we have found that pancreatic cancers with
the most deficient methylenetetrahydrofolate reductase
(MTHFR) genotypes have more DNA hypomethy-
lation and more chromosomal losses, supporting the
hypothesis that global hypomethylation can promote
genomic instability.78

Little is known about the role of site-specific hypo-
methylation in cancer, but increasing evidence linking
decreased methylation at specific CpG sites and the
overexpression of affected genes has led to an attractive
hypothesis: that promoter hypomethylation can cause
gene activation.72,73 Table 2 provides a list of genes
identified as aberrantly hypomethylated in pancreatic
cancer. Rosty et al.79 demonstrated that overexpression
of the S100A4 gene in pancreatic cancer was associated
with hypomethylation at specific CpG sites within the
first intron. An extensive methylation analysis of a large
panel of genes with differing expression status in pan-
creatic cancer demonstrated frequent hypomethylation
in seven genes (claudin4, lipocalin2, 14-3-3sigma/T
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stratifin, trefoil factor2, S100A4, mesothelin, and prostate
stem cell antigen [PSCA]) that were overexpressed in
the neoplastic epithelium of pancreatic cancers and not
expressed in normal pancreatic ducts.49 In an attempt
to identify additional hypomethylation targets in
pancreatic cancer, we used oligonucleotide microarrays
to screen for genes that displayed expression patterns
associated with hypomethylation.80 This analysis identi-
fied two genes, S100P and maspin, as aberrantly
hypomethylated in pancreatic cancer.80 Interestingly,
cell-type-restricted maspin expression appears to
be regulated by DNA methylation,81 and other
investigators also reported an association between
hypomethylation and the overexpression of maspin
in pancreatic cancer,82,83 supporting the role of
hypomethylation in the transcriptional activation of
this gene.

As is the case for aberrant DNA hypermethylation in
cancer, however, it is not certain at this time whether
gene-related hypomethylation is a cause or a conse-
quence of altered transcriptional activity in cancer
cells.84 Recently, De Smet et al.85 analyzed the mecha-
nism of selective hypomethylation at the MAGE-A1
promoter in tumor cells and provided evidence that site-
specific hypomethylation in this gene may result from a
transient process of demethylation (presumably as part
of genomic hypomethylation) followed by a persistent
local inhibition of remethylation, due to presence of
transcriptional factors. Further studies will be required
to determine the mechanism and the role of aberrant
gene hypomethylation in pancreatic cancer.

Diagnostic potential of epigenetic markers in
pancreatic cancer

The development of early detection strategies, using
molecular markers, should lead to an improved clinical
outcome for pancreatic cancer.86,87 In this regard, epige-
netic changes (aberrant DNA hypermethylation) hold
promise as novel screening/diagnostic markers of pan-
creatic cancer, especially for high-risk individuals such
as those with a strong family history of pancreatic
cancer.88,89 The diagnostic potential of epigenetic
markers has been evaluated in clinical samples (i.e.,
pancreatic juice) from patients with different pancreatic
diseases.32, 45, 52, 90,91 Fukushima et al.90 first demonstrated
that, using a methylation-specific PCR (MSP) assay,92

aberrant methylation of ppENK and p16 was detected
in 30 (67%) and 5 (11%) of 45 pancreatic juice samples,
respectively, collected during surgery form patients
with pancreatic cancer, while such methylation was not
detected in 20 pancreatic juice samples from patients
with benign pancreatic disorders, including chronic pan-
creatitis.90 Using a panel of three genes (NPTX2,T
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SARP2, and CLDN5) identified by a microarray ap-
proach as very frequently methylated in pancreatic can-
cer, we were able to detect aberrantly methylated DNA
in 18 (75%) of 24 pancreatic juice samples from patients
with pancreatic cancer, but not in samples from benign
counterparts.45 These findings have highlighted the fea-
sibility of detecting aberrantly methylated DNA (espe-
cially using multiple markers), in pancreatic juice for
the diagnosis of pancreatic cancer. Yan et al.93 recently
used real-time quantitative MSP (QMSP) to demon-
strate that 26 of 42 (62%) patients with pancreatic can-
cer had higher levels of p16 promoter methylation in
their pancreatic juice samples, compared with 3 of 24
(13%) controls (benign biliary disease) and 2 of 26 (8%)
patients with pancreatitis. Our recent study also demon-
strated that quantifying pancreatic juice methylation,
using QMSP, could better predict pancreatic cancer
than detecting methylation using conventional MSP.94 It
should be noted, however, that many genes (including
ppENK and p16) that undergo methylation in pan-
creatic cancer are normally methylated in the non-
neoplastic duodenum, albeit at low levels in most cases,
and, therefore, such methylation is frequently detected
in pancreatic secretions aspirated from the duodenum
of patients with and without pancreatic cancer.90,95 Thus,
strategies to detect pancreatic cancer using aberrantly
methylated genes should rely on the analysis of pure
pancreatic juice collected through selective pancreatic
duct cannulation rather than that of pancreatic secre-
tion collected within the duodenal lumen.

From the standpoint of risk assessment, our observa-
tion that patients with pancreatic cancer have a greater
propensity to methylate non-neoplastic duodenum, spe-
cifically at certain CpG islands, than patients without
neoplasia is important.95 This finding raises a possibility
that determining mehtylation at selected genes in
non-neoplastic tissues such as the duodenum could be a
useful biomarker to assess future risk of developing
pancreatic cancer. Additional studies are needed to
identify the best set of methylation markers for early
detection and/or risk assessment, to determine the de-
tection technologies best suited for each application (as
well as their cost performance) in the clinical setting,
and to establish the sensitivity and specificity of these
selected markers in larger studies.

Epigenetic alteration as a therapeutic target in
pancreatic cancer

DNA methylation changes in cancer may have impor-
tant therapeutic implications, because such epigenetic
alterations, unlike genetic changes, are considered to be
a reversible biological phenomenon.24,25 For example,
some potential cancer-accelerating genes activated

through the hypomethylation of their corresponding
promoters could be therapeutic targets for inactivation
by strategies to induce de-novo methylation at specific
CpG sites. A recent study demonstrated that treatment
of hepatocellular carcinoma cells with a methylated oli-
gonucleotide targeting the hypomethylated IGF2 pro-
moter inhibited its expression and markedly prolonged
the survival of nude mice with an implanted tumor.96

On the other hand, inhibitors of DNA methylation
and histone deacetylation (HDAC) have been consid-
ered promising chemotherapeutic agents, based on the
rationale that these drugs could potentially restore
some of the epigenetically silenced tumor-suppressor
genes in cancer.24,97 Indeed, a number of such inhibitors
have been shown to suppress tumor growth in vitro and
in vivo, and some of the inhibitors are being tested in
clinical trials for patients with different types of solid
and hematological cancers.98,99 One of the most com-
monly used DNA methyltransferase inhibitors, 5-Aza-
dC (Decitabine; Dacogen, MGI Pharma, Bloomington,
MN, USA), has been extensively investigated for its
effects on gene expression and for its antineoplastic
potential.100–102 This drug, however, is also known to
have toxic side effects, as well as mutagenic poten-
tial.103,104 Recently, a more chemically stable and orally
administrable demethylating drug, zeburaline, has been
demonstrated to inhibit the growth of bladder cancer in
mice.105 Only a few studies, however, have addressed the
effects of epigenetic modifying drugs on pancreatic can-
cer. Missiaglia et al.106 have recently shown that 5-Aza-
dC inhibits the growth of pancreatic cancer cell lines
and that this effect is associated with the activation of
interferon-related genes. These authors also showed
that pretreatment with 5-Aza-dC increased the sensitiv-
ity of pancreatic cancer cells to other chemotherapy
agents, including tumor necrosis factor (TNF)-α,
cisplatin, and gemcitabine.106 It is also notable that many
cancer testis antigens, such as G antigens (GAGE) and
so forth, are robustly induced in pancreatic cancer cells
by 5-Aza-dC treatment,45,107 suggesting the possible use
of this drug as an aid in immunotherapy directed against
these antigens. Additionally, several HDAC inhibitors
(such as trichostatin A [TSA] and FR901228) have been
shown to inhibit growth and to induce apoptosis in pan-
creatic cancer cells.108–110 However, the use of these epi-
genetic modifying drugs for the treatment of pancreatic
cancer should be carefully evaluated in preclinical stud-
ies, because previous reports have suggested that these
drugs could also reactivate potential cancer-promoting
genes when silenced by methylation and, in some cases,
accelerate tumor progression. In fact, we and other in-
vestigators have shown that treatment with a DNA
methyltransferase inhibitor resulted in the upregulation
of invasion-promoting genes (including MMPs and
uPA), thereby leading to increased invasiveness in
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certain cancer cell lines.111–113 We have also demon-
strated that genes favorable for tumor progression,
such as COX-2 and CXCR4, are silenced by aberrant
hypermethylation in a subset of pancreatic cancers and
are re-expressed in these cancers after treatment with 5-
Aza-dC and/or TSA.70,71 The efficacy of these epigenetic
modifying drugs may vary among individual cancers,
and could be determined by the balance between the
activation of tumor-suppressor genes and that of
cancer-promoting genes. Furthermore, a recent study,
showing that global DNA hypomethylation can lead to
tumor formation in mice, raises a question about the
rationale for the use of demethylating agents for can-
cer.75 Thus, these questions need to be further investi-
gated before DNA methylation and HDAC inhibitors
are moved into clinical use for patients with pancreatic
cancer.

Summary

A growing body of evidence indicates that pan-
creatic cancer is characterized by widespread and
profound epigenetic changes, including CpG island
hypermethylation and gene hypomethylation. These
aberrant methylation events could represent novel
sdiagnostic and therapeutic targets for this devastating
disease. Many fundamental questions about the biologi-
cal and clinical significance of DNA methylation have
yet to be answered, such as how and when such epige-
netic defects occur during pancreatic ductal carcinogen-
esis, and how our knowledge of epigenetic features in
pancreatic cancer should be translated into the clinical
setting.
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