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from pancreatic intraepithelial neoplasias (PanINs),
which are smaller (<5mm) and usually involve small
branch ducts.18 In addition, IPMNs lack the ovarian
stroma characteristic of mucinous cystic neoplasms. The
papillary epithelial component of IPMNs, the degree of
mucin production, and the cystic dilatation are variable.
Although IPMNs are, by definition, noninvasive neo-
plasms, they are often diagnosed in the setting of
an associated invasive adenocarcinoma.11–13,19–21 The
majority (around 70%) of IPMNs arise in the head of
the pancreas, although they also arise in the body or
tail of the pancreas and, in some cases, they diffusely
involve the entire gland.22 IPMNs are being identified
with increased frequency and now account for around
20% of all pancreatic resections at many academic
centers.22 It is also notable that some IPMNs arise in
association with inherited syndromes such as Peutz-
Jeghers syndrome23 and familial adenomatous polyposis
(FAP).24

Clinically, most IPMNs are less aggressive and
survival after surgical resection is better than that for
conventional ductal adenocarcinoma.10–14,20,21 However,
a subset of patients with IPMNs experience recurrence
or develop disseminated pancreatic adenocarcinoma
after surgical resection and die of their disease, espe-
cially when their IPMNs have an associated infiltrating
carcinoma.21,25,26 Importantly, an associated invasive car-
cinoma is sometimes found in a distant location of the
pancreatic gland where no IPMN is identifiable, sug-
gesting that IPMNs serve not only as a precursor to
invasive carcinoma but also as a predictor of an inde-
pendent invasive carcinoma.27 Recent screening studies
performed on asymptomatic individuals at high risk for
developing pancreatic neoplasia suggest that many indi-
viduals with an inherited susceptibility to develop pan-
creatic ductal adenocarcinoma may initially develop
IPMNs prior to developing invasive pancreatic adeno-
carcinoma.28,29 These screening studies have identified
six patients with IPMN (including one patient who also

Abstract
Intraductal papillary mucinous neoplasm (IPMN), an increas-
ingly recognized cystic neoplasm of the pancreas with a broad
spectrum of malignant potential, has been considered a pre-
cursor to infiltrating ductal adenocarcinoma. Because of its
unique clinical, radiological, pathological, and molecular fea-
tures, IPMN has attracted considerable interest among clini-
cians and researchers. Although some genetic alterations have
been described in IPMNs, the molecular features that charac-
terize the evolution and progression of these neoplasms are
largely unknown. Recent studies have shown that aberrant
methylation of the promoter cytosine-phospho-guanine
(CpG) island is a common mechanism associated with the
silencing of tumor-suppressor and cancer-related genes in
IPMNs. Importantly, the prevalence of such methylation in-
creases along with the grade of neoplasia, suggesting that
these epigenetic events may contribute to the progression of
IPMNs. Further studies of epigenetic alterations in IPMN will
shed light on the molecular pathogenesis of this unique neo-
plasm and lead to the identification of epigenetic markers that
can be applied in the clinical setting.

Key words Epigenetics · Hypermethylation · IPMN · Precur-
sor · Pancreatic cancer

Introduction

Intraductal papillary mucinous neoplasm (IPMN),
originally known from its peculiar endoscopic finding of
mucin extrusion through an enlarged orifice of the am-
pulla of Vater,1,2 is a mucin-producing cystic neoplasm
of the pancreas with unique clinicopathological fea-
tures.3–17 IPMN is, by definition, a grossly visible
noninvasive neoplasm that arises in the main pancreatic
duct or its major branches.15,18 This distinguishes IPMNs
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had a microinvasive adenocarcinoma) and all six pa-
tients underwent curative resection. These observations
together highlight the importance of IPMN as a detect-
able precursor to invasive pancreatic adenocarcinoma.

In contrast to our increasing knowledge about the
clinical and pathological manifestations of IPMNs, the
molecular background underlying these neoplasms re-
mains poorly understood. Several studies have identi-
fied genetic alterations, such as those seen in invasive
pancreatic ductal adenocarcinoma, in IPMN; however,
the prevalence of such genetic events is generally lower
than that in conventional ductal adenocarcinoma.9 The
infrequent genetic alterations in IPMNs may partly re-
flect the fact that IPMNs are noninvasive neoplasms,
but available evidence suggests that IPMNs have a
lower prevalence of known genetic alterations than
another form of noninvasive ductal lesions, PanINs.30

These findings raise the possibility that alternative
mechanisms of tumor-suppressor gene inactivation,
such as promoter cytosine-phospho-guanine (CpG) is-
land hypermethuylation,31 play an important role in the
development of IPMNs. Although a number of studies
have revealed frequent alterations in DNA methylation
(aberrant hypermethylation and hypomethylation) in
infiltrating pancreatic ductal adenocarcinoma,32–41 the
demonstration of frequent epigenetic alterations in
IPMNs has only been described recently.42,43 In this ar-
ticle, we will briefly review recent advances in our
understanding of the molecular events that occur in
IPMNs, with special attention paid to epigenetic
alterations.

Genetic alterations in IPMNs

Several investigators have studied a series of IPMNs for
genetic alterations that have been previously identified
in invasive pancreatic adenocarcinoma. Z’graggen et
al.44 found activating point mutations in the K-ras
oncogene in at least one of the microdissected lesions
from 13 (81%) of 16 IPMNs, with a stepwise increase in
the frequencies from papillary hyperplasia (adenoma),
to low-grade dysplasia (borderline), and to carcinoma in
situ and invasive carcinoma. Fujii et al.45 analyzed 13
IPMNs for polymerase chain reaction (PCR) amplifica-
tion of multiple microsatellite markers and found
frequent loss of heterozygosity (LOH) at several chro-
mosomal loci, including 6q (54%), 8p (31%), 9p (62%),
17p (38%), and 18q (38%), suggesting that inactivation
of the p16 gene (at chromosome 9p), the p53 gene (at
17p), and the DPC4/SMAD4 gene (at 18q) may occur in
these neoplasms. However, it appears that biallelic ge-
netic inactivation of these tumor-suppressor genes oc-
curs less frequently in IPMNs than it does in ductal
adenocarcinomas. For example, mutations in the p53

tumor-suppressor gene were detected in only 8% of
IPMNs46 (compared to around 75% in invasive pancre-
atic adenocarcinoma).47 Loss of DPC4/SMAD4 protein
expression, a surrogate marker for SMAD4 genetic in-
activation, which has been observed in more than 50%
of invasive adenocarcinomas48 and 30% of PanIN-3
lesions,49 is rarely seen in noninvasive IPMNs and re-
mains an infrequent event (around 15%) even among
IPMNs with invasive adenocarcinoma.50–52 In support of
this finding, Inoue et al.53 reported no mutation of the
DPC4/SMAD4 gene in 18 IPMNs. It has also been
shown that LOH at 19p13.3, the STK11/LKB1 Peutz-
Jeghers gene locus, is common (>30%) in IPMNs.23 A
recent immunohistochemical study has also demon-
strated that inactivation of STK11/LKB1 is likely to be
more common in IPMNs than in pancreatic ductal
adenocarcinoma.54

Global analysis of gene expression revealed the
overexpression of a number of genes (including
lipocalin 2, galectin 3, claudin 4, cathepsin E, and trefoil
factor family [TFF1, TFF2, and TFF3]) in IPMNs.54 A
comparable gene expression analysis of IPMNs with
and without an associated invasive carcinoma identified
a subset of genes (such as claudin 4, CXCR4, S100A4,
and mesothelin) associated with the invasive phenotype
of these neoplasms.56 That study also identified a num-
ber of genes differentially expressed in IPMNs that have
not been implicated in invasive ductal adenocarcino-
mas,56 suggesting a specific gene expression signature
that characterizes IPMNs. These findings may lead to a
hypothesis that the molecular targets in IPMNs differ
from those in infiltrating ductal adenocarcinoma. Alter-
natively, it is possible that other molecular mechanisms,
such as epigenetic alterations, could play a role in the
pathogenesis of IPMNs; this possibility has been re-
cently explored by us and other investigators.

Aberrant DNA methylation in IPMNs

Using methylation-specific PCR (MSP), we analyzed a
total of 51 IPMNs with different histological grades for
the methylation status of seven CpG islands (including
p16 and preproenkephalin [ppENK], which encodes for
a native opioid peptide with tumor-suppressor proper-
ties) previously identified as aberrantly methylated in
pancreatic adenocarcinoma.42 We found that aberrant
hypermethylation of at least one of these CpG islands
was detected in a majority (more than 80%) of the
IPMNs. In most of the CpG islands analyzed (including
p16), the methylation frequencies in IPMNs were simi-
lar to or slightly lower than those in invasive pancreatic
adenocarcinomas.33,34 Importantly, hypermethylation of
ppENK and p16 was detected at a significantly higher
frequency in high-grade (in situ carcinoma) IPMNs than
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in low-grade (adenoma/borderline) IPMNs, and the
overall number of methylated loci was significantly
higher in high-grade IPMNs than in low-grade IPMNs.
We also demonstrated that aberrant methylation was
indeed associated with loss of expression in IPMNs; for
example, loss of nuclear staining of p16 protein was
detected in 5 of 6 (83%) IPMNs with methylated p16
but in only 8 of 33 (24%) IPMNs with unmethylated p16
(P = 0.01). These findings are the first to demonstrate
that aberrant methylation of promoter CpG islands
is a common event in IPMNs, and suggest that the
methylation-associated silencing of p16, ppENK, and
other genes may contribute to the malignant transfor-
mation of IPMNs.

Another group examined the methylation status of a
panel of 15 genes (including p14, p15, p16, p17, APC,
hMLH1, E-cadherin, and others) in 28 IPMNs (10
noninvasive and 18 invasive IPMNs).43 Using a modified
(nested, two-step) MSP, the authors of that study dem-
onstrated a high prevalence of aberrant methylation in
their series of IPMNs (methylation of at least one of the
markers analyzed in 92% of IPMNs) with some of the
genetic loci (such as APC) being more frequently me-
thylated in invasive IPMNs than in noninvasive IPMNs.
In agreement with our study, they also showed that the
prevalence of methylation of multiple genes (3 or more)
was increased from 20% in noninvasive IPMNs to 55%
in invasive IPMNs. However, more methylation was
detected at several genetic loci (such as p16, E-cadherin,
MGMT, and hMLH1) in their series than in our series
of IPMNs and invasive pancreatic adenocarcinoma,
probably due to differences in the number of samples
analyzed, primer location, and MSP assays.

Other genes have also been identified as aberrantly
methylated in IPMNs, at varying frequencies; these
genes include cyclin D2 (50%),57 SOCS-1 (6%),58 and
TFPI-2 (60%).40 Importantly, TFPI-2 (tissue factor
pathway inhibitor 2), encoding a broadspectrum serine
proteinase inhibitor, was aberrantly methylated at a sig-
nificantly higher frequency in high-grade (carcinoma in
situ) IPMNs than in low-grade (adenoma/borderline)
IPMNs (85% vs 17%; P = 0.0002).40 Restored expres-
sion of TFPI-2 by stable gene transduction in pancreatic
cancer cells lacking TFPI-2 expression resulted in
marked suppression of their proliferation, migration,
and invasiveness. We have also demonstrated that, in a
subset of pancreatic cancers, LOH at the TFPI-2 gene
locus (7q22 region) is associated with complete methy-
lation (but not mutation) of the remaining allele, raising
the possibility of two-hit inactivation through LOH and
methylation. These results suggest that epigenetic alter-
ations could play a major role in the neoplastic develop-
ment of IPMNs.

Recently, microarray-based expression profiling has
been used in identifying genes affected by aberrant DNA

methylation in cancer.36,59,60 We used oligonucleotide
microarrays (Affymetrix; Santa Clara, CA, USA) to
identify genes that were specifically downregulated in
IPMNs compared to normal pancreatic ductal epithe-
lium.61 Using this approach, we identified a large panel of
underexpressed genes in IPMNs (http://pathology2.jhu.
edu/pancreas/IPMNdown300/index.htm), some of
which may be associated with epigenetic mechanisms.
One of the genes identified was the cyclin-dependent
kinase inhibitor CDKN1C/p57KIP2, which was demon-
strated to be underexpressed at both the transcriptional
and the protein levels in a significant proportion of
IPMNs. We further investigated the mechanisms for the
CDKN1C downregulation in IPMNs and in pancreatic
cancer cell lines, and our results revealed the potential
mechanism to be a combination of DNA methylation,
histone deacetylation, and loss of the maternal allele at
11p15.5 expressing CDKN1C. This study suggests that
gene expression profiling using microarrays may help to
identify potential targets affected by epigenetic alter-
ations in IPMNs.

Clinical implications of aberrant methylation
in IPMNs

Because IPMN has a diverse spectrum of biological and
clinical behaviors, accurate diagnosis and preoperative
assessment of the neoplastic grade of IPMNs is critical
to determine the optimal management for these
patients. It is still difficult, however, with currently
available imaging techniques, conventional cytology in
pancreatic juice, and serum tumor markers (such as
carbohydrate antigen [CA]19-9) to adequately differen-
tiate between benign and malignant IPMNs or to detect
an associated invasive carcinoma preoperatively.61–64

Only a few molecular markers (such as K-ras gene mu-
tations and telomerase activity) have been evaluated in
an attempt to improve the diagnosis of IPMNs.66,67

As has been proposed for other cancers,68,69 the
detection of aberrantly methylated genes in secondary
sources (such as pancreatic juice obtained endoscopi-
cally) may be useful in refining the preoperative diagno-
sis or the postoperative follow-up of patients with
IPMNs. For example, genes frequently methylated in
IPMNs but not methylated in either normal pancreatic
ductal epithelium or in non-neoplastic cystic lesions
(pseudocysts) could potentially be used to diagnose
IPMNs or to monitor patients for recurrent disease fol-
lowing surgery, while genes preferentially methylated in
IPMNs with an associated invasive carcinoma (invasive
IPMNs) could be used preoperatively to predict the
presence of such an invasive focus in IPMNs. Indeed,
we have been able to detect methylated DNA in the
pancreatic juice samples of patients with high-grade
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IPMNs; in our preliminary MSP analyses of pancreatic
juice samples collected during surgery, methylated
ppENK was detected in four (44%) of nine juice pan-
creatic samples from patients with high-grade (carci-
noma in situ) IPMNs (two of the four IPMNs had an
associated invasive carcinoma), but in none of two
pancreatic juice samples from patients with low-grade
(borderline) IPMNs.70 Furthermore, a recent study ana-
lyzing multiple methylation markers in a large series
of pancreatic juice samples, using quantitative MSP
(QMSP), revealed that the amount of methylation
tended to increase with the grade of IPMN; more
methylated genes were detected in pancreatic juice
samples from high-grade IPMNs than in the samples
from low-grade IPMNs.71 These findings suggest that
the quantification of methylated DNA in pancreatic
juice could be useful as an aid to differentiate invasive
IPMNs from noninvasive IPMNs preoperatively. Fur-
ther studies are needed to determine how epigenetic
markers identified in IPMNs can be best applied in the
clinical setting.
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