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Role of epigenetic alterations in cholangiocarcinoma
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tion which increases the risk of CC by a factor of 25 to
50.3–5 Hepatolithiasis, which is common in Asia, is also
strongly associated with CC, with an incidence of ap-
proximately 5% to 10% of this tumor.6 Anatomical ab-
normalities of the biliary tract, such as biliary atresia or
Caroli’s disease, leading to an inflammatory environ-
ment, are also associated with a higher incidence of CC.7

Patients with predisposing risk factors develop CC as
much as two decades earlier than those without such
factors. Most CC, however, occurs in the absence of
known etiological factors.

At present, little is known about molecular alter-
ations in CC. As for many other tumors, the develop-
ment of CC must also be understood as a multistep
process, with the accumulation of genetic and epige-
netic alterations in regulatory genes, leading to the acti-
vation of oncogenes and the inactivation or loss of
tumor suppressor genes (TSGs). The genetic changes in
CC identified so far include mutations of k-ras, p53,
p16INK4a, and Smad4; loss of heterozygosity (LOH) of
APC; and allelic losses on 3p13-p21 and 8q22.8–12

In the past two decades, epigenetic inactivation of
TSGs, through DNA methylation, has come into focus
in studies of the development of malignant tumors,
including CC.

DNA methylation

DNA methylation is a reversible chemical modification
of the cytosine in CpG islands of promoter sequences,
catalyzed by a family of DNA methyltransferases.13,14

DNA methylation does not change the genetic informa-
tion, it just alters the readability of the DNA and results
in the inactivation of genes by subsequent transcript
repression.

In humans and other mammals, CpG island me-
thylation is an important physiological mechanism.
The inactivated X-chromosome of females, silenced

Abstract
Intrahepatic cholangiocarcinomas are rare malignant epithe-
lial liver tumors arising from intrahepatic bile ducts. The
prognosis of affected patients is poor. Several risk factors,
including hepatolithiasis, liver fluke infection, and anatomical
abnormalities associated with inflammation of the biliary tract
have been described. At present, little is known about the
cellular and molecular mechanisms leading to the develop-
ment of cholangiocarcinoma. In recent years, in addition to
genetic alterations, epigenetic inactivation of (tumor sup-
pressor) genes by promoter CpG island hypermethylation
has been recognized as an important and alternative mecha-
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Introduction

Cholangiocarcinoma (CC) is a rare primary malignant
epithelial liver tumor arising from intrahepatic bile
ducts. CC accounts for less than 2% of all malignancies
and for about 5% to 10% of primary liver cancers.1

Adenocarcinoma of the extrahepatic bile ducts (EBDs)
is even less more common, by a factor of 2 to 5, com-
pared to carcinomas of the gallbladder.

The incidence of CC is 2–4/100000 per year, and it
has increased in recent years worldwide.2 The highest
incidence of CC is in Southeast and Eastern Asia.
These areas have a high incidence of liver fluke infesta-
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alleles of imprinted genes, and inserted viral genes
and repeat elements are inactivated through promoter
methylation.15,16

In human cancer, global hypomethylation of the ge-
nome exists in parallel to local hypermethylation in the
promoter regions of TSGs.17 Global hypomethylation in
cancer causes genomic instability, and loss of imprint-
ing, with biallelic expression, in, for example, IGF2. In
contrast, promoter methylation is associated with the
aberrant silencing of transcription, leading to the inacti-
vation of TSGs or the biallelic suppression of imprinted
genes, as has been described for p57.18

TSGs epigenetically silenced through DNA hyper-
methylation are involved in important molecular path-
ways of carcinogenesis, e.g., cell-cycle regulation,
apoptosis, DNA repair, and cell adhesion.19

Proliferation and apoptosis

Among the genetic abnormalities that have been
demonstrated in CC, p53 mutations and activating
k-ras mutations are the most frequent.20 Alterations of
the INK4a-ARF locus, located on 9p21, have been
shown to contribute to the development of biliary tract
tumors. This locus codes two cell-cycle regulatory pro-
teins, p16INK4ab and p14ARF, acting through the retino-
blastoma (Rb)-cyclin-dependent protein kinase 4
(CDK4) and p53 pathways. p16INK4a binds to CDK4 and
inhibits the ability of CDK4 to interact with cyclin D1.
In the absence of p16INK4a, CDK4 binds to cyclin D1 and
phosphorylates pRb, leading to entry into the S phase.21

This tumor suppressor gene (i.e., p16INK4a) is frequently
inactivated in a variety of tumors by deletion, muta-
tions, and promoter hypermethylation. In CC, CpG
island methylation appeared to be the main cause of
p16INK4a inactivation. Methylation of p16INK4a was de-
scribed in up to 83% of CCs.22,23

Our own observations demonstrated a strong cor-
relation between p16INK4a methylation and k-ras muta-
tions, suggesting a close molecular link between p16INK4a

and k-ras in the tumorigenesis of CC. A similar associa-
tion between p53 mutations and promoter methylation
of p16INK4a or p14ARF was not described.24

Further, p16INK4a hypermethylation seems to be an
early and frequent event during neoplastic progression.
Ishikawa et al.25 demonstrated reduced p16INK4a protein
expression due to p16INK4a promoter methylation in
intraductal papillary neoplasm of the liver arising in
hepatolithiasis.

The p14ARF gene induces cell-cycle arrest by prevent-
ing p53 degradation through its binding to MDM-2. In
our investigations, p14ARF hypermethylation occurred in
25% of CCs.26 Moreover, inactivation of p14ARF, irre-
spective of genetic or epigenetic events, seems to be a

rare mechanism, suggesting that p16NK4a is the primary
target gene of the INK4A/ARF locus in CCs.

Death-associated protein kinase (DAPK) is a
proapoptotic gene that is involved in death receptor
and mitochondrial pathways. Inactivation of DAPK de-
creases the induction of p14ARF/p53, resulting in the in-
activation of the p53-dependent apoptotic pathway.26

DAPK is mostly inactivated through the hyper-
methylation of its promoter.19 In CC, DNA methylation
of DAPK is a rare event, and was described in about 8%
of CCs.23,27

Cell adhesion

E-cadherin (CDH1) is a calcium-dependent cell-
adhesion molecule that suppresses tumor-cell invasion
and metastasis.28,29 Downregulation of E-cadherin by
genetic and epigenetic alterations has been reported in
a variety of malignant tumors, including breast and gas-
tric carcinomas. Moreover, re-expression in E-cadherin-
negative cancer cell lines was induced by treatment
with the demethylating agent 5-aza-2′-deoxycytidine (5-
Aza-dC) suggesting that aberrant promoter methyla-
tion is one mechanism causing transcript suppression of
E-cadherin.30

In CC, mutations of the E-cadherin gene are rare
events, with a prevalence of 12%. Downregulation of
E-cadherin is more commonly mediated through DNA
methylation. Yang et al.23 and Lee et al.31 have described
promoter methylation of E-cadherin in 21% and 48% of
CCs, respectively.

DNA repair

Defects in DNA repair mechanisms may result in the
accumulation of mutations and genomic instability.

The mismatch repair (MMR) system is one of the
most important DNA repair mechanisms, correcting
errors in DNA replication. Defects of the MMR system,
leading to microsatellite instability (MSI), have been
observed in approximately 15% of sporadic colorectal
and gastric carcinomas.32,33 Thorotrast-related CC
showed a high MSI frequency, of up to 63%. The MSI
phenotype showed a coincidence with hMLH1 pro-
moter methylation, suggesting that Thorotrast may
induce MSI through hypermethylation of the hMLH1
promoter.34 Limpaiboon et al.35 reported that in
liver fluke-associated CC the hMLH1 promoter was
hypermethylated in 45% of the cases. Besides, 17% of
the hMLH1 methylated carcinomas showed LOH of
hMLH1. A correlation of MSI and hMLH1 methylation
was also found.35
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Abraham et al.36 reported that MSI also occurred in
biliary intraepithelial papillary neoplasms, but without
hMLH1 CpG island methylation.

The O6-methylguanine DNA methyltransferase
(MGMT) is another important DNA repair gene pro-
tecting cells from DNA damage that is mediated by
mutagenic and cytoxic agents, leading to alkylation at
O6-guanine. Loss or reduced MGMT expression due to
CpG island methylation was detected in several kinds
of human cancers.37,38 In CC, aberrant methylation was
reported to occur at frequencies of 11% to 27%,
respectively.23,31

The detoxificating glutathione S-transferase P1
(GSTP1) gene inactivates electrophilic carcinogens
by conjugation with gluthatione. Promoter methylation
of GSTP1 is best analyzed in prostate cancer. Even in
high-grade prostatic intraepithelial neoplasis, loss of
GSTP1 expression is caused by DNA methylation.
Many other tumor types, including breast and hepato-
cellular carcinomas, showed a GSTP1 hypermethylated
promoter.39–41 In CC, methylation of the GSTP1 gene
was a rare event, occurring in 6% and 34% of cases,
respectively.23,31

Methylation hot spot chromosome 3p

Alterations of the genetic information on chromosome 3
are one of the most frequent and earliest steps in the
carcinogenesis of several types of tumors, including pri-
mary malignant liver tumors. In hepatocellular carcino-
mas (HCCs), LOH of chromosome 3p occurred in about
30% of the patients, with 3p loss being significantly
higher in CC than in HCC.42,43 The short arm of human
chromsome 3 is also one of the regional methylation hot
spots, in addition to chromosomal locuses 11p and 17p.

Several genes on 3p, including RASSF1A at 3p21.3,
hMLH1 at 3p21.3, and the retinoic acid receptor β2
(RARb2) gene at 3p24.2, are candidates for epigenetic
inactivation through promoter hypermethylation.

RASSF1A is a bona fide multifunctional tumor sup-
pressor gene that protects cells from genomic instability
and transformation by stabilizing the microtubules.44,45

Shivakumar et al.46 have reported that RASSF1A blocks
the cell cycle by inducing growth arrest with the inhibi-
tion of cyclin D1 protein accumulation. Recently, it has
been shown that RASSF1A regulates the progression of
mitosis by inhibiting the anaphase promoting complex
activated by the regulatory subunit CDC 20 (APC-
Cdc)20 complex and the stability of mitotic cyclins.
Therefore, loss of RASSF1A may contribute to tumor
progression by inducing both disturbance of mitotic
progression and chromosome instability.45,47 RASSF1A
is one of the most common epigenetically inactivated
genes. In about 50% of malignant tumors, this gene is

methylated. The prevalence is highest in renal cell carci-
noma, reaching about 91%.48 In CC, hypermethylation
occured in approxiamately 67% of cases.31,43,49

Two other putative tumor suppressor genes located
on 3p21.3 are Semaphorin 3B (SEMA3B) and BLU.

Little is known about the BLU gene. In lung cancer,
BLU overexpression inhibits tumor colony formation
effiency. Qiu et al.50 reported that BLU may function
as an environmental stress-reponsive gene, regulated
by E2F, at least in nasopharyngeal carcinomas. How-
ever, BLU methylation is rare in some types of epithe-
lial tumors, e.g., in CC. We have recently found BLU
promoter methylation in about 20% of our CC cases
examined.49

SEMA3B is a member of the Semaphorin family,
playing a role in axonal guidance and regeneration. It
has been demonstrated that SEMA3B suppresses tumor
formation in lung cancer and induces apoptosis. The
latter is antagonized by VEGF165, due to an interaction
with neuropilin (NP)-1 receptor.54–56 Recently, we re-
ported a high prevalence of SEMA36B methylation in
CC, reaching 100%. In contrast, non-neoplastic liver
surrounding the tumor exhibited an unmethylated
SEMA3B promoter.49

Our own data showed that RASSF1A and SEMA3B
hypermethylation significantly correlated with LOH of
RASSF1A and the SEMA3B locus at 3p21.3. Previous
studies have demonstrated that mutations on 3p21.3
are infrequent events. It has also been shown that treat-
ment with the demethylating drug 5-AZA-C restored
RASSF1A and SEMA3B expression in cell lines, sug-
gesting that promoter hypermethylation is responsible
for silencing transcript expression.44,49,54

The (RARb2) gene, located at 3p24.2, functions as a
key retinoid receptor by mediating antiproliferative,
differentiation, and apoptosis-inducing properties of
retinoids. RARb2 expression is reduced in a large vari-
ety of malignant tumors. Methylation-induced silencing
of this gene was described in lung and breast cancers.57,58

In CC, promoter methylation of this gene occurred at a
frequency of 16%.23

Cholangiocarcinoma (CC) versus adenocarcinoma of
the extrahepatic bile ducts (EBDs)

Adenocarcinoma of the EBDs arises from the perihilar
or distal EBDs. The annual incidence is below 1 in
100 000.59 In contrast to CC, the etiological risk factors
are uncommon. Predisposing conditions include bile
duct stones, ulcerative colitis, and/or primary sclerosing
cholangitis, as well as tobacco-associated conditions and
choledochal cysts, to a lesser extent.7,60

The molecular pathogenesis of EBD adenocarcinoma
is understood as less as the cancer-related alterations in
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CC. Comparing epigenetic alterations, the patterns of
methylated genes in EBD adenocarcinoma are similar
to those in CC. Yang et al.23 analyzed the promoter
methylation of 12 putative tumor-suppressor genes in
72 biliary duct cancers, consisting of equal numbers of
CCs and EBD carcinomas. Promoter methylation of
DAPK, GSTP1, and RASSF1A was more prevalent in
adenocarcinoma of the EBDs than in CC (Table 123,61,62).

In benign biliary epithelia specimens, included as
controls, methylation of genes occurred only in indi-
vidual cases. These results demonstrate that methyla-
tion is one of the major mechanisms for the inactivation
of certain TSGs in CC and EBC adenocarcinoma.
p16INK4a promoter methylation occurred in about 43%
and 54%, respectively,23,63 of EBD carcinomas. In pri-
mary scleroscing cholangitis (PSC)-associated EBD car-
cinomas, p16INK4a methylation was relatively rare.
Mutations of the p16INK4a promoter have been reported
as the major inactivating mechanism in PSC.64,65 The
observation that p16INK4a was epigenetically inactivated
in 46% of patients with PSC without carcinoma65 sug-
gests that chronic inflammation leads to gains of methy-
lation with a subsequent transcriptional inactivation of
genes, e.g., those regulating the cell cycle. Similar find-
ings were described in ulcerative colitis and chronic
gastritis.66,67

Recently, Klump et al.68 detected promoter methyla-
tion of p16INK4a and p14ARF in endoscopically obtained
bile specimens from EBD, and concluded that the early
and noninvasive detection of DNA methylation may
serve as an indicator of the malignant potential of bile
duct lesions, especially in patients with an increased risk
for EBD cancer.

Aberrant DNA methylation of the repair gene
MGMT was described in 33% to 40% of EBD car-

cinomas. Interestingly, transcriptional repression of
MGMT, mediated by aberrant promoter methylation,
was associated with the accumulation of GC-to-AT
transitional mutations in the p53 gene and — at a lower
level — also in the k-ras gene.23,27

Summary

Emerging evidence exists, that gene silencing by CpG
island methylation is a fundamental aspect of tumo-
rigenesis. In accord with Knudson’s two-hit gene-
silencing hypothesis, it was clearly shown by several
studies — including our own results — that sporadic
tumors get losses of TSG by mutations in one allele,
while the other allele is hypermethylated, leading to
functional inactivation. Moreover, several TSGs may be
inactivated by biallelic hypermethylation.

In CC, biallelic inactivation by hypermethylation, as
well as allelic loss, has been shown for several TSGs,
including hMLH1, RASSF1A, and SEMA3B.

Another aspect of DNA methylation is that epige-
netic inactivation of DNA repair genes affects genetic
alterations. MSI, mediated through aberrant promoter
methylation of the hMLH1 gene, was also described in
CCs.

Moreover, epigenetic changes can occur at early
neoplastic stages, and may serve as indicator lesions for
the screening of patients with an increased risk for the
disease.

Table 1. Methylation in cholangiocarcinoma and extrahepatic bile duct carcinoma

Gene Location Function CC EBD carcinoma Reference nos.

p16INK4a 9q21 CDK inhibitor 17%–83% 43%–54% 22, 23, 31
p14ARF 9q21 MDM2 inhibitor 25%–30% 46% 22, 23
p15INK4b 9q21 CDK inhibitor 54% 48% 23
APC 5q21 β-Catenin inhibitor 27%–47% 44% 23, 31
p73 1p36.3 p53 Homologue 27% 43% 23
DAPK 9q34.1 Apoptosis 8% 6%–43% 23, 27, 31, 61
E-Cadherin 16q22.1 Cell adhesion 21%–48% 40% 23, 31
TIMP3 22q12 MMP inhibitor 9% ND 23
hMLH1 3p21.3 Mismatch repair 18%–44% 32% 23, 34, 35
MGMT 10q26 DNA repair 11%–27% 33%–40% 23, 27, 31
GSTP1 11q13 Detoxification 34% 6% 23
THBS1 15q15 Anti-angiogenic 11% ND 23
RASSF1A 3p21.3 Apoptosis 48%–67% 69%–83% 23, 43, 49, 62
BLU 3p21.3 Unknown 20% ND 49
SEMA3B 3p21.3 Apoptosis 100% ND 49
RARb2 3p24.2 Retinoid effector 16% 20% 23

CC, cholangiocarcinoma; EBD, extrahepatic bile duct; ND, not done
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