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Stem-cell therapy for hepatobiliary pancreatic disease
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Through progress made in stem cell research, not only
ESCs but also various stem/progenitor cells derived
from adult tissues have been isolated and established.
These include hematopoietic stem cells,3–7 neural stem
cells,8,9 vascular endothelial progenitor cells,10 and he-
patic oval cells.11–13 Recent stem cell-based cell therapies
have shown success in the treatment of various animal
models for diseases, such as Parkinson’s disease, type I
diabetes, and inherited genetic liver diseases.

In this review, we survey the latest development in
the study of both ESCs and adult stem cells (specifically
stem cells from bone marrow (BM)) for the treatment
of hepatobiliary and pancreas diseases, with an empha-
sis on application to clinical therapies. We summarize
and discuss stem cell-based therapies for both pancreas
and liver diseases, and focus on the issues related to
the mechanism of stem cell adaptation, including
“transdifferentiation” and “cell fusion.”

Stem cell therapy for pancreas diseases

Type I diabetes, or insulin-dependent diabetes, repre-
sents a major pancreatic disease with tremendous
appeal as a target for cell replacement therapy. This
disorder, which results from the loss of insulin-
producing beta islet cells due to autoimmune attack,
can be reversed by pancreas or islet cell transplantation
together with steroid-sparing immunosuppression.14,15

Diabetes may be particularly suited to cell transplanta-
tion thereby because, unlike in Parkinson’s disease
where precise connections may be necessary, beta
cells can function autonomously, even outside the
pancreas (e.g., under the kidney capsule). The chief
limitation to the wide application of this potentially
curative therapy is the inadequate supply of islets from
cadavers.

Abstract
The transplantation of pancreatic beta cells or hepatocytes
represents a potential therapeutic approach for type I diabetes
and inherited liver diseases, respectively. Furthermore, ac-
quired liver diseases, particularly acute hepatic failure due to
toxic or viral injury, have been treated in limited clinical trials
with fetal and adult hepatocytes. However, a major limitation
is the insufficient amount of beta cells and hepatocytes avail-
able for grafts. Alternative sources of these cells have yet to be
determined. During the past few years, progress has been
made in the development of new strategies to produce mature
beta cells and hepatocytes. In this review, we outline the cur-
rent state of scientific understanding and controversy regard-
ing the properties of embryonic and adult stem cells in the
field of hepatobiliary and pancreatic diseases. Our objective is
to provide a framework of understanding for the challenges
behind translating fundamental stem cell biology into clinical
therapies.
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Introduction

Stem cells are cells that are capable of self-renewal and
are multipotent, meaning that they can differentiate
into many specific cell types. For a long time, “stem cell”
has been a concept in mammalian biology but not a
reality that could be seen, manipulated, and expanded
in vitro. This has changed with the establishment of
murine embryonic stem cell (ESC) culture in 1981.1,2
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Embryonic stem cells for the treatment of
diabetes mellitus

During the past few years, various groups have tested
the possibility of producing beta cells from ESCs. Soria
et al.16 used a cell-trapping system to select mouse ESCs
able to transcribe the insulin gene, and such cells cor-
rected hyperglycemia when implanted in the spleen of
diabetic mice. Lumelsky et al.17 designed a new protocol
to generate in vitro insulin containing cells from mouse
ESCs. These cells secreted insulin as mature pancreatic
beta cells, although they could not reverse hyperglyce-
mia when grafted into diabetic mice. Recently, several
groups have further modified in vitro protocols.16–22 The
addition of phosphoinositide 3-kinase inhibitors pro-
motes differentiation of a larger number of ESCs to-
ward functional beta cells.20 With manipulation of the
culture conditions and the use of pax4 or pdx-1, both of
which are transcription factors associated with beta-cell
lineage, more efficient and defined ways of making
ESC-derived beta-like cells have been established.21,23

Much of this rodent data has been adapted for use on
human ESCs. The production of insulin by human ESCs
has recently been demonstrated.19,24 Techniques that do
not require murine feeder cells have also been devel-
oped, allowing for single species propagation of ESCs,
and thus avoiding possible zoonotic infection of cells
intended for clinical use.25

Several researchers have argued that the insulin-
positive cells derived from ESCs may not be true
“insulin-producing” beta-like cells.26,27 Rajagopal et al.26

showed that contrary to previous reports, no message
for insulin was detectable in cultured beta-like cells,
which suggested that the cells may be concentrating the
hormone from the medium rather than actually produc-
ing it. Sipione et al.27 demonstrated that the main pro-
ducers of insulin in culture were neurons and neuronal
precursors, and further demonstrated that a reporter
gene under the control of the insulin I promoter was
activated in cells with a neuronal phenotype. In addi-
tion, problems in the control of differentiation and ter-
atoma formation from ESC-derived insulin-producing
cells remain to be overcome.18,27 Other investigators
claim that since existing ESC lines are not assumed to
be identical, and none are ideal for generating islets or
beta cells, additional ESC lines must be generated.28

Ethical concerns about the use of ESCs and policies
regarding the funding of ESC research need to be ad-
dressed before we can wholly evaluated this powerful
new technology. Theoretically, ESCs may represent a
cell type from which large quantities of functional
insulin-producing cells may be generated. However, this
remains to be definitively demonstrated.

Bone-marrow cells for the treatment of
diabetes mellitus

The BM harbors cells that can become parenchymal
cells after entering the liver, intestine, skin, lung, skel-
etal muscle, heart muscle, and central nervous system
in rodent models29 and in human recipients of marrow
or organ transplantation.30,31 In rodents, the BM also
harbors cells that can differentiate into functional pan-
creatic endocrine cells.32–37 One month after BM trans-
plantation, donor-derived cells are found in pancreatic
islets of recipient mice.32 These cells express insulin and
genetic markers of beta cells. Although the cells secrete
insulin in response to glucose in culture, only about
1% of the islet cells originate form the transplanted
marrow.32 A marrow-derived cell type with pluri-
potential capacity to differentiate into various pheno-
types has been described.38 This or a similar cell type
might be able to differentiate into pancreatic beta cells.
Similar experiments have been done in overtly diabetic
mice whose beta cells have been destroyed by
streptozotocin. After BM transplantation, blood glu-
cose and insulin concentrations were normal, and
survival was better.33

Recent studies demonstrated that BM cells can
differentiate in vitro under controlled conditions into
insulin-expressing cells.38–40 Such cells, when trans-
planted under the kidney capsule of diabetic rodents,
reverse hyperglycemia. The removal of the grafted kid-
ney returned the animals to a diabetic state.40

However, the discussion that cell fusion rather than
true cellular differentiation might account for the detec-
tion of donor cells in regenerating tissues has muted
some of the enthusiasm for genuine beta-cell differ-
entiation.37,41 Although studies involving pancreatic
endocrine-cell differentiation from haemopoietic organ
derivatives largely rule out cell-fusion events as a
mechanism of differentiation,32–36 much more work re-
mains to be done before this issue is settled.

Stem cell therapy for liver diseases

The practical implications of stem cell therapy for liver
diseases are that they might serve as a source of cell
transplantation and bioartificial liver devices, as well as
targets for gene therapies. Direct transplantation of
hepatocytes has already been used to bridge patients to
orthotopic liver transplant and as a therapeutic alterna-
tive to whole liver transplantation.42–46 Among the dis-
eases with the highest potential to benefit from stem cell
therapy are primary liver diseases with extrahepatic
manifestations arising from abnormal gene expression
or defective protein production by the liver.46–48 These
diseases include genetic disorders such as alpha-1-
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antitrypsin deficiency, hemochromatosis, tyrosinemia
type I, and Wilson’s disease. Also, metabolic
deficiencies such as type I Crigler–Najjar syndrome,
familial hypercholesterolemia, oxalosis, and familial
amyloidotic polyneuropathy, as well as coagulation de-
fects such as hemophilia, may be particularly suited to
stem cell therapies.

To date, hepatocyte transplantation has been accom-
plished in a relatively small number of such patients.49,50

Acquired liver disease, particularly acute hepatic failure
due to toxic or viral injury, have been treated in limited
clinical trials with fetal and adult hepatocytes.51–54 As
seen in islet cell transplantation in patients with type I
diabetes, the major limiting factor is our inability to
produce large quantity of hepatocytes and to keep them
ready for use on demand. While bioartificial liver de-
vices may be in clinical use for bridging patients with
acute hepatic failure to survival or transplant, their use
in patients with chronic liver disease may also require
large numbers of hepatocytes. A stable and expandable
stem cell culture is expected to provide the means to
create such large numbers of cells.

Embryonic stem cells for the treatment of
liver diseases

Several recent reports from different groups mention
not only in vitro differentiation mechanism of ESC-
derived liver cells but also in vivo differentiation after
transplantation to several liver disease models. Using
various culture conditions or a beta-galactosidase-
activating gene-trapping system, some cells derived
from embryoid bodies cultured from mouse ESCs
acquire the ability to express message for alpha-feto
protein (AFP), albumin, transthyretin, and alpha-1-
antitrypsin.55,56 Yin et al.57 reported that AFP-positive
cells isolated from cultured ESCs differentiate into
hepatocytes when transplanted into livers of mice that
lack the ability to express either apolipoprotein E or
haptoglobin. Other reports from Yamada et al.58 and
Chinzei et al.59 demonstrate that ESC-derived cells in
embryoid bodies that express mRNAs for albumin,
AFP, and other mature hepatocyte markers incorporate
into hepatic plates, produce albumin protein, and mor-
phologically resemble adjacent hepatocytes when trans-
planted into female mice. Although some promising
data were recently reported, any real clinical impact
awaits the clear directed differentiation of appropriate
cell populations and further investigation into each tar-
geted disease.

Bone-marrow cells for the treatment of liver diseases

BM contains several types of stem cells, including
hematopoietic stem cells (HSC); mesenchymal or stro-
mal stem cells, which include multipotent adult progeni-
tor cells (MAPC), and endothelial stem cells. The
transplantation of unfractionated BM into the livers of
lethally irradiated rats rescues animals from radiation-
induced BM ablation and simultaneously yields small
numbers of BM-derived hepatic oval cells (and later
hepatocytes).13,60 Recent results show that HSCs can
transform into hepatocytes both in vivo and in vitro,61–63

and that MAPCs acquire hepatocyte differentiation in
cell culture38,57 and give rise to hepatocytes when the
cultured cells are transplanted into the liver.64

These findings have led to the speculation that HSCs
(rather than endogenous liver epithelial cells) are the
major source of stem cells involved in the generation
of new liver parenchyma following liver damage.65

Although recent studies clearly demonstrate that cells
originating in the BM contribute to the formation of a
few hepatocytes, cholangiocytes, and oval cells in both
healthy and diseased livers,13,60 the frequency of this
transformation is low.66–69 Only the fact that HSCs circu-
late in the blood70 and may be found in the adult liver71

supports the argument that HSCs are a major source of
cells for regenerating liver parenchyma. Wang et al.72

demonstrated that endogenous liver epithelial cells are
the most efficient type of cell at mediating liver regen-
eration upon transplantation to damaged liver. These
studies indicate that a variety of stem-like cells from
several tissues can transform into hepatocytes when
transplanted into the liver in vivo or cultured in vitro.72

Which of these has the highest potential for therapeutic
use remains to be determined.

The mechanism by which BM stem cells transform
into hepatocytes has been hypothesized to be direct
transdifferentiation, reflecting the phenotypic plasticity
of stem cells within different tissue microenvironments.
The most impressive generation of hepatocytes from
BM cells has occurred after transplantation of BM into
mice with lethal hepatic failure resulting from homozy-
gous deletion of the fumaryl acetoacetate hydrolase
(Fah) gene.61 Subsequent studies in the Fah-/- model
suggest that the apparent transdifferentiation of HSCs
into hepatocytes results from the fusion of HSC descen-
dant cells (possibly macrophages) with Fah-/- hepato-
cytes to yield heterokaryotic cells in which hepatocytic
phenotypes are dominant and the Fah-/- genotypes is
corrected.73,74 The metabolically corrected heterokary-
otic hepatocytes proliferate rapidly and replace the de-
fective host liver parenchyma.75 Because such extensive
replacement of hepatocytes has not been found in other
models of damaged liver, it is possible that the accumu-
lation of high levels of fumaryl acetoacetate and the
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strong stimulus for proliferation of cells with corrected
metabolic defects may be responsible for this phenom-
enon, whether by fusion or transdifferentiation. Further
research is required to reach a final conclusion.

Discussion

The extraordinary activity and interest that currently
characterizes research on stem cells afford an opportu-
nity to reassess concepts of liver stem cells. This re-
evaluation may alter major paradigms of stem cell
biology in fundamental ways.76,77 Recent research on
stem cell therapy for liver and pancreatic diseases has
emphasized methods that currently dominate all stem
cell research: analysis of stem cell differentiation result-
ing from the transplantation of freshly isolated or cul-
tured cells into tissues in vivo and/or by subjecting these
cells to defined conditions of cell culture in vitro. These
studies have led to various hypotheses on the nature of
stem cells and their potential clinical application regard-
less of the initial stem cell source.

Compared with hematopoietic cells and neuronal
cells, there may be some delay in the progress of stem
cell therapy for liver and pancreatic diseases. There is
some difficulty in generating endodermal cells from
stem cells, because attempts to apply factors character-
istic of late liver and pancreas development to essen-
tially very early-stage cells have not been fruitful.
Although challenging, generating endoderm is probably
the most rewarding lineage toward which stem cells may
be directed. Given the fact that both islet cell and hepa-
tocyte transplantation can restore function in patients
with type I diabetes and inherited liver diseases, respec-
tively, stem cell-based therapies for liver and pancreas
diseases represent one of the most compelling opportu-
nities in regenerative medicine. Real clinical impact will
require the clear directed differentiation of appropriate
cell populations. Present claims, many of which may be
exaggerated, await further confirmation.

Concerning the BM stem cells such as HSCs, some
of the early reports on stem cell “transdifferentiation”
show the generation of functional hepatocytes or beta
cells after BM transplantation. Several consequent
studies showed similar results even when using highly
purified HSCs or in vitro cultured cells derived from
BM. However, owing to the heterogeneity of BM, the
possibility that nonhematopoietic stem cells were con-
tained within the transplanted marrow remains.
Even in carefully executed studies, impurities in the
enriched stem cells could have accounted for
nonhematopoietic regeneration. True evidence, such as
clonal analysis studies, will be required before a new
understanding of fundamental embryological concepts
can be accepted.

The idea that cell fusion may contribute to the endo-
dermal differentiation of stem cells does not preclude
stem cell-based therapies. Two recent papers suggest
that the fusion of differentiated cells with ESCs in
vitro could lead to functional cells with stem cell-like
properties.78,79 This led to the idea that transplanted
BM stem cells or their progeny were fusing to matured
nonhematopoietic cells, resulting in cells with new phe-
notype and function. In the liver and pancreas, the fu-
sion of hematopoietic cells and endogenous functional
cells does appear to be at least part of the mechanism of
the generation of hepatocytes or beta cells from BM
cells.37,41,73,74 Because both cell fusion and differentiation
of stem cells have been shown to be possible mecha-
nisms for generating mature hepatocyte and pancreatic
beta cell phenotypes, further studies will be required to
determine the relative frequency of differentiation and
cell fusion in particular settings to define the conditions
that regulate each mechanism. In addition, there is little
debate that a wide range of frequencies have been re-
ported, and the prevalence of such events is extremely
low or undetectable. What the discrepancies really indi-
cate is that we have a great deal of basic research left to
do.
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