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Abstract
The dismembered ophiolites in the Wadi Al-Barramiya area, Central Eastern Desert of Egypt, are one of a series of Neo-
proterozoic ophiolites present in the Arabian-Nubian Shield. Here we present new fieldwork, whole-rock geochemical data, 
and mineral chemistry of metapyroxenite and metagabbro associated with the Al-Barramiya ophiolite in order to constrain 
its nature and tectonic setting; in particular whether the ophiolite was formed in a subduction or non-subduction setting. The 
rocks selected were obtained from the mantle section (serpentinized peridotite), an ultramafic (pyroxenite) and the crustal 
section (metagabbro). The serpentinized peridotite is altered to talc carbonate and listvenite, and associated with magnesite. 
Pyroxenite occurs as irregular coarse-grained lenses of websterite and olivine websterite within the serpentinite and occurs 
adjacent to the ophiolitic metagabbro. The metagabbros form scattered allochthonous masses of various sizes that are dis-
tributed across the area. The ophiolitic rocks are metamorphosed from greenschist to lower amphibolite facies. Locally, fresh 
relicts of olivine and Cr-spinel can be found in the serpentinite, whereas pyroxenite has fresh relicts of olivine, clinopyroxene 
and Cr-spinel. Cr-spinel in the metapyroxenite is zoned, with  Al2O3,  Cr2O3 and MgO decreasing and  FeOt increasing from 
cores to rims, reflecting the effects of metamorphism that selectively removed the now-depleted components. The metagab-
bros are characterized by enrichment in large-ion lithophile elements (LILE) over high field strength elements (HFSE) and 
are tholeiitic with a calc-alkaline affinity. The high Cr# (0.63–0.75) of fresh Cr-spinel relicts in the metapyroxenite, together 
with their low  TiO2 contents (0.04–0.24 wt%), indicate that this rock is similar to highly refractory ultramafic rocks that 
evolved in a fore-arc setting. This is supported by the high forsterite content (Fo = 0.91–0.93) of fresh olivine and high Mg# 
(0.93–0.95) of fresh clinopyroxene. Clinopyroxenes in the metapyroxenite and metagabbro have the chemical characteristics 
of boninite, confirming the fore-arc setting.

Keywords Arabian-Nubian Shield · Al-Barramiya ophiolite · Metagabbro · Metapyroxenite · Fore-arc mantle

Introduction

The Arabian-Nubian Shield (ANS) ophiolites are considered 
to be thrust sheets of oceanic lithosphere that were tectoni-
cally obducted onto the continental margin during closure 
of the Mozambique Ocean (Stern et al. 2004; El Bahariya 
2018; Abuamarah 2020; Abdel-Karim et al. 2021; Moussa 
et al. 2022; Abuamarah et al. 2023; Ali et al. 2023). The 
ophiolites are widely distributed along major shear zones in 
both the central and southern sectors of the Eastern Desert 
of Egypt (Fig. 1). The complete ophiolitic sequence of the 
Egyptian ophiolites consists of a mantle unit of serpenti-
nized peridotite accompanied by pyroxenite, overlain by 
a Moho transition zone and a crustal section composed of 
layered and isotropic gabbro, sheeted dykes, and pillowed 
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metabasalt, with local pelagic sediments (e.g., El Sharkawy 
and El Bayoumi 1979; Abd El-Rahman et al. 2009a, b; Basta 
et al. 2011). Most of the Egyptian ophiolites are dismem-
bered and lack one or more of these distinctive lithologies 
due to their obduction and subsequent deformation (Azer 
and Stern 2007; Akaad et al. 1997; El Bahariya 2006, 2018; 
Azer et al. 2013; Gahlan et al. 2021; Moussa et al. 2021). 

The ophiolitic mélanges in the Eastern Desert have been 
classified, based on their mode of occurrence, into tectonic 
mélange, olistostrome and olistostromal mélange (El Baha-
riya 2008; 2012).

Previous geological and petrological studies on the ophi-
olitic rocks at Al-Barramiya were focused mainly on the ser-
pentinized peridotite and its alteration products (e.g., Zohier 

Fig. 1  Map of the Eastern 
Desert of Egypt [modified after 
Shackleton (1994)], showing 
distribution of ophiolitic rocks 
and location of Fig. 2; the 
insert map shows the location 
of  Fig. 1 within the Arabian/
Nubian Shield
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and Lehmann 2011; Ali-Bik et al. 2012; Salem et al. 2012; 
Khedr and Arai 2017; Ali et al. 2020), whereas less atten-
tion has been given to the metapyroxenite and metagabbro. 
Therefore, the spatial and petrogenetic relationships between 
them and other ophiolitic components are the focus of the 
present research. Fieldwork and petrographical studies, 
together with mineral and whole-rock chemical data, are 
herein presented for the metapyroxenite and metagabbro to 
constrain their tectonic environment with respect to whether 
or not that formed in a subduction setting.

Geological setting

Ophiolites and ophiolitic mélanges are important rock units 
in the Al-Barramiya district and are a characteristic compo-
nent of the Neoproterozoic rocks in the ANS (Zohier and 
Lehmann 2011; Ali et al. 2020). The area under investiga-
tion, Wadi Al-Barramiya, lies between latitudes 25° 04′ 15″ 

and 25° 06′ 15″ N and longitudes 33° 45′ and 33° 49 E and 
is located on the northern side of the Idfu-Mersa Alam Road, 
midway between Idfu and Mersa Alam (Figs. 1, 2): Idfu is 
located outside the mapped area to the west on the River 
Nile. Al-Barramiya forms the northeast part of the east-
northeast trending Barramiya-Um Salatit ophiolitic belt and 
is characterized by a moderate relief with surface outcrops 
of Neoproterozoic rock units consisting of ophiolites, island-
arc assemblages, metagabbro-diorite complexes and late 
intrusive granitic rocks, as well as Nubian sandstone of Cre-
taceous age (Fig. 2). Ophiolitic rocks in the area comprise 
extensively serpentinized peridotite, metagabbro, lenses of 
coarse-grained metapyroxenite, talc carbonate, magnesite 
and listvenite. Exotic ophiolitic blocks and fragments of 
serpentinized peridotite, metapyroxenite and metagabbro 
are dispersed in a sheared matrix of metasedimentary rocks 
forming ophiolitic mélange with an ENE-trending foliation.

Serpentinite is the most abundant rock type in the ophi-
olite and all serpentinite masses have tectonic contacts and 

Fig. 2  Detailed geological map of the study area—Barramiya et al. [modified after Said (2006)]
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have undergone strong brecciation and shearing. They occur 
as large thrust sheets forming topographic ridges which are 
elongated in a general ENE–WSW direction, concordant 
with the foliation in the surrounding matrix. They are com-
monly massive, but along fault planes and shear zones they 
are strongly carbonated and altered to talc carbonate, mag-
nesite and listvenite. The contacts between talc carbonates 
and the parent serpentinites can be gradational, but are com-
monly sharp, with lenses of serpentinite set in talc carbonate 
(Fig. 3a). Some lenses of coarse-grained metapyroxenite are 
also present within serpentinite (Fig. 3b), especially at Sin 
El-Salatit (Fig. 2).

The talc carbonate rocks range in color from creamy 
white to light grey to yellowish-white or buff, and are char-
acterized by cavernous weathering. Veinlets, nodules and 
irregular lenses of magnesite are observed in the sheared 
serpentinites and talc-rich rocks (Fig. 3c). The veinlets are 
generally orthogonal to the foliation in the talc-rich bodies.

Listvenite is infrequent in the study area, occurring as 
reddish-brown ridges, and as irregular lenses and masses 
along shear zones and fault planes. It forms positive relief 
features because of its resistance to weathering. Some list-
venite outcrops have a porous texture as a result of super-
gene oxidation (Gahlan et al. 2018). Locally, listvenite is 
brecciated and fractured, with fractures filled with carbonate 
veinlets and fine quartz ribbons.

Ophiolitic metagabbros occur as scattered masses distrib-
uted throughout the ophiolitic mélange or as large masses 
and small hillocks that locally overlie serpentinite. The 
metagabbro is mostly grayish-green to black in color. A 
few pegmatitic gabbro (appinite) masses are present within 
more isotropic metagabbro. Some metagabbros are sheared 
(Fig. 3d) and overthrust by serpentinites. Abundant veins 
of carbonate, quartz and epidote cut the metagabbro. In the 
northern part of the study area (Fig. 2), the metagabbros are 
intruded by syn- to late-orogenic granodiorite.

Fig. 3  Field photographs of a serpentinite body within talc carbonates; b lens of coarse-grained pyroxenite (sample no. Px14); c veinlets of mag-
nesite in talc-rich rocks and d sheared metagabbro (sample no. Bz51)



1533International Journal of Earth Sciences (2024) 113:1529–1548 

The island-arc assemblages are widely distributed in 
the region and have thrust contacts with the ophiolitic 
rocks, especially with mélange and serpentinite. These 
rocks include metavolcanics, volcaniclastics and meta-
sediments. All of the ophiolitic units and the island-arc 
assemblages are intruded by syn- to late-orogenic grano-
diorite. The Cretaceous Nubian sandstone unconformably 
overlies the Precambrian rocks in the western part of the 
mapped area (Fig. 2). It represents the base of the Phan-
erozoic sedimentary succession that extends westward 
towards the Nile Valley. It occurs either as continuous or 
separate small outcrops and is characterized by conspicu-
ous, nearly horizontal beds with some cross-bedding.

Petrography

Serpentinite

Serpentinites are fine-grained and massive, but are locally 
sheared. They consist mainly of antigorite and lizardite, 
together with carbonate, talc, chlorite, opaque minerals and 
subordinate relicts of olivine and Cr spinel. Using Raman 
spectroscopy, antigorite was identified as the main serpen-
tine mineral, with minor chrysotile occurring as fibrous 
lamellae or filling veinlets. The presence of bastite replac-
ing orthopyroxene, as well as a more uniform mesh texture 
(Fig. 4a) indicates harzburgite and dunite protoliths, respec-
tively. Fresh relicts of olivine also occur dissected by ser-
pentine veinlets (Fig. 4b) and locally contain inclusions of 
Cr-spinel. Kink banding is observed in some olivine crystals. 
Magnesite is the main carbonate, with minor calcite, and 
occurs as rare crystals, patches or veinlets cutting through 
the serpentine matrix. Cr-spinel and magnetite are the main 
opaque minerals, together with minor sulphides. Cr-spinel is 
subhedral to anhedral, and has distinct zoning in some larger 
crystals. Magnetite forms disseminated crystals and as rims 
around olivine and Cr-spinel grains. Talc occurs in a few 
samples as anhedral patches and aggregates, and is colorless 
to very light brown. Chlorite forms aggregates of fine anhe-
dral flakes or as a crust developed around Cr-spinel. Sulfides 
are present as minute crystals of pyrite and chalcopyrite.

Metapyroxenite

Metapyroxenite forms lenses within serpentinite and has 
undergone variable degrees of serpentinization. It con-
sists mainly of clinopyroxene (> 90%) with minor plagio-
clase, together with trace amounts of olivine, magnetite 
and Cr-spinel. The clinopyroxene forms anhedral tabu-
lar crystals that are strongly altered along their rims to 
serpentine, secondary amphibole, chlorite, carbonate or 
talc, with a few relicts of primary clinopyroxene (Fig. 4c). 

The outlines of completely altered pyroxene crystals can 
be identified from the alignment of iron oxides along the 
cleavage planes. Some fresh relicts of clinopyroxene have 
exsolution lamellae and contain anhedral grains of ser-
pentine after olivine. Olivine grains are mainly interstitial 
to large clinopyroxene crystals, but also occur as inclu-
sions in clinopyroxene, or within serpentinized domains 
(Fig. 4d). Secondary amphibole forms bundles of tremo-
lite-actinolite that replaces clinopyroxene along the mar-
gins, cleavage or cracks. Serpentine is mostly found as thin 
crusts around clinopyroxene or replacing it along cracks. 
Carbonates occur as patches and veinlets of calcite cut-
ting through the rock. Opaque minerals are magnetite and 
Cr-spinel with the former commonly oriented parallel to 
the cleavage planes of clinopyroxene. Cr-spinel occurs as 
anhedral crystals that are altered along their margins to 
ferritchromite and Cr-magnetite (Fig. 4e).

Metagabbro

Metagabbro is essentially composed of plagioclase, 
amphibole and pyroxene relicts. Apatite, zircon, titanite 
and opaques are accessory minerals, whereas chlorite, 
epidote, sericite, calcite and kaolinite are secondary min-
erals. An ophitic to sub-ophitic texture is preserved in a 
few samples. Plagioclase is the most common mineral 
and occurs as large subhedral tabular crystals that show 
intense alteration to epidote and sericite, especially in the 
cores (Fig. 4f). The amphibole comprises hornblende and 
tremolite-actinolite, with the latter representing pesudo-
morphs after pyroxene or alteration of hornblende. Horn-
blende forms long prismatic crystals and aggregates with 
a pale to darker green pleochroism. Tremolite-actinolite 
occurs as fibers with ragged edges or as fine aggregates 
that form bundles (Fig. 4g).

Clinopyroxene is extensively altered to green hornblende, 
tremolite-actinolite or chlorite. A few remnants of fresh 
clinopyroxene occur surrounded by amphibole (Fig. 4h). 
Chlorite forms irregular flakes due to alteration of pyroxene 
and amphibole.

Secondary epidote, sericite, kaolinite and calcite 
occur as anhedral granular aggregates replacing plagio-
clase. Some carbonate forms patches and veinlets. The 
opaque mineral content is variable and ranges between 3 
and 6 vol%. It mainly consists of Fe-Ti oxides with minor 
sulfides. The former occur as separate crystals or as fine 
aggregates associated with the altered mafic minerals, and 
mainly consist of ilmenite, with rare magnetite. Sulphides 
include both pyrite and chalcopyrite. Some magnetite is 
altered to goethite, whereas chalcopyrite is altered to 
covellite. Apatite occurs as small prismatic crystals in 
amphibole.
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Analytical techniques

Mineral chemical analyses were obtained from carbon-
coated polished thin-sections using a JEOL JXA-8530F 
field-emission electron microprobe (EMPA) housed at 
the Department of Earth Sciences, University of Western 
Ontario, Canada. Operating conditions were 20 kV probe 
current; 40–60 nA accelerating voltage; 1–2 μm diameter 
beam; and counting time of 5–10 s. Natural and synthetic 
mineral standards were used for calibration, and a ZAF 
matrix correction routine program was applied. The stand-
ards were orthoclase for K, albite for Na and Al, anorthite 
for Ca, rutile for Ti, zircon for Si, forsterite for Mg and 
fayalite for Fe. Calculation of cations in the structure of 
the analyzed minerals was performed using Excel sheets 
and Minpet software. The mineral formulae were normal-
ized to a specific number of oxygens, depending on each 
mineral as atoms per formula unit (a.p.f.u.).

Based on the petrographic studies, 19 samples were 
selected out of a total of sixty for chemical analysis at 
Northwest University, Xi'an, China. A portion of the pow-
dered samples was heated at 1000 °C in an oven for 50 min 
to determine the Loss on Ignition (LOI). Another portion 
of the powdered sample was analyzed by X-ray fluores-
cence (XRF, Rigaku RIX2100) by mixing 0.7 g of sample, 
0.3 g LiF, 0.4 g  NH4NO3, 3.6 g  Li2B4O7, and 2–3 drops 
of 1.5% (w/w) LiBr solution. This mixture was melted in 
a non-wetting precious metal crucible and poured into a 
glass disk. In addition, 50 mg of sample powder was mixed 
with  HClO4,  HNO3 and HF and digested at 190 °C for 
48 h in steel bombs with polytetrafluoroethylene sleeves. 
After drying, the residues were taken up in 80 mL of 2% 
 HNO3 with 10 µg/g of Rh as an internal standard. These 
solutions were analyzed by ICP-MS (Agilent 7500a) for 
trace and rare earth elements (REEs). The analytical pro-
tocol was monitored using international rock standards 
(BCR-2, BHVO-1 and AGV-1). The analytical precision, 
based on sample replicates, was better than 1% for major 
oxides and 5–10% for REE and trace elements.

Mineral chemistry

Metapyroxenite

Four different mineral phases (olivine, clinopyroxene, Cr-
spinel and serpentine) were analysed from two metapyrox-
enite samples (BZ9 and UM13) by electron microscopy 
(EM). Fresh relicts of olivine were analyzed and their 
chemical compositions and calculated structural formu-
lae are listed in supplementary table ST1. All the analyzed 
olivine crystals are unzoned forsterite and show little vari-
ability in their composition, with  SiO2 ranging from 40.29 
to 41.21 wt%, MgO from 49.39 to 51.23 wt%, and NiO 
between 0.41 and 0.48 wt%, with negligible amounts of 
 TiO2 (< 0.02 wt%),  Al2O3 (< 0.04 wt%),  Cr2O3 (< 0.07 
wt%), and CaO (< 0.05 wt%). Olivine has a high forsterite 
content of Fo = 0.91–0.93 and NiO content of 0.41–0.48 
wt%, similar to mantle olivine (Takahashi et al. 1987). On 
the olivine mantle array diagram, the olivine mostly plots 
in the mantle olivine array, and all plot in the field of the 
ANS ophiolites (Fig. 5a).

The chemical composition of fresh pyroxene rel-
icts (Supplementary table ST2) are homogeneous and 
also show limited compositional variation. According to 
the classification of Morimoto et al. (1988), the pyroxenes 
in the metapyroxenite plot mainly in the diopside field 
(Fig. 5b). They have 0.37–1.12 wt%  Cr2O3 and  Al2O3 con-
tents of 1.02–2.68 wt%, confirming their primary origin, 
because metamorphic clinopyroxenes have lower  Cr2O3 
(< 0.4 wt%) and  Al2O3 (< 0.5 wt%) contents (Nozaka 
2010). The CaO content is in the range of 21.82–24.21 
wt% and  TiO2 contents are lower than 1 wt%, which is 
characteristic to non-alkaline rocks (Le Bas 1962). The 
Mg# is high (0.93–0.95 wt%) and similar to that of ophi-
olitic ultramafic rocks in the ANS (Obeid et  al. 2016; 
Azer et al. 2019; Gahlan et al. 2020), as well as world-
wide (Parlak et al. 2000; 2013; Allahyari et al. 2014). On 
the  Al2O3 vs.  SiO2 discrimination diagram of Franz and 
Wirth (2000), the metapyroxenite clinopyroxenes plot as 
subalkaline (Fig. 5c).

The chemical composition and structural formulae of 
Cr-spinel and its alteration products are given in supple-
mentary table ST3. It shows compositional zoning, with 
fresh Cr-spinel cores and an outer zone of ferritchromite 
that is commonly altered to an outer rim of Cr-magnetite. 
Going from core to rim,  FeO(t) content increases, while 
 Al2O3,  Cr2O3 and MgO decrease. On the Cr–Al–Fe3+ 
diagram (Fig. 5d) the fresh cores plot along or near the 
Al-Cr line whereas the altered rims plot along the Cr-Fe3+ 
line, indicating the loss of both  Cr2O3 and  Al2O3 and a 
consequent increase in the  Fe2O3 content as a result of 
metamorphism under hydrothermal conditions (Barnes 

Fig. 4  Photomicrographs of metapyroxenite and metagabbro from 
the Al-Barramiya ophiolite (all photomicrographs are cross-polar-
ized transmitted light, except (e), which is in plane polarized light). 
a Serpentine mesh texture after olivine in serpentinite; b fresh relict 
of olivine in highly serpentinized peridotite; c clinopyroxene altered 
to amphibole and other secondary minerals, but with some fresh rel-
icts; d relicts of olivine in highly-serpentinized metapyroxenite (sam-
ple no. Px17); e cracked, anhedral crystal of Cr-spinel altered along 
the margins to ferritchromite and Cr-magnetite (sample no. Px10); f 
plagioclase showing intense alteration to secondary minerals in the 
core (sample no. Bz8b); g bundles of fibrous secondary amphibole, 
with hornblende relicts (sample no. Bz43); and h fresh clinopyroxene 
within amphibole in metagabbro (sample no. Bz15)

◂
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2000; Proenza et al. 2004). The fresh Cr-spinel cores have 
Cr# (molar Cr/(Cr + Al)) ranging between 0.63 and 0.75, 
with an average of 0.67, and Mg# (molar Mg/(Mg +  Fe2+)) 
ranging from 0.41 to 0.64, with an average of 0.56. Rela-
tive to fresh spinel cores, the altered rims have higher Cr# 
(0.90–0.96; av.0.93) and lower Mg# (0.11–0.52; av. 0.32). 
Generally, the fresh Cr-spinel cores have  Al2O3 and  Cr2O3 
contents that are similar to those of Cr-spinel of mantle 
peridotite and most plot in or near the mantle array, but 
extending into the arc cumulate field (Fig. 5e).

The chemical composition and structural formulae of 
the serpentine minerals in the metapyroxenite are given 
in Supplementary table ST4. On the  SiO2 versus MgO 
diagram of Bahrambegi et al. (2019), they range from anti-
gorite to chrysotile in composition (Fig. 5f).

Metagabbro

The metagabbro minerals include plagioclase, pyroxene, 
amphibole, chlorite and ilmenite. The chemical composi-
tion and structural formula of plagioclase are listed in Sup-
plementary table ST5. They range in composition from lab-
radorite to albite (Fig. 5g), with An contents varying from 
57.20 to 4.07. The low anorthite content of some plagioclase 
is attributed to its albitization during metamorphism.

Fresh pyroxene relicts are rare, and their chemical 
composition and calculated structural formula are listed 
in Supplementary table ST6. They are calcic in composi-
tion and according to the classification of Morimoto et al. 
(1988), they mainly straddle the boundary between the 
diopside and augite fields and extend to hedenbergite in 
composition (Fig. 5b). On the  SiO2 vs.  Al2O3 diagram of 
Le Bas (1962) for clinopyroxene, they plot in the subalka-
line field (Fig. 5c), similar to the metapyroxenite crystals.

Amphiboles in the metagabbro include primary magmatic 
minerals (hornblende) and subsequent alteration products 
(tremolite-actinolite). Their chemical analyses and struc-
tural formulae are presented in Supplementary table ST7. 

According to the amphibole classification scheme of Haw-
thorne et al. (2012), they are calcic amphiboles; namely 
magnesio- to ferri-hornblende and actinolite.

Chlorite forms due to alteration of pyroxene and amphi-
bole. Representative chemical analyses and the structural 
formula are given in Supplementary table ST8. They show 
limited variation in composition and, according to the 
scheme of Hey (1954), they are classified as brunsvigite and 
ripidolite (Fig. 5h).

Ilmenite is the main Fe-Ti oxide mineral in the metagab-
bro, and its representative chemical composition and struc-
tural formula are given in Supplementary table ST9. Chemi-
cally, it is homogenous and has low MgO contents indicating 
formation by low-grade metamorphism, after most MgO had 
been sequestered in other phases.

Whole‑rock geochemistry

Nineteen representative samples of metagabbro (10 samples) 
and metapyroxenite (9 samples) from the ophiolitic rocks 
cropping out in the Al-Barramiya area were analyzed for 
their major oxides, trace and rare earth elements. The whole-
rock chemical analyses are presented in supplementary table 
ST10. Some of the trace elements are below the detection 
limit of the analytical protocol used. Overall, the metapy-
roxenite samples have high LOI (4.21–5.24 wt%) compared 
with the metagabbro samples (2.37–4.01 wt%).

Metapyroxenite

The metapyroxenite samples have 47.72–51.30 wt%  SiO2, 
0.08–0.16  TiO2 wt%, 15.45–18.72 MgO wt%, 1.34–2.87 
 Al2O3 wt% and 15.83–19.88 CaO wt%. They have high con-
centrations of compatible elements (Supplementary table 
ST10), such as Cr (1120–2120 ppm), Ni (401–711 ppm), Co 
(67–91 ppm) and Sc (161–276 ppm). Due to the serpenti-
nized nature of the metapyroxenite, the classification scheme 
based on modal percentages of olivine, clinopyroxene and 
orthopyroxene is unsuitable. Therefore, using the norma-
tive whole-rock composition (Supplementary table ST10), 
the metapyroxenite can be classified as websterite and oli-
vine websterite, but very close to the clinopyroxenite field 
(Fig. 6a). On the  SiO2/MgO versus  Al2O3 diagram (Bodi-
nier and Godard 2003), the metapyroxenite samples plot as 
low-Al pyroxenite (Fig. 6d). On the primitive mantle (PM)-
normalized trace element diagram, the metapyroxenite sam-
ples show positive peaks for Cs, Ba, U, Pb and Eu (Fig. 7a), 
with marked depletion in Rb, Nb, and Hf. In the chondrite-
normalized REE diagram (Fig. 7b) the metapyroxenites 
show depletion in LREEs (3.52–5.69 ppm) and flat MREE 
to HREE patterns. They have (La/Sm)n = 0.35–0.39 and (La/
Yb)n = 0.28–0.37. The depletion in LREEs is comparable 

Fig. 5  a NiO vs. Fo showing where fresh olivine relicts in metapy-
roxenite plot compared with the olivine mantle array (Takahashi 
et al. 1987), ophiolites of the ANS (Khalil et al. 2014; Gahlan et al. 
2015, 2018; Obeid et al. 2016; Azer et al. 2019), and layered intru-
sions of the ANS (Helmy and Mahallawi 2003; Abd El-Rahman et al. 
2012; Abdel-Halim et al. 2016; Azer et al. 2017; Gahlan et al. 2023); 
b En-Wo-Fs triangular diagram (after Morimoto et  al. (1988), with 
isotherms after Lindsley (1983). showing where metapyroxenite and 
metagabbro from Al-Barramiya plot; c  SiO2 vs.  Al2O3 diagram of Le 
Bas (1962) for clinopyroxene; d Cr–Al–Fe3+ plot of fresh and altered 
Cr-spinel. e  Al2O3 vs.  Cr2O3 diagram (after Franz and Wirth 2000), 
showing where fresh relicts of Cr-spinel plot; f MgO vs.  SiO2 classifi-
cation diagram for serpentine polymorphs (Bahrambeygi et al. 2019); 
g Or–Ab–An ternary diagram (Deer et al. 1992) with analyzed feld-
spars plotted; and h classification diagram for chlorite-group minerals 
(Hey 1954)

◂
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Fig. 6  a Metapyroxenites plotted in the Ol-Opx-Cpx normative com-
position diagram (after Coleman 1977); b Metagabbros plotted in 
the TAS diagram of Cox et al. (1979), adapted by Wilson (1989) for 
plutonic rocks; c Metagabbros plotted in the AFM diagram of Irvine 
and Baragar (1971); d metapyroxenites and metagabbros plotted in 

the   SiO2/MgO versus  Al2O3 diagram (Bodinier and Godard 2003); 
e metapyroxenites and metagabbros plotted in the Y vs. Zr diagram 
after Barrett and McLean (1994); and f Metagabbros plotted in  the 
Th–Zr–Nb ternary diagram, modified after Wood (1980)
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with other ophiolitic clinopyroxenites in the ANS (Gahlan 
et al. 2012).

Metagabbro

The metagabbro samples have slightly lower  SiO2 
(46.50–50.87 wt%) and much lower MgO (7.34–8.73 wt%) 
contents than the metapyroxenite, but have higher  Al2O3 
(16.23–17.74 wt.%) and  TiO2 (0.98–1.62 wt.%) contents. 

Fig. 7  a Primitive mantle-
normalized trace element 
patterns for metapyroxenite and 
metagabbro from Al-Barramiya, 
and b chondrite-normalized 
rare earth element patterns for 
metapyroxenite and metagab-
bro; normalization values for 
a and b from McDonough and 
Sun (1995)
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The whole-rock Mg# [molar Mg/(Mg +  Fe2+)] ranges from 
0.59 to 0. 76, lower than that in the metapyroxenite samples. 
They also have lower compatible elements (Supplementary 
table ST10), with (Cr = 111–182 ppm, Ni = 40–128 ppm, 
Co = 44–58 ppm, and Sc = 36–48 ppm). On the TAS dis-
crimination diagram of Cox et al. (1979) (Fig. 6b), the sam-
ples plot in the field of gabbro with a slight spread into the 
sub-alkalic field. On the AFM diagram (Irvine and Baragar 
1971), they straddle the boundary between the tholeiitic 
and calc-alkaline fields (Fig. 6c). On the  SiO2/MgO versus 
 Al2O3 diagram (Bodinier and Godard 2003), the metagabbro 
samples plot within the ophiolitic gabbro field (Fig. 6d). On 
the Zr versus Y diagram, they plot in the tholeiitic field but 
extend down into the transitional field (Fig. 6e), whereas 
in the Th–Zr–Nb ternary diagram (Fig. 6f), they plot in the 
field of island-arc tholeiite.

The primitive mantle (PM)-normalized trace element 
patterns for the metagabbro are essentially similar to those 
of the metapyroxenite, but with higher total contents and 
stronger Pb enrichment (Fig. 7a). They show similar deple-
tion in Rb and Nb, but contrast with the metapyroxenite in 
showing enrichment in Hf and Ti, but depletion in Eu. The 
positive Ti anomalies can be attributed to higher amounts of 
Fe-Ti oxide minerals in these samples. Both metapyroxenite 
and metagabbro samples have negative Nb anomalies simi-
lar to those of other ophiolitic metagabbros in the Eastern 
Desert of Egypt (Gahlan et al. 2015; Obeid et al. 2016). 
In the chondrite-normalized REE plot (Fig. 7b), they show 
slightly enriched LREEs, but with flat MREE to HREE pat-
terns (Gd/Lu = 0.98–1.18) and (La/Lu)n = 1.50–1.88. They 
have weakly negative to slightly positive Eu anomalies [Eu/
Eu* = 0.84–1.07], indicating a general lack of plagioclase 
fractionation. Overall, the REE patterns of the Al-Barramiya 
metagabbro are similar to ophiolitic metagabbros elsewhere 
in the ANS (Gahlan et al. 2015; Obeid et al. 2016).

Discussion

Alteration and metamorphism

Most ophiolites in the Eastern Desert of Egypt are meta-
morphosed to greenschist or lower amphibolite facies (e.g., 
Khalil and Azer 2007; El Bahariya 2006, 2008, 2018; Fara-
hat 2008; Boskabadi et al. 2017; Abuamarah et al. 2020, 
2023). However, it remains controversial when metamor-
phism of the Egyptian ophiolites took place, i.e. whether 
it was during or after their emplacement in the continental 
crust. For the ophiolitic rocks in the Al-Barramiya area, it 
has been suggested that they underwent various degrees 
of post-magmatic alteration either by seafloor hydrother-
mal activity or during the obduction processes (Ali et al. 
2020). Although some of the original igneous textures of 

the ophiolitic metagabbro are still preserved, the mineralogy 
has been largely altered, with the primary minerals (plagio-
clase, amphibole and pyroxene) altered to secondary/meta-
morphic ones (albite, epidote, tremolite/actinolite, chlorite 
and titanite). Data presented here indicates that the ophiolitic 
metagabbro at Al-Barramiya is rich in LILEs and Th, most 
likely as a result of element mobility during slab dehydration 
(Pearce and Peate 1995).

Mineral assemblages in most samples of serpentinite, 
metapyroxenite and metagabbro suggest that they underwent 
regional metamorphism under greenschist to amphibolite 
facies conditions (e.g., Suita and Streider 1996; Mellini 
et al. 2005; El Bahariya 2006; El Bahariya and Arai 2003; 
Azer et al. 2019; Whattam et al. 2022). Ferritchromite in 
the metapyroxenite is enriched in  FeO(T) (49.43–75.26 wt%) 
and depleted in  Al2O3 (0.42–2.43 wt%) and MgO (1.82–8.04 
wt%), reflecting the increase in  Fe2O3 and loss of  Al2O3 and 
 Cr2O3 due to metamorphism (Azer and Stern 2007). The 
alteration of Cr-spinel to ferritchromite possibly took place 
during the late magmatic stage, and continued later due to 
serpentinization (Gahlan et al. 2018). The presence of fer-
ritchromite rims around fresh Cr-spinel cores with a sharp 
compositional change likely indicates upper greenschist to 
lower amphibolite facies metamorphism (Evans and Frost 
1975; Suita and Streider 1996; Barnes and Roeder 2001; 
Mellini et al. 2005; Arai et al. 2006). This is supported by 
the chemical data of Cr-spinel in the metapyroxenite on the 
Cr-Fe3+-Al triangular diagram (Fig. 8a), where fresh Cr-
spinel relicts and ferritchromite rims plot mostly in the lower 
amphibolite facies field. Also, serpentinite is dominated by 
antigorite, with subordinate chrysotile, indicating serpenti-
nization during heating and burial (Moody 1976; Deer et al. 
1992), or retrograde formation of chrysotile followed by a 
second cycle of prograde recrystallization to antigorite. The 
dominance of antigorite over chrysotile in the serpentinite 
suggests formation at 400 − 600 °C during an early stage of 
serpentinization at depth (Evans 2010).

Petrogenesis and tectonic setting

Dilek and Furnes (2014) classified ophiolites simply into 
subduction-related and subduction-unrelated types. The for-
mer include fore-arc and back-arc supra-subduction zone and 
volcanic arc types, whereas the latter comprise continental 
margin, mid-ocean ridge and plume-types. Several studies 
have been dedicated to determining the origin and tectonic 
setting of the Egyptian ophiolites because they represent key 
components in constructing the geodynamic model for the 
Pan-African belt of the ANS. Unfortunately, the metamor-
phosed nature of the Egyptian ophiolites makes it more dif-
ficult to infer their tectonic setting. Indeed, a wide range of 
tectonic settings has been proposed for these rocks, ranging 
from mid-ocean ridge (e.g., Shackleton et al. 1980; Zimmer 
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et al. 1995), to supra-subduction zone (fore-arc or back-arc 
setting) (e.g., Ahmed et al. 2001, 2012; Azer and Stern 2007; 
Ahmed 2013; Abdel-Karim et al. 2018). The Neoproterozoic 
ophiolites of Egypt have also been classified into high Ti-
MORB and low Ti-SSZ ophiolites (e.g. El Bahariya 2012, 
2018). However, most recent studies are in favor of a supra-
subduction zone setting, specifically in the fore-arc (Ali et al. 
2020; Abdel-Karim et al. 2021; Moussa et al. 2021).

Because of metamorphism, the tectonic setting of igne-
ous rock protoliths has to be inferred using elements immo-
bile during metamorphism, including Ti, Zr, Y and Nb (e.g. 
Pearce and Cann 1973; Meschede 1986; Pearce 2008, 2014; 

Baziotis et al. 2014). In the Hf–Th–Nb diagram, the met-
agabbro samples plot in the destructive plate margin field 
(Fig. 8b). On the Th/Yb vs. Nb/Yb diagram (Pearce 2014), 
both the ophiolitic metapyroxenite and metagabbro plot 
above the MORB-OIB array toward the volcanic-arc array 
(Fig. 8c). Moreover, the metagabbro samples are relatively 
enriched in LREEs and LILEs, similar to magmatic rocks 
formed at convergent plate margins (e.g., Saunders et al. 
1991; Hawkesworth et al. 1993). According to Geng et al. 
(2011), the metagabbro and metapyroxenite of the Al-Bar-
ramiya ophiolite have low Zr (35.88–42.60 ppm in metagab-
bro and 4.2–7.03 ppm in metapyroxenite), coupled with low 

Fig. 8  a Cr–Fe3+–Al3+ diagram for fresh and altered Cr-spinel in 
metapyroxenite; the fields of the different metamorphic facies from 
Purvis et  al. (1972), Evans and Frost (1975) and Suita and Streider 
(1996); b Hf/3-Th-Nb/16 discrimination diagram after Wood (1980) 
for the Al-Barramiya metagabbro; A = N-MORB, B = enriched 

MORB and within-plate tholeiites, C = within-plate basalts and 
D = destructive plate basalts; c Th/Yb vs. Nb/Yb diagram after Pearce 
(2008) for the Al-Barramiya metagabbros and metapyroxenites; and d 
Dy/Yb vs. La/Yb diagram after Xu et al. (2001) for the metagabbros 
and metapyroxenites of the Al-Barramiya ophiolite
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Nb (1.96–2.75 ppm in the metagabbro and 0.04–0.08 ppm 
in the metapyroxenite), indicating a depleted mantle source: 
our new data support this assertion. Furthermore, the Dy/Yb 
ratios (1.74–1.92 in metapyroxenite and 1.43–1.62 in met-
agabbro) and La/Yb ratios (0.41–0.55 in metapyroxenite and 
2.36–2.70 in metagabbro) indicate up to 30% partial melting 
of a spinel lherzolite source (Fig. 8d).

The serpentinized clinopyroxenite has fresh relicts of 
primary silicates (e.g., olivine and pyroxene) and Cr-spinel, 
which are important petrogenetic indicators of the protolith 
(Barnes and Roeder 2001; Arif and Jan 2006). The very 
low  TiO2 content in the Cr-spinel from the metapyroxenite 
samples confirm their highly depleted character and indi-
cate their association with SSZ tectonic settings. In residual 
peridotites, the Cr# of spinel reflects the degree of par-
tial melting (Arai 1994). The high Cr# of spinel from the 
metapyroxenite samples therefore indicates a high degree 
of melting, as would be expected in the SSZ (Parkinson and 
Pearce 1998). Hence, on the Cr# versus  TiO2 plot the fresh 
Cr-spinel plots in the depleted field (Fig. 9a). The chemical 
composition of fresh Cr-spinel can be successfully used to 
distinguish between a back-arc and a fore-arc setting (Barnes 
and Roeder 2001; Ohara et al. 2002; Stern et al. 2004; Azer 
and Stern 2007 and many others), with the Cr# versus Mg# 
plot of fresh Cr-spinel in the serpentinized metapyroxenite 
indicating that most of the analysed Cr-spinels are similar to 
those of modern forearc peridotites (Fig. 9b).

In addition, clinopyroxene can provide further insight 
into the petrogenesis of the metapyroxenite from Al-
Barramiya. Here, clinopyroxenes in the metapyroxenite 
and metagabbro plot in the fields of boninite and island-
arc tholeiite (Fig. 9c), confirming the fore-arc setting, as 
boninite is endemic to fore-arcs (e.g., Bedard 1999; Bec-
caluva et al. 2004). Likewise, the clinopyroxene in the 
metapyroxenite is characterized by low  Al2O3 contents, 

plotting in the field of fore-arc peridotites on the  Cr2O3 
versus  Al2O3 and Mg# versus  Al2O3 diagrams (Fig. 9d, e). 
In addition, clinopyroxene in the metapyroxenite has a Mg# 
(0.93–0.95) similar to those reported for ophiolitic pyrox-
enite [Mg# = 0.90–0.91 (Parlak et al. 1996); 0.86–0.91 
(Whattam et al. 2011); 0.89–0.91 (Singh et al. 2017)] Fur-
thermore, the negative correlation between  Al2O3 and Mg# 
in the clinopyroxene (Supplementary table ST2) is simi-
lar to that reported for the ultramafic cumulates from the 
Troodos and Mersin ophiolites (Hébert and Laurent 1990; 
Parlak et al. 1996).

Fresh relicts of magmatic olivine are Fo-rich (0.91–0.93), 
indicating they have a mantle source and were residual after 
extensive melting, similar to forearc peridotites (e.g. Stern 
et al. 2004; Coish and Gardner 2004). The high Mg con-
tent of olivine (Fo) is similar to forearc peridotites investi-
gated elsewhere in the ANS (e.g. Stern et al. 2004; Khalil 
et al. 2014; Obeid et al. 2016; Abuamarah 2020 and oth-
ers), where the relationship between the Fo content and the 
Cr# of coexisting Cr-spinel displays a partial melting trend 
(Fig. 9f), supporting a residual origin (Arai 1994) that is a 
similar to forearc peridotites elsewhere in the world (e.g. 
Pearce et al. 2000).

Mantle pyroxenites have been interpreted as: (1) the prod-
uct of melt and/or fluid interaction with peridotite (Garrido 
and Bodinier 1999; Bodinier et al. 2008; Marchesi et al. 
2013; Laukert et al. 2014; Rogkala et al. 2017; Le Roux 
and Liang 2019); (2) cumulates of more primitive melts 
(Wilshire and Shervais 1975; Batanova et al. 2011); (3) 
metamorphosed products of recycled oceanic crust (Pear-
son et al. 1993; Barth et al. 2001; Morishita et al. 2003, 
2004) or metamorphic segregations of peridotite (Dick and 
Sinton 1979); and (4) assimilation and fractional crystal-
lization where olivine was assimilated by percolating melt, 
followed by in situ fractional crystallization of pyroxenes 
(Laukert et al. 2014). Cumulate and metamorphic origins for 
the Al-Barramiya pyroxenites are not in general agreement 
with field and petrographic evidence or with the mineral 
and whole-rock geochemistry. Also, the available data do 
not support assimilation and fractional crystallization for 
their formation. Recently, the melt/rock reaction model has 
become the most adopted model for pyroxenite formation 
(Akizawa et al. 2016; Saka et al. 2019; Xiong et al. 2020). 
According to this model, olivine in harzburgite wall-rock 
dissolves through interaction with a Si-enriched melt, caus-
ing pyroxene to precipitate (Garrido and Bodinier 1999; 
Bodinier et al. 2008; Marchesi et al. 2013; Laukert et al. 
2014; Rogkala et al. 2017; Le Roux and Liang 2019). We 
consider that this model is most likely applicable to the ophi-
olitic rocks in the Al-Barramiya area, and illustrate this in 
Fig. 10. Here, we show the sequence of events for forma-
tion of the Al-Barramiya ophiolitic section due to fore-arc 
spreading and obduction of the ophiolite sequence.

Fig. 9  Tectonic discrimination diagrams for metagabbro and metapy-
roxenite based on mineral chemistry. a Cr# vs.  TiO2 diagram for fresh 
Cr-spinels in metapyroxenite. The fields are according to Dick and 
Bullen (1984), Jan and Windley (1990) and Arai (1992); b Cr# vs. 
Mg# diagram for fresh Cr-spinels (after Stern et  al. 2004); the field 
boundaries are from Dick and Bullen (1984), Bloomer et  al. (1995) 
and Ohara et  al. (2002). The melting trend of experimental equilib-
rium (melting %) is from Hirose and Kawamoto (1995); c  TiO2–
Na2O–SiO2/100 diagram for clinopyroxene in the metapyroxenite 
and metagabbro (after Beccaluva et  al. 1989). WOPB within-ocean 
plate basalts, MORB mid-ocean ridge basalts, IAT island arc tholei-
ites, BON + BA–A boninites + basaltic andesites and andesites from 
intraoceanic fore-arcs; d  Cr2O3 vs.  Al2O3 diagram for clinopyroxene 
from the metapyroxenites; e  Al2O3 vs. Mg# plot showing clinopy-
roxene from the metapyroxenite; and f Cr# vs. Fo for spinel coexist-
ing with olivine in the metapyroxenites (olivine-spinel mantle array; 
OSMA); fields of fore-arc and mid-ocean ridge peridotites, and 
partial melting trend are from Arai (1994). Compositional fields for 
pyroxene in b and c are adopted from Pagé et al. (2008) and Xiong 
et al. (2018)

◂
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Conclusions

• The dismembered ophiolites in the Wadi Al-Barramiya 
area comprise serpentinized peridotite, metapyroxen-
ite and metagabbro. The serpentinized peridotites are 
strongly altered to talc carbonate, magnesite and list-
venite, but fresh relicts of primary minerals, including 
olivine and Cr-spinel, remain. The ophiolitic assemblage 
was metamorphosed under greenschist to lower amphi-
bolite facies conditions.

• Ophiolitic metapyroxenite occurs as irregular coarse-
grained lenses within serpentinite, whereas the metagab-
bros occur as scattered masses distributed throughout the 
ophiolitic mélange. Metapyroxenite is classified as web-
sterite and olivine websterite and is mainly composed of 
altered clinopyroxene and serpentine, with fresh relicts 
of olivine, clinopyroxene and Cr-spinel. Metagabbro is 
comprised mainly of altered plagioclase, pyroxene, and 
amphibole.

• Metapyroxenite samples have low total REEs (3.52–
5.69 ppm) and display LREE-depleted patterns [(La/
Sm)n = 0.35–0.39; (La/Yb)n = 0.28–0.37) accompanied 
by weakly fractionated HREE patterns (Gd/Lu = 1.21–
1.30).

• The fresh Cr-spinel relicts in the metapyroxenite have 
high Cr# (0.63–0.75), which together with their low  TiO2 
contents (0.04–0.24 wt%) are similar to highly refractory 
peridotites that evolve in fore-arcs. This is supported by 
the high forsterite content (Fo = 0.91–0.93) of fresh oli-
vine and high Mg# (0.93–0.95) of fresh clinopyroxene.

• The metapyroxenite was formed as a magmatic rock 
derived from ultramafic magma at the base of the Neo-

proterozoic crust of the ANS due to melt-rock interac-
tion, where olivine in harzburgite wall-rock dissolved 
through interaction with a Si-enriched melt, causing 
pyroxene to precipitate.

• Metagabbro samples are characterized by enrichment 
in LILE over HFSE and they are tholeiitic with a calc-
alkaline affinity. They have flat REE patterns, with weak 
enrichment in LREE relative to HREE, and are similar 
to metagabbros associated with fore-arc ophiolites else-
where in the ANS and around the world.
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