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Abstract
The subduction of the Proto-Tethyan Ocean is still a controversial subject. Here we report zircon U-Pb ages, geochemistry, 
and Hf isotopic compositions of the zircon in the Mengkete quartz diorite in the Buqingshan–A’nyemaqen Tectonic Mélange 
Belt, which lies at the southern margin of the East Kunlun orogenic belt on the northern Tibetan Plateau, to constrain the 
petrogenesis of subduction-related granitoids and to reconstruct the evolution of the Buqingshan–A’nyemaqen Ocean. 
Zircons U-Pb dating yields coeval ages of 441–436 Ma for Mengkete quartz diorite. Mengkete plutons have variable  SiO2 
(56.63–65.22%) and high  Al2O3 (16.09–17.79%) contents and aluminous saturation indexes (A/CNK ratios) ranging from 
0.77 to 0.96, which define their metaluminous and medium-K2O calc-alkaline signatures. The plutons have a low total rare-
earth element (REE) content (45.49–168.31 ppm) and slightly positive Eu anomalies (Eu/Eu* in the range of 0.96 to 1.32). 
They are also enriched in large-ion lithophile elements (LILEs), such as Rb, Th, and Ba, but are depleted in high-field-strength 
elements (HFSEs), such as Nb, Ta, Zr, Hf, and Ti. Their zircon εHf(t) values ranging from 7.79 to 13.02, and the two-stage 
Hf (TDM2) model ages are in the range of 1130–657 Ma. These geochemical signatures indicate that the Mengkete quartz 
diorite was derived from partial melting of the mafic Meso-Neoproterozoic lower crust during the northward subduction 
of the Proto-Tethyan Ocean. The evolution of the East Kunlun Belt can be divided into five stages from the Neoproterozoic 
to late Middle Triassic: (1) an opend Buqingshan‒A’nyemaqen ocean during the Neoproterozoic up to 516Ma; (2) the 
continuous expansion of the Buqingshan‒A’nyemaqen ocean during the period 516 to 441Ma, along with the beginning of 
northward subduction in the Late Cambrian; (3) further subduction from 441 to 400Ma, accompanied by the production of 
large volumes of arc magmatic rocks; (4) the long period during which the Buqinshan–A’nyemaqen Ocean existed (400–240 
Ma); and (5) the final closure of the Buqinshan–A’nyemaqen Ocean in the late Middle Triassic.
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Introduction

The Buqingshan–A’nyemaqen tectonic mélange belt 
(BTMB) is located at the junction of the East Kunlun, 
West Qinling and Bayan Har orogenic belt (Fig. 1a, b). 
The BTMB intersects with the northeastern margin of the 
Qinghai–Tibet Plateau and the central orogenic system of 
China and constitutes a significant structural element in 
which the Proto-Tethyan and Paleo-Tethyan domain are 
interwoven (Jiang et  al. 1992; Bian et  al. 1997, 2001; 
Xu et al. 1996, 2007, 2013; Pei 2001; Wang and Yang 
2004; Zhang et al. 2004; Mu et al. 2018; Chen et al. 2020; 
Li et al. 2020, 2021). Therefore, this region is of great 

significance to geodynamic research and is well known 
to be of multistage evolution. It thus provides a natural 
laboratory for understanding the evolution of the North 
China Block and the Yangtze Block (Jiang et al. 1992; Xu 
et al. 1996, 2001; Yin and Zhang 1997; Pan et al. 2012).

Most researchers consider the BTMB to consist of the 
residual oceanic crust from the closure of the northern-
most branch of Late Paleozoic Paleo-Tethyan Ocean at the 
southern margin of the East Kunlun orogenic belt (EKOB) 
(Jiang et al. 1992; Xu et al. 2001; Bian et al. 2001; Zhu et al. 
2002; Chen et al. 2001; Zhang et al. 2004; Wang and Yang 
2004; Wang et al. 2004; Mo et al. 2007; Yang et al. 2009). 
However, recent studies have suggested that the BTMB also 
includes an Early Paleozoic island-arc-type magmatic rocks 

Fig. 1  a Map showing the macroscopic tectonic framework of Central 
Orogenic Belt, China; b Simplified tectonic map of western China, 
showing major tectonic units; Distribution of the Buqingshan Tec-
tonic mélange belt (BTMB); c Distribution of Mengkete quartz dior-

ite (rock mass) in the BTMB, southern margin of the EKOB (geologi-
cal map modified from Yin and Zhang 2003). NEKB, Northern East 
Kunlun Block; SEKB, Southern East Kunlun Block; CFEK, Central 
fault of East Kunlun; the age with “*” is from Yin and Zhang (2003)
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(Bian et al. 1999a, b, 2007; Li et al. 2017) and ophiolites 
(Bian et al. 2001, 2004; Liu 2011), indicating that the BTMB 
underwent subduction and collision during the Early and 
Late Paleozoic (Zhang et al. 1999, 2000; Liu et al. 2011a, b).

The timing of the closure of the Proto-Tethyan Ocean and 
the evolution of the EKOB are currently explained by two 
different models. One model advocates that the closure of 
the Proto-Tethyan Ocean suggests a northward subduction 
during the Late Silurian and Devonian (Bian et al. 2004; 
Liu et al. 2012; Xiong et al. 2015). The alternative model 
suggests that the Proto-Tethys Ocean did not close in the 
Early Paleozoic but that the Buqingshan–A’nyemaqen Ocean 
Basin was closed by the Middle Triassic (Pan et al. 2012; 
Dong et al. 2018; Pei et al. 2018).

Previous research on the Early Paleozoic magmatic 
rocks in the region showed that magmatism occurred in 
two phases. The early phase (Cambrian to Early Ordovi-
cian) produced the De Dur’ngoi diorite (Li et al. 2007) and 
the Manite granodiorite (Li et al. 2017), among other plu-
tonic rocks. The products of the later phase (Early Silurian) 
include the Yikehalaer, Bairiqiete, and Manite granodiorite, 
as well as felsic volcanic rocks (e.g., Bian et al. 1999a, b, 
2007; Liu 2011; Liu et al. 2011a, b; Li et al. 2014a, b, 2015, 
2017). These Early Paleozoic magmatic rocks provided a 
means of studying the evolution of the Proto-Tethyan Ocean 
while also presenting the scientific challenge of elucidating 
which dynamic background might be represented by the two 
periods of magmatism.

Previous researchers have disputed the age of the plutons 
found in the Manite area (Qinghai Geological Bureau 1972; 
Yin and Zhang 2003; Li et al. 2017). It was earlier consid-
ered that all of the plutons in the Manite area were formed 
in the Late Paleozoic (Qinghai Geological Bureau, 1972). 
Later, Yin and Zhang (2003) divided the Manite plutons into 
a southern granodiorite pluton and northern quartz diorite 
pluton, with the southern pluton being formed in the Early 
Triassic (zircon U-Pb date, 237 Ma) and the northern pluton 
being formed in the Late Triassic (zircon U-Pb date, 205 
Ma). However, Li et al. (2017) dated the southern Manite 
granodiorite at 487 ± 11 Ma and 479 ± 2 Ma (by zircon 
U-Pb dating) and proposed that the ongoing subduction of 
the Proto-Tethyan Ocean in the Buqingshan area during 
487–479 Ma formed these Late Cambrian to Early Ordovi-
cian island-arc-type granitoids. Field Geological mapping 
indicates that the northern quartz diorite pluton (the Meng-
kete) has a fault contact with the surrounding geological 
units (Fig. 2). Therefore, determination of the formation 
and the petrogenesis of the Mengkete quartz diorite are of 
important to understand the evolution of the Proto-Tethyan 
Ocean and the Paleo-Tethyan Ocean.

In this paper, we focus on Mengkete quartz diorites in 
the BTMB and present their petrology together with zir-
con U-Pb-Hf geochronological and geochemical data. 

Petrogenesis, magma sources, including magma mixing are 
also discussed with the aim of providing better constraints 
on the subduction of the Proto-Tethyan Ocean at the south-
ern margin of the EKOB.

Geological setting

The BTMB consists of a discontinuous E–W trending belt 
that is more than 700 km long and approximately 10–20 km 
wide (Fig. 1a, b). It stretches from Maqin in the east across 
Majixueshan and Tuosuohu to Buqingshan and southeast 
Heicigou (Fig. 1a) to connect with the mafic–ultramafic 
rocks of Muzitage (Molnar et al. 1987; Burchfiel et al. 1989; 
Bian et al. 2004, Fig. 1c). To the north, the BTMB is sepa-
rated from the EKOB and West Qinling orogenic belt by 
the southern East Kunlun Fault. To the south, it is separated 
from the Bayan Har orogenic belt by the Changshitou Fault. 
Forming a suture zone between the Bayan Har and East Kun-
lun Blocks, the BTMB is a product of the ocean–continent 
subduction–collision two-phase tectonic evolution during 
the Early Paleozoic to the Late Paleozoic (Zhang et al. 1999) 
and belongs to the East Tethyan Ocean tectonic domain 
(Jiang et al. 1992; Bian et al. 1999a, b, 2001; Chen and Sun 
1999; Chen et al. 2001, 2004; Zhu et al. 1999; Yang et al. 
2004; Guo et al. 2007; Liu et al. 2011a, b, c; Pei et al. 2018).

The BTMB is composed of the Lower–Middle Permian 
Maerzheng Formation  (P1-2m), which consists of Early Pal-
aeozoic and Late Palaeozoic ophiolites, Palaeozoic rocks, 
seamount basalts, and limestone (Liu et al. 2011b; Li et al. 
2013c, 2014b, 2017; Li et al. 2014a, 2015; Yang et al. 2014; 
Pei et al. 2015, 2018; Yang et al. 2016; Pei et al. 2017). The 
Middle Proterozoic Kuhai Group  (Pt2K) found in the north-
ern part of the ophiolite belt includes marble, biotite–quartz 
schist, gneiss, and amphibolite and constitutes the metamor-
phic basement. A nappe composed of the Upper Carbonifer-
ous to Lower Permian Shumenweike Formation  (C2P1-2sh), 
which primarily consists of carbonates with apparent reef 
affinities (Fig. 2), covers the entire area.

The Mengkete quartz diorite is a composite pluton that 
outcrops in the Manite area and Mengkete Valley in the 
Buqingshan area (Fig. 2). It is exposed at the surface as two 
main blocks oriented in an NNW–SEE direction (Fig. 2), 
occupying an area of ~ 16  km2. The pluton is in fault contact 
with the middle to Lower Permian Maerzheng Formation 
 (P1-2m) and the Late Cambrian to Early Ordovician Man-
ite granodiorite (Fig. 2). On the basis of the field geologi-
cal mapping, we consider that the plutons are allochtonous 
that form a mélange block within the Maerzheng Formation 
(Fig. 2). The edge of the intrusive body is strongly gneissic, 
but both the margin and interior of the block of plutons 
exhibit a weak deformation (Fig. 3a, b).
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Petrography

The massive to slightly gneissic diorite is gray to dark 
gray, with medium-to-fine subhedral grains. The constitu-
ent phases are plagioclase (60–65%), quartz (10–18%), 
amphibole (13–20%), K-feldspar (2–5%), and biotite 
(1–3%). The accessory minerals are mainly magnetite, 
titanite, apatite and zircon. The feldspar grains are 0.25–5 
mm in size, are subhedral, and show obvious polysynthetic 
twinning (Fig. 3c, d), and they also exhibit brittle deforma-
tion. The quartz grains are 0.1–0.3 mm in size and exhibit 
undulose extinction (Fig. 3d). The amphibole grains are 
aligned, and there are some quartz crystals enclosed 
within the amphibole crystals. The alteration of the dior-
ite occurred mainly by the sericitization and kaolinization 

of the plagioclase and chloritization of the amphibole and 
biotite.

Analytical methods

LA‑ICP‑MS testing

Two quartz diorite samples (MNT-02, MNT-07) from the 
Mengkete pluton were used for isotopic dating. The geo-
graphic coordinates of the samples determined by GPS 
were 35°28′52.86″N, 97°34′31.32″E, 4408 meters in 
height, 35°29′35.40″N, 97°34′31.02″E, 4338 meters in 
height, respectively. Rock specimens were crushed (80–100 
mesh) using conventional methods and minerals were 

Fig. 2  Simplified geological map of the Mengkete region in BTMB, southern margin of the EKOB (geological map modified from Yin and 
Zhang 2003)
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separated by flotation and electromagnetism techniques. 
Well-formed, crystal-shaped, and transparent zircons were 
handpicked using a binocular microscope. The zircon grains 
were mounted on two-sided adhesive tape and fixed with 
colorless transparent epoxy resin until fully solidified. The 
surface was polished to expose the interior of the zircons. 
Cathodoluminescence (CL) microphotographic images were 
taken with a Cameca electron probe X-ray microanalyser 
at the Institute of Geology and Geophysics, Chinese Acad-
emy of Sciences, Beijing. The analysis voltage was 15 kV, 
and the current was 19 nA. The in situ U-Pb isotopic age 
analyses of zircons were performed using LA-ICP-MS at the 
State Key Laboratory of Continental Dynamics, Northwest 
University, Xi’an. The analysis instruments were an Elan 
6100DRC Type Quadrupole Perch Mass Spectrograph and a 
Geolas 200M excimer laser ablation system (193 nm, Geolas 
200M, Lambda Physic). The facula beam diameter of laser 
ablation was 30 μm, and the depth of laser ablation sam-
ples was 20–40 μm. The detailed experimental principles, 

technological process, and instrumentation parameters used 
were the same as those reported by Yuan et al. (2003, 2004).

The international standard zircon 91500 was used as an 
external standard for the calculation of zircon ages. The 
artificial synthetic silicate glass NIST SRM610, Ameri-
can National Standard Substance Bureau, was adopted as 
an external standard for element content analysis. 29Si was 
used as the internal standard element. The isotopic ratio 
and element content data were analyzed using the GLIT-
TER software (ver. 4.0, Macquarie University). The general 
lead adjustment was conducted using the Andersen software 
(Andersen 2002), and ISOPLOT software (3.0 edition, Lud-
wig 2003) was used for the age calculation and concordia 
diagrams.

Geochemical analyses

Seven samples were selected for the analyses of major and 
trace elements. The samples were ground to 200 mesh, and 

Fig. 3  a, b Field photographs (viewing toward SE); c, d microscope micrographs (crossed polarizers, 5 times) of the Mengkete quartz diorite in 
the BTMB, southern margin of the EKOB. Am Amphibole, Pl Plagioclase, Qtz Quartz
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the major and trace elements were measured in the State Key 
Laboratory of Lithosphere Evolution, Institute of Geology 
and Geophysics, Chinese Academy of Sciences. The major 
elements were tested using X-ray fluorescence spectrom-
etry (XRF-1500). To determine the oxide content, a sheet 
glass made of 0.5 g sample and 5 g lithium tetraborate was 
tested using the Shimadzu XRF-1500 with a precision of 
>2–3%. Trace and rare-earth elements (REE) were analysed 
by ICP-MS (Element II). The samples were prepared using 
the acid-solubility method, which has an analytic precision 
of > 10% (according to the national standards GSR-1 and 
GSR-2); however, the precision is > 5% when the element 
content is > 10 ppm. The detailed analysis methods were 
described by Chen et al. (2000, 2002a).

Zircon Lu‑Hf isotope analyses

In situ zircon Hf isotopic analyses were conducted using a 
Neptune MC-ICPMS, equipped with a 193 nm laser, at the 
State Key Laboratory of Continental Dynamics, Northwest 
University, China. During the analyses, a laser repetition 
rage of 10 Hz at 100 mJ was used and spot diameter was 30 
lm. Raw counts for 172Yb, 173Yb, 175Lu, 176(Lu + Yb + Hf), 
177Hf, 178Hf, 179Hf, 180Hf and 182W were collected and iso-
baric interference corrections for 176Lu and 176Yb on 176Hf 
need to be precisely determined. 176Lu was calibrated using 
the 175Lu value and correction of 176Yb on 176Hf (Iizuka and 
Hirata 2005; Iizuka et al. 2017). The detailed analytical tech-
nique was described by Yuan et al. (2008). The notations of 
εHf(t),  fLu/Hf, TDM1 and TDM2 are defined as the same as those 
in Wu et al. (2007).

Analytical results

Zirocn U‑Pb ages

The zircons in the sample MNT-02 of the Mengkete quartz 
diorite are euhedral and pale yellow to colorless. In cathodo-
luminescence images (Fig. 4a), these zircons show oscilla-
tory zoning, which is indicative of a magmatic origin (Bel-
ousova et al. 2002; Wu and Zheng 2004; Siebel et al. 2005). 
The zircon is prismatic in form with lengths ranging from 
110 to 220 µm and aspect ratios of 1:1–3:1. The thorium 
and uranium concentrations obtained from the analyses of 
24 zircon samples were within the ranges 60.50–455.89 and 
160.25–469.25 ppm, respectively (Table S1, in the Supple-
mental material), and all of the zircons were found to have 
high Th/U ratios (0.28–1.00) (Table S1, Fig. 5a). All the 
Th/U ratios were greater than 0.1, and Th and U were posi-
tively correlated. The zircons display left-inclined curves 
in chondrite-normalized REE patterns (Fig. 5b), indicate 
fractionation between light and heavy rare-earth elements 

(LREEs and HREEs) evident from positive Ce anomalies 
(Ce/Ce* = 1.17–148.77) and negative Eu anomalies (Eu/
Eu* = 0.41–0.63) (Table S2). All of the zircon Th/U ratios, 
crystal shapes, and REE patterns indicate that the zircons are 
of magmatic origin. Samples from 23 of the sample loca-
tions—the exception being MNT-0q62-11—indicated con-
cordant ages. The 206Pb/238U ages range from 450 to 426 Ma 
(Table S1, Fig. 4a), with an average age of 441.0 ± 2.6 Ma 
(MSWD = 1.7) (Fig. 6a, b), which implies crystallization 
Early Silurian for the Mengkete quartz diorite.

The zircons in the sample MNT-07 of the Mengkete 
quartz diorite are euhedral and pale yellow to colorless. In 
cathodoluminescense images (Fig. 4b), these zircons show 
oscillatory zoning, which is again indicative of a magmatic 
origin (Belousova et al. 2002; Wu and Zheng 2004; Siebel 
et al. 2005). The thorium and uranium concentrations for 
the 30 zircon samples were within the ranges 69.96–463.19 
and 152.46–677.44 ppm, respectively, and all of the zir-
cons were found to have high Th/U ratios (0.44–1.00). 
All of the Th/U ratios were greater than 0.1, and Th and 
U were positively correlated (Table S1, Fig. 5c). The zir-
cons display left-inclined curves in chondrite-normalized 
REE patterns (Fig. 5d) and indicate fractionation between 
LREEs and HREEs evident from positive Ce anomaly (Ce/
Ce* = 1.29–68.38) and negative Eu anomaly (Eu/Eu* = 
0.23–0.75) (Table S2). All of the zircon Th/U ratios, crys-
tal shapes, and REE patterns indicate that the zircons are 
of magmatic origin. Samples from 29 of the sample loca-
tions—the exception being MNT-07-007—indicated con-
cordant ages. These ages can be subdivided into two groups: 
one group (corresponding to 5 of the zircon cores) yielded 
206Pb/238U ages ranging from 495 to 465 Ma (Fig. 4b) with a 
weighted mean age of 474 ± 15 Ma (MSWD = 2.5) (Fig. 6c, 
d), representing zircons captured from the wall rock. The 
other group (corresponding to 24 of the samples in zircon 
rims) yielded 206Pb/238U ages ranging from 450 to 417 Ma 
(Table S1, Fig. 6c) with a weighted mean age of 435.9 ± 3.9 
Ma (MSWD = 0.52) (Fig. 6e); this age corresponds to the 
crystallization age of the Mengkete quartz diorite. There-
fore, we suggest that the Munkte quartz diorite was formed 
between 441.0 and 435.9 Ma, during the Early Silurian.

Geochemcial characteristics

The  SiO2 content of the Mengkete quartz diorite samples is 
variable (56.63–65.22%) (Table S3). In a total alkali–silica 
diagram (Fig. 7a), most of the samples fall into the diorite 
field and have a low alkali contents (4.91–5.59%) and  K2O/
Na2O ratios of 0.17–0.31. All of the samples can be classi-
fied as medium-K calc-alkaline and are characterized by a 
medium  K2O content and high  Al2O3 (and low FeO/(FeO 
+ MgO) ratios (16.09–17.79% and 0.49–0.53, respectively) 
(Fig. 7b).
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The trace-element results for the Mengkete quartz dior-
ites indicate low REE contents (47.61–163.08 ppm with an 
average of 87.53 ppm), fractionation between LREEs and 
HREEs (LREE/HREE = 3.58–11.53 with an average of 
7.08), and enrichment in LREEs with depletion in HREEs 
(Fig. 8a). All of the diorites have weakly positive Eu anoma-
lies (Eu/Eu* = 0.96–1.32) (Fig. 8a). LREE fractionation is 
also indicated by the (La/Sm)N values (1.20–5.65 with an 
average of 3.20). The HREE depleted is probably caused 
by the residual garnet and hornblende (Patino-Douce and 
Johnston 1991), which have La/Yb ratios ranging from 3.37 
to 20.98 (average: 11.41), (La/Yb)N ratios ranging from 2.42 
to 15.05 (average: 8.19), and (Gd/Yb)N ratios ranging from 
1.42 to 2.00 (average: 1.64).

The Mengkete quartz diorites are characterized by high 
Sr, low Y, and low Yb, with Rb/Sr ratios of 0.05–0.09, Ra/Ba 

ratios of 0.05–0.11, and high K/Rb ratios (118.98–143.23). 
A primitive mantle-normalized spidergram (Fig. 8b) indi-
cates that the diorites are enriched in LILEs (such as Rb, 
Th, and Ba) and depleted in HFSEs (such as Nb, Ta, Zr, 
Hf, and Ti). The relatively enriched Zr and depleted Nb, 
Ta, and Ti indicate that a crustal rock is a possible source 
of hese diorites (Green et al.1987; Green 1995; Barth et al. 
2000). The curves of the spidergrams and the REE patterns 
are identical across all samples, which is indicative of their 
cognate source rock.

Zircon in‑situ Lu‑Hf isotopic compositions

To determine the magma source for the Mengkete quartz 
diorite, the Lu-Hf isotopic compositions of a set of rep-
resentative zircon samples (MNT-07, ~ 435.9 Ma) were 

Fig. 4  Cathodoluminescence (CL) images of representative zircon 
grains from the Mengkete quartz diorite in the BTMB, southern 
margin of the EKOB. a Sample MNT–02; b sample MNT–07. The 

yellow solid and red dashed circles show the locations for U-Pb and 
Lu-Hf isotope analysis, respectively. Their corresponding 206Pb/238U 
ages (yellow digits) and εHf(t) values (red digits) are also shown
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Fig. 5  Th–U contentand and chondrite-normalized REE patterns for 
zircon grains from Mengkete quartz diorite in the BTMB, southern 
margin of the EKOB (chondrite data data for normalization taken 

from Sun and McDonnough 1989) (a and b, sample MNT–02; c and 
d, sample MNT–07)

Fig. 6  LA–ICP–MS zircon U–Pb concordia diagram of the Mengkete quartz diorite in the BTMB, southern margin of the EKOB (a and b, sam-
ple MNT–02; c, d and e, sample MNT–07)
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analyzed. The beam positions are shown in Fig. 4b, and 
the analytical results are listed in Table S4.The 176Yb/177Hf 
ratios of the samples range from 0.018122 to 0.066622. 
The 176Lu/177Hf ratios are smaller than 0.002 (range: 
0.000598–0.001919), indicating that only a small amount 
of radiogenic Hf accumulated after the zircons crystal-
lized (Griffin et al. 2000). Therefore, the initial 176Hf/177Hf 
ratio can also be used to represent the final 176Hf/177Hf 
ratio—that is, the ratio when the zircons initially formed 
(Wu et al. 2007). The fLu/Hf values ranged from -0.94 to 
-0.98 (average: -0.97). The in-situ Lu-Hf isotopic compo-
sitions of the zircons in the Mengkete quartz diorites are 
homogenous and have similar εHf (t) values (7.79–13.02) 
(Fig. 9a) and TDM2 model ages (1130–657Ma) (Fig. 9b).

Discussion

Petrogenesis and source characteristics

The Mengkete quartz diorites have La/Nb ratios greater than 
1.0 (range 1.33–5.53). These are different from the values 
that mantle-derived magma would have (DePaolo and Daley 
2000), indicating that these quartz diorites formed in crust-
derived magma. The depleted Nb, Ta and Ti also indicate 
that the source was dominated by crustal materials. The Rb/
Sr ratios range from 0.05 to 0.09 (average: 0.06, closer to the 
average crustal value of 0.24, Taylor and McLennan 1985), 
again supporting the hypothesis that the quartz diorites are 
associated with crust-derived magma.

Fig. 7  a TAS diagrams (after Le Maitre 2002 Middlemost 1994). b  K2O–SiO2 diagrams (after Rickwood 1989) of the Mengkete quartz diorite in 
the BTMB, southern margin of the EKOB

Fig. 8  a Chondrite-normalized rare earth element (REE) patterns, b 
primitive mantle-normalized incompatible element distribution pat-
terns for Mengkete quartz diorite in the BTMB, southern margin of 

the EKOB (chondrite data and primitive mantle data for normaliza-
tion taken from Sun and McDonnough 1989)
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The magma derived from the partial melting of basaltic 
rocks in the crust can form a basaltic and metaluminous 
granitic magma (Wolf and Wyllie 1989; Beard and Lofgren 
1991; Johannes et al. 2003; Sisson et al. 2005). The high K/
Rb, high Sr/Y, low Rb/Sr, and low Rb/Ba ratios obtained for 
the diorites indicate that the source rocks were depleted in 
Rb and enriched in Sr and Ba, whereas the low Rb/Sr and 
Rb/Ba ratios and high  Mg# values indicate that the source 
rocks consisted of mafic rocks, metabasalt, or mafic meta-
greywackes (Altherr et al. 2000; Liegeois 1998). In a plot 
of  Al2O3/(MgO +  FeOTotal) vs CaO/(MgO +  FeOTotal) (an 

AMF-CMF diagram) (Fig. 10a), all of the samples plot in 
the field that corresponds to the melting of basaltic rocks. In 
an  SiO2–Mg# diagram (Fig. 10b), all of the samples plot in 
or lie close to the field corresponding to adakite melts, also 
indicating a mafic source rock. According to plots of La/
Sm vs La and Zr/Sm vs Zr plots (Fig. 10c, d, respectively), 
all of the samples were affected by partial melting during 
the evolution of the magma. This is also supported by the 
slightly positive Eu anomalies and LREE-HREE fractiona-
tion (Fig. 8a), which both indicate that the Mengkete quartz 
diorites were formed by partial melting of mafic crustal rock.

Fig. 9  a Plot of εHf (t) vs. U-Pb ages and b Histogram of εHf (t) for zircons from studied diorite (the values used for constructing the depleted 
mantle and crust reference evolution lines are after Griffin et al. 2000, 2002)

Fig. 10  a AMF–CMF diagram 
(after Sylvester 1998); b  SiO2–
Mg# diagram (the curves of 
mantle assimilation–fractional 
crystallization (AFC) and crus-
tal AFC are after Stern and Kil-
ian 1996); c Zr/Sm–Zr diagram; 
d La/Sm–La diagram (after 
Allègre and Minster 1978) for 
Mengkete quartz diorite in the 
BTMB, southern margin of the 
EKOB
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Zircon Hf isotope analysis is an important means of 
determining the source area for granite (Wu et al. 2007). 
We found that εHf(t) for zircons from the Mengkete quartz 
diorites was dominated by positive values ranging from 
+7.79 to +13.02 (Fig. 9a), with corresponding TDM2 model 
ages ranging from 1130 to 657 Ma. In the εHf(t)-t diagram, 
all of the samples plot above the chondritic uniform-reser-
voir evolution line and below the depleted-mantle evolu-
tion line, indicating that the petrogenesis involves young 
components. There are two possible ways for young com-
ponents to participate in the petrogenesis of granite. One 
way involves the mixture of the felsic magma formed by 
the partial melting of the mantle source with the lower 
crustal material (Griffin et al. 2002; Belousova et al. 2006; 
Kemp et al. 2007); in the other, mantle-derived magma 
underplating causes partial melting of the crustal mate-
rial (Jahn et al. 2000; Wu et al. 2006; Zheng et a1. 2007). 
Values of εHf(t) for the Mengkete quartz diorite are posi-
tive and do not vary by more than 6 ε units. The Hf isotope 
values are relatively uniform, possibly indicating partial 
melting of the crustal material to form granitic magma. 
These values are also consistent with the geochemical 
characteristics of control by a crustal source.

The 176Lu/177Hf value for sample MNT-7 was less than 
0.002, indicating that only a small amount of radiogenic 
Hf in the zircon after it formed. The sample had an aver-
age fLu/Hf value of − 0.97, which is much lower than that 
of both mafic crust (− 0.34; Amelin et al., 2000) and salic 
crust (− 0.72; Vervoort et al., 1996). Therefore, the two-
stage model age better represents the time when the source 
rock material was extracted from the depleted mantle (Wu 
et al. 2007). According to the two-stage granite model age, 
the Mengkete quartz diorite formed by partial melting of 
the Meso-Neoproterozoic crustal material.

Tectonic setting

The Mengkete quartz diorites have an  SiO2 content of 
56.63–65.22%, an MgO content of 2.12–3.23%, a high Sr 
content (467.89–626.53 ppm), a low Y content (7.79 20.10 
ppm), and a low Yb content (0.80–2.03 ppm), all of which 
suggest an association with adakite (Default and Drummond 
1990; Martin 1999). The high  Na2O content (3.81–4.77%), 
low  K2O/Na2O ratios (0.17–0.31), high Mg# values 
(48.92–51.29), slightly positive Eu anomalies, and in some 
cases high Sr/Y ratios (26.14–63.78) differ from what would 
be observed for typical crust-derived calc-alkaline granite 
(Defant and Drmmond 1990; Martin 1999). Altogether, 
these geochemical signatures; the high Sr, low Y, and low 
Yb; the Rb/Sr ratios (0.05–0.09), Rb/Ba ratios (0.05–0.11), 
and high K/Rb ratios (118.98–143.23); the negative Nb, P, 
and Ti anomalies; and the positive Sr anomalies indicate an 
affinity with a mafic-magma source in a subduction-related 
arc environment (Pearce and Norry 1979; McCulloch and 
Gamble 1991). The relatively enriched Ba and Sr and the 
relatively depleted Rb, Nb, Ta, P, and Ti also support the 
idea of an arc-magma source (Fig. 7b).

These results for the Mengkete quartz diorites and those 
from previous research on coeval magmatic rocks in the 
Buqingshan area—including the Bairiqiete and Yikehalaer 
granodiorites and intermediate-to-acidic lava—plot in the 
volcanic-arc granitoid (VAG) field in a Rb vs (Yb + Ta) 
diagram (Fig. 11a), thus further supporting an arc environ-
ment origin for the diorites. In a diagram of Rb vs (Y + 
Nb) (Fig. 11b), most of the data fall into the VAG and post-
collision granites fields, indicating that these intermediate-
to-acidic igneous rocks all formed in the same setting (Liu 
2011; Li et al. 2014b). Thus, it can be concluded that the 
Mengkete quartz diorites are products of Early Paleozoic 

Fig. 11  Tectonic setting discrimination diagrams for Mengkete quartz 
diorite in the BTMB, southern margin of the EKOB (a, after Pearce 
et al. 1984; b after Pearce 1996). Mengkete quartz diorite data from 
this paper; B–Bairiqiete granodiorite data from Li et al. 2014b; BH–
Bairiqiete intermediate–acid Lava data from Liu et  al. 2011c; Yike-

halaer–Yikehalaer granodiorite data from Li et al. 2015. ORG, Ocean 
Ridge Granites; Post–COLG, Post-Collision Granites; Syn–COLG, 
Syn-Collision Granites; VAG, Volcanic Arc Granites; WPG Within 
Plate Granites
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island-arc magmatism related to Proto-Tethyan subduction 
and orogenesis.

Tectonic significance

The Mengkete quartz diorites (rock mass) formed between 
441.0 ± 2.6 Ma and 435.9 ± 3.9 Ma and are products of 
Early Paleozoic island-arc magmatism related to Proto-
Tethyan subduction and orogenesis. The Mengkete quartz 
diorites are in fault contact with the surrounding pre-Tiassic 
strata. All of this indicates that the Buqingshan area had 
a complex tectonic evolutionary history and experienced a 
series of tectonic events. The different stages of this history 
are described in detail below.

Stage 1: the beginning of the Neoproterozoic to 516 Ma 
(Fig. 12a). At present, the Early Paleozoic ophiolites in the 
BTMB are represented by Delisitan ORB ophiolites (DO, 
gabbro age is 516.4 ± 6.3Ma–467.2 ± 0.9Ma, Bian et al. 
1999a; Liu et al. 2011a, abbreviations explained in Fig. 12), 
A’nyemaqen Majixueshan ORB ophiolite (gabbro 535 ± 
10Ma, Li et al. 2007), and Kuhai oceanic island gabbro 
(555 ± 9Ma, Li et al. 2007). This is evidence that the Proto-
Tethyan Ocean opened in the Early Cambrian. The Early 
Paleozoic ophiolite in the Buqingshan area is likely to be 
related to the break-up of the Rodinia supercontinent during 
late Neoproterozoic to Early Cambrian. This shows that in 
the Early Paleozoic, the East Kunlun Block, West Qinling 
Block, and Bayan Hara Block were in a discrete from each 
other and the southern margin of the East Kunlun was been 
an open “Buqingshan paleo-ocean basin” (Fig. 12a, Li et al. 
2007; Feng et al. 2010; Liu et al. 2011a, b, c; Pei et al. 2018; 
Yu et al. 2020). A contemporaneous ophiolite was also found 
in the East Kunlun area, indicating that the Central of East 
Kunlun Ocean was also opened (e.g., Qingshuiquan ophi-
olite, 522.3 Ma–507.7 Ma, Yang et al. 1996; Chen et al. 
2008; Qingshuiquan-Tatuo ophiolites, 516 Ma–485 Ma, Li 
et al. 2021; Qushi'ang Ophiolite, 505 Ma–498 Ma, Li et al. 
2019b; Kekesha-Kekekete mafic-ultramafic melange belt, 
509.4 ± 6.8 Ma, Feng et al. 2010). In addition, the Late Sin-
ian Dundeshaerguole Pluton (DP, 544.8 ± 7.8 Ma, Li et al. 
2018a, Fig. 12a) of the Kekesha area also exhibits evidence 
of the extension-related magmatic events that occurred in 
the East Kunlun area.

Stage 2: from 516 to 441 Ma (Fig. 12b). As the Buqing-
shan paleo-ocean basin continued to expand, the Buqingshan 
ocean basin began to subduct toward the north in the Late 
Cambrian. The Late Cambrian–Early Ordovician Manite 
island-arc granite (Fig. 12b, MNP, 487–479 Ma, Li et al. 
2017), Deerni island-arc diorite (493 ± 6Ma, Li et al. 2007) 
formed in the BTMB at this time. At the same time, the 
intermediate-acid arc igneous complex formed in the north 
of the Qingshuiquan–Kekesha–Kekekete area in the East 

Kunlun area (KP, 515 Ma–527 Ma, Zhu et al. 2002; Zhang 
et al. 2010a; Zhang 2010).

Stage 3: from 441 to 400 Ma (Fig. 12c). Further subduc-
tion within the Silurian Buqingshan–A’nyemaqen Ocean led 
to the formation of an island-arc magma represented by the 
Mengkete quartz diorite (441–436 Ma), the Yikehalaer arc 
granodiorite (YP, 437–402 Ma, Bian et al. 2007; Liu 2011), 
the Bairiqiete island-arc pluton (BP, 441–439 Ma, Liu 2011, 
Li et al. 2014b), and the intermediate-to-acidic lava (BV, 
437 Ma, Liu et al. 2011c). These island-arc-type magmatic 
rocks indicate that the Buqingshan–A’nyemaqen Ocean slab 
continued to subduct northward from the Early Cambrian to 
the Late Silurian. However, there was little development of 
the Late Paleozoic magmatic rocks in the Buqingshan and 
East Kunlun areas (Pei et al. 2018), suggesting that the Late 
Silurian Buqingshan–A’nyemaqen oceanic ridge spreading 
activity may have waned and that the oceanic crustal subduc-
tion activities may also have waned or stopped. By contrast, 
the East Kunlun area was affected by the Caledonian orog-
eny, and the Central of East Kunlun Ocean Basin was closed 
in the Late Silurian. At this point, the NEKB and SEKB 
collided (Chen et al. 2002b, 2007; Yin and Zhang 2003; 
Li et al. 2013b; Pei et al. 2018), which led to the Central 
of East Kunlun ophiolites thrust in place, accompanied by 
strong deformation and metamorphism (Meng et al. 2017, 
Fig. 12c). During the period 425–400 Ma, post-collision 
plutons, A-type granites, and Maoniushan molasse assem-
blage in the EKOB were formed (Liu et al. 2012; Xu et al. 
2007; Lu et al. 2010; Zhang et al. 2010b; Li et al. 2013a; 
Chen et al. 2020; Dong et al. 2020; Li et al. 2020; Wang 
et al. 2022). Most researchers consider that when the Early 
Paleozoic oceanic basin was closed, the stress regime in 
the north–south direction transformed from compression to 
extension. This represented the end of the Early Paleozoic 
Proto-Tethyan evolution and the beginning of Late Paleozoic 
Paleo-Tethyan evolution (Yang et al. 2004; Ren 2004; Zhu 
et al. 2006; Mo et al. 2007; Chen et al. 2007, 2008; Mo 2010; 
Li et al. 2012; Xiong et al. 2014).

Stage 4: from 400 to 240 Ma (Fig. 12d). Carboniferous 
island/seamount basalt–limestone assemblages are present 
in the BTMB. The eastern Haerguole ophiolite (332 Ma) 
is present in the BTMB along with the Deerni ophiolite 
(308–345Ma) in the A’nyemaqen area (Chen et al. 2001; 
Yang et al. 2004, 2005). The presence of these ophiolites 
indicates that the Buqingshan–A’nyemaqen Ocean still 
existed in the Early Carboniferous. In the Late Permian, 
the Buqingshan–A'nyemaqen ocean once again began to 
subduct under the East Kunlun Block (Yang et al. 2005). 
Between 240 and 260 Ma, continental margin arc-type plu-
tons (CMAP) caused by the subduction of oceanic crust is 
distributed in an east–west direction in the East Kunlun area 
(e.g., Liu et al. 2004; Yang et al. 2005; Sun et al. 2009; Li 
et al. 2018c; Ma et al. 2015; Chen et al. 2017; Zhao et al. 
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2019; Kong et al. 2020; Yu et al. 2020; Zhou et al. 2020; Li 
et al. 2022 Fig. 12d). This stage is akin to Andean continen-
tal margin subduction.

Stage 5: from 240 to 205 Ma (Fig. 12e). The Gerizhuo-
tuo diorite with attribute of "stitching pluton" was found in 
the Buqingshan area (GP, 225–224 Ma, Li et al. 2013c; Liu 

et al. 2015). The Kekeealong Pluton and Helegang-Xilikete 
Pluton in the SEKB (KP, Chen et al. 2013a; HXP, Chen et al. 
2013b), the Elashan Formation rhyolite, which is high in Nb 
and Ta, and the gabbro representative of the post-collision 
extension magmatic rock (Luo et al. 2002; Ding et al. 2011) 
indicate that the 225 Ma Buqingshan–A'nyemaqen Ocean 

Fig. 12  Tectonic evolution cartoon of Buqingshan–A’nyemaqen 
Ocean in Paleozoic–Early Mesozoic (modified from Pei et al. 2018) 
in the southern margin of the EKOB. SEKB, Southern East Kun-
lun Block; NEKB, Northern East Kunlun Block; CEKB, Central 
East Kunlun Belt; BHB, Bayan Har Block; BTMB, Buqingshan–
A’nyemaqen Tectonic mélange belt; QKO, Qingshuiquan-Kekesha 
Ophiolite, 522–509 Ma, after Lu et  al. (2002), Yang et  al. (1996), 
Feng et  al. (2010), Li et  al. (2013b). DO-Delisitan Ophiolite, 516.4 
Ma, after Liu et  al. (2011c); KO-Kekekete Ophiolite, 501 Ma, Li 
et  al. (2013b); OO-Ordovician Ophiolite, 467–450 Ma, after Pei 
et al. unpublish; EHO-Eastern Haerguole Ophiolite, 332.8 Ma, after 
Liu et al. (2011c); DP-Dundeshaerguole Plutons, 544.8 Ma, Li et al. 
(2018a); KP-Kekesha Pluton, 515.2 Ma, after Zhang et  al. (2010a); 

MP-Manite Plutons, 487–479 Ma, after Li et  al. (2017); BV-Bair-
iqiete volcanic, 437.7 Ma, after Liu et  al. (2011a); MDP-Mengkete 
Pluton, 441.0~435.9 Ma, this paper; HNP-Helegang Naren Pluton, 
425.0 Ma, after Li et al. (2013a), A-type granite; HS-Haerguole Sea-
mount Basalt age 340.8 Ma, after Yang et  al. (2014); CMAP-Late 
Permian-Middle Triassic Continental margin arc type Plutons, 260–
240 Ma, Liu et al. (2004), Liu (2008), Yang et al. (2005), Sun et al. 
(2009), Ma et al. (2015), Chen et al. (2017), Xiong et al. (2015), Li 
et  al. (2018b). HXP-Helegang Xilikete Pluton, 225 Ma, after Chen 
et al. (2013a); GP-Gerizhuotuo Pluton, 225.8–224 Ma, after Li et al. 
(2013c); Liu et al. (2015); KEP-Kekeealong Plutons, 218.3 Ma, Chen 
et al. (2013b); IBD-intermediate-basic dikes, 205 Ma, after Li et al. 
(2019a)
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had closed by this time. The late Late Triassic massive inter-
mediate-basic dikes represent the latest tectonic magmatism 
in the BTMB (IBD, 205Ma, Li et al. 2019a). During this 
period, an orogenic collision event finally formed a series 
of NNE‒SSW striking thrust faults (Fig. 2), and tectonic 
blocks of different ages and genesis mixed with the Mae-
rzheng Formation flysch turbidite, thus forming the basic 
tectonic framework of the Buqinshan–A’nyemaqen complex 
accretive type tectonic mélange belt (Fig. 12e). At the same 
time, the entire EKOB and main structural framework of 
the Central Orogenic Belt of China were created (Pei et al. 
2018). Therefore, it can be seen that the BTMB at the south-
ern margin of the EKOB records the long-lived history of 
the subduction and accretion that occurred during the Late 
Neoproterozoic, Paleozoic, and Early Mesozoic, as well as 
the final closure of the Buqingshan–A'nyemaqen Ocean in 
the late Middle Triassic. It also records the evolution of the 
Proto-Tethys Ocean and Paleo-Tethys Ocean at the southern 
margin of the EKOB.

Conclusion

From a comprehensive study of the Mengkete quartz diorites 
in the BTMB based on geochronological, geochemical, and 
zircon Hf isotopes data, we conclude the following

1. The LA-ICP-MS zircon ages of the Mengkete quartz 
diorites (rock mass) are between 441.0 ± 2.6 Ma and 
435.9 ± 3.9 Ma), indicating that the intrusion formed in 
the Early Silurian.
2. The Mengkete quartz diorites have high  Al2O3, low 
alkali, and medium  K2O contents and belong to the 
medium-K calc-alkaline series. The zircon Hf isotope 
compositions gave a TDM2 model age range of 1130–657 
Ma, indicating that the diorites are derived from the par-
tial melting of mafic rocks in the Meso-Neoproterozoic 
lower continental crust.
3. The BTMB in the southern margin of the EKOB had 
a long-lived subduction and accretion history during the 
Late Neoproterozoic, Paleozoic, Early Mesozoic and 
finally closed in the late Middle Triassic. The evolution 
of both the Proto-Tethyan Ocean and the Paleo-Tethyan 
Ocean is recorded here.
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