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Abstract
Structural elements, transversal to the Apennine chain, display various problematic aspects connected, above all, with their 
origin tectonogenetic role. From a seismic point of view, they may act as a structural barrier to the propagation of the Apen-
nine normal faults or behave as transfer zones, thus activating neighboring segments belonging to the same fault system; the 
largest ones can also host significant earthquakes with the hypocenters located in the basement, below the Apennine thrust 
belt. This paper describes a case of recurrent surface faulting that reactivates a sector of a relevant transverse feature, the "." 
(FV-VE), near the city of Fabriano (Marche, Italy). Detailed geomorphological observations connect it with past earthquakes, 
including the disastrous event (I0 = IX MCS, about 6.2 Mw) of 24 April 1741 that struck the area with a wide distribution 
of damages extending along the Esino River Valley to the Adriatic coast over a distance of more than 50 km. Furthermore, 
paleoseismological analysis and radiocarbon datings of faulted river terraces and slope deposits, ranging in age from the 
end of the Middle Pleistocene to the recent Holocene, allowed us to define the evolutionary steps of the fault and estimate 
a slip rate of about 0.3 mm/year.
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Introduction

Structural elements, transversal to the Apennine chain, have 
been described by various authors even though they still 
display various problematic aspects connected, above all, 
with their origin, tectonogenetic role, and seismic signifi-
cance (Selli 1954; Centamore et al. 1978b; Nesci et al. 1978; 
Calamita et al. 1979; Castellarin et al. 1982; Boccaletti et al. 
1983; Dramis et al. 1991; Coltorti et al. 1996; Sorgi et al. 
1998; Di Bucci et al. 2002; Della Seta et al. 2008; Centa-
more et al. 2009; Pizzi and Galadini 2009; Pierantoni et al. 
2013; Peacock et al. 2017; Turco et al. 2021). They consist 
of lineaments, or more often sheaths of lineaments, up to 
more than a hundred kilometers long and easily recognizable 
on aerial photographs or satellite images because of geo-
morphic indicators such as straight watercourses or aligned 
saddles, ridges, scarps, etc.

These features show evidence of polyphasic activity, con-
sisting of successions of horizontal, compressional, or exten-
sional regimes, but are commonly characterized by small 
displacements, definitely subordinate to those of the exten-
sional faults parallel to the Apennine ridges (Coltorti et al. 
1996). Some of the transverse (“anti-Apennine”) structures 
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have conditioned the marine sedimentation during the main 
compressive phase of the Apennine (Calamita et al. 1991a, 
b), from the Messinian to the Early Pleistocene (Centamore 
et al. 1978a; Calamita et al. 1979; Boccaletti et al. 1986; Bigi 
et al. 1997), and then, after the emersion and the westward 
extension of the Apennine chain, the morphological evolu-
tion of the main river valleys (Girotti 1968; Dramis et al. 
1991; Dramis 1992; Coltorti et al. 1996).

Such long-lasting and recurrent activity in various tec-
tonic regimes suggests that these structures may reach con-
siderable crustal depths, making them comparable with the 
“regmatic geofractures” described by Caire (1975) or with 
the trans-Himalayan faults (Dasgupta et al. 1978), capable of 
reappearing at the surface even after compressive phenom-
ena had shortened the sedimentary cover. Several authors 
have adopted this interpretation of the transverse structures 
(e.g., Tavarnelli 1996; Tavarnelli et al. 1998, 2001, 2004; 
Butler et al. 2006;  Centamore et al. 2009; Pizzi and Galadini 
2009; Gori et al. 2014; Vannoli et al. 2015) who consider 
them “pre-existing” to the compressive phase responsible 
for the formation of the Apennine chain.

From a seismic point of view, they may act as “long term” 
structural barriers (Wheeler 1989) to the propagation of 
Quaternary fault systems or be reactivated as transfer zones, 
thus activating neighboring segments belonging to the same 
fault system (Pace et al. 2002; Pizzi and Galadini 2009; 
Vannoli et al. 2015; Gori et al. 2017). The largest ones can 
also host significant deep earthquakes with the hypocent-
ers located in the basement (Valensise and Pantosti 2001; 
Vannoli et al. 2015) below the Apennine thrust belt, whose 
maximum thickness in the area is ca. 9 km (Barchi et al. 
2012). Active tectonic behavior associated with deep struc-
tures is also recognized in the Marche region; it appears to 
be controlled by deep-seated, probably inherited, and long-
lived, steep faults showing dominant strike-slip kinematics 
(Mazzoli et al. 2015).

This paper presents a case of recurrent surface faulting 
that reactivates a sector of the the “Fossato di Vico-Valle 
dell’Esino line” (FV-VE), a major transverse lineament, in 
the outskirts of Fabriano and puts it in relationship with the 
earthquakes that have hit the area several times in the past, 
including the disastrous event (I0 = IX MCS, ~ 6.2 Mw) of 
24 April 1741.

Geological and geomorphological setting 
of the study area

The Fabriano town arises on an alluvial terrace of the Giano 
River (a tributary of the Esino River). Northeast of Fabriano, 
the alluvial plain widens out considerably inside a tectonic 
depression bounded to the north-east by normal faults low-
ering the western flank of the "Marchean Ridge" and to the 

south-east by "anti-Apennine" faults following the FE-VE 
line (Calamita et al. 1979; Centamore et al. 1979; Servizio 
Geologico d'Italia 1979; Ambrosetti et al. 1981; Boccaletti 
et al. 1983) (Fig. 1).

As for most of the Marche hydrographic systems, the 
Giano River is bordered by alluvial terraces, which owe 
their origin to the alternation of depositional and erosive 
processes linked to late Quaternary climate changes, in the 
context of a regional uplift (Ciccacci et al. 1985; Coltorti 
et al. 1991; Dramis 1992).

Detailed geomorphological surveys carried out in the 
area allowed us to recognize three main orders of alluvial 
terraces: the highest order (first-order terrace) lies at about 
100 m above the river bed, those of the second-order at about 
50 m, and those of the third-order at about 25 m (Fig. 2a and 
b). The related alluvial deposits have been referred to the 
Middle Pleistocene, the end of the Middle Pleistocene "Riss" 
Glaciation), and the Late Pleistocene (Würm Pleniglacial), 
respectively (Alessio et al. 1979; Coltorti et al. 1991).

An even lower alluvial terrace, a few meters above the 
riverbed, has been related to human-induced riverbed aggra-
dation during historical times and subsequent fluvial erosion 
(Biondi and Coltorti 1983).

The second and third-order alluvial terraces, in particular, 
are notably extensive due to the Fabriano basin's tectonic 
subsidence, which favored fluvial deposition and, locally, the 
temporary formation of lacustrine episodes (Alessio et al. 
1979; Centamore et al. 1979).

Investigation methods

In carrying out the research, we essentially applied the 
traditional methodologies of detailed geological and geo-
morphological surveying to deepen the knowledge already 
acquired on the area (Centamore et al. 1979; Servizio Geo-
logico d’Italia 1979). For further information, we used the 
borehole data obtained in the context of water research for 
the Municipality of Fabriano (Petrogeo-Comune di Fabriano 
1976) and some original exploratory excavations.

We have also dated by 14C method two significant sam-
ples (samples Rome 364 and Rome 365, “La Sapienza” Uni-
versity 14C Lab) extracted from the borehole cores and one 
(sample Beta 170891, Beta Analytic Limited, London) col-
lected during the field survey. Finally, we examined all the 
relevant available information regarding the earthquakes that 
have affected the area in the past (Postpischl 1985; Boschi 
et al. 1995, 1997; Rovida et al. 2011, 2020; Guidoboni et al. 
2018), including the distribution of damages to the town of 
Fabriano caused by the strong earthquake (I0 = IX MCS, 
Mw ~ 6.2) that struck Fabriano on April 24, 1741 (Marcellini 
and Tiberi 2000; Castelli and Monachesi 2001).
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Geological and geomorphological features 
of the Santa Maria—Villa northern slope

Immediately north-east of Fabriano (Fig. 2a), the second-
order terrace splits into two benches (the Villa Bench above 
and the Santa Maria Bench below), separated by a 1 km 
long, NE-SW running scarp. A second scarp, parallel to the 
first, about 15 m high and 2 km long, connects the Santa 
Maria Bench with the third-order plain (Fabriano Terrace). 
Slope processes have affected both scarps causing the 
emplacement of thick colluvial deposits.

The rectilinear trend of the Santa Maria Scarp, parallel to 
a several km long fault, mapped on the “Fabriano” 1:50,000 
geological sheet (Servizio Geologico d’Italia 1979), sug-
gests considering it as produced by a fault. The following 
elements confirm this interpretation.

(a) We observed transtensive fault planes (pitch about 
20°–25°), perfectly aligned with the Santa Maria Scarp 
on the right bank of the Giano River channel, in the 
marly-calcareous bedrock (Bisciaro Formation, Early 
Miocene) (Fig. 3a and b). Unfortunately, due to con-
struction works, we could not verify the prosecution of 
the fault into the overlying alluvial deposits.

(b) A section excavated at the base of the Santa Maria 
Scarp allowed us to observe the contact between the 
Santa Maria Bench alluvial deposits and a ca 4 m thick 
sequence of stratified debris layers, whose hook-shaped 
features and the vertical orientation of pebbles along 
the contact surface cannot be referable to erosion-sed-
imentation processes but to the drag effect of a fault 
(Fig. 4). The debris layers are deformed by undulations, 
anomalous thickening/thinning, and a series of modest 

Fig. 1  Geological sketch of 
the Umbria-Marche Apennine 
northern sector



1542 International Journal of Earth Sciences (2022) 111:1539–1549

1 3

throws that are progressively more developed in the 
lower part of the section, indicating a growth fault’s 
step-like movement. About 1 m of downslope inclined 
gravels, corresponding to the basal level of the stratified 
debris sequence, are present over the alluvial deposit, 

on top of the footwall scarp. Similar evidence was vis-
ible in a 4 m deep and 6 m long exploratory trench, 
today closed,, some hundred meters northwards.

(c) Higher up, an erosion surface, slightly steeper than the 
debris layers, cuts the slope. It is overlain by colluvial 

Fig. 2  a Geomorphological 
scheme of the investigated area. 
b 3D image based on a LIDAR 
digital terrain model
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deposits, mainly made of gravels with a small percent-
age of brown soil debris. These materials terminate 
laterally against the fault with a thickness of ca. 50 cm 
and are absent in the footwall being erased by erosion 
(Fig. 4). We could reasonably relate their emplacement 
to the phase of gradual climate drying that has occurred 
since 3500 year BP in the Mediterranean area (Magri 
1997, 1999; Ricci Lucchi et al. 2000; Dramis et al. 
2014).

(d) Near the ground, a further erosion surface follows, 
covered with a few decimetres thick colluvial layer, 

made of gravels immersed in abundant debris brown-
ish soil and reasonably attributable to the impact of 
human activities (such as deforestation and agricul-
ture). Radiocarbon dating of organic matter taken from 
a debris pocket close to the erosion surface gave an 
age of 1480 ± 60 year 14C BP/Cal 1520 to 1280 BP 
(sample Beta 170891) (Figs. 4 and 5). The bedding is 
more or less regular and conformable with the slope, 
apart from the portion close to the tectonic contact, 
where a gravity wedge of vertically arranged gravels 
bounded downslope by a minor “antithetic” rupture, 

Fig. 3  a Aerial photo (taken 
by drone) showing the alluvial 
plain of the Giano river and the 
fault alignment described in the 
text: in the background the town 
of Fabriano. b and c detail of 
a fault plane affecting the marly-
calcareous bedrock (Schlier 
formation)
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and debris pockets, among which the dated one, testify 
for the ongoing displacement of the fault. Based on the 
above features, we could estimate a vertical offset of ca. 
6 cm for the last fault step.

(e) Geognostic boreholes, drilled on top of the Santa 
Maria Bench close to the Villa Scarp (Figs. 2b and 5), 

revealed a 10 m deep, elongate narrow depression par-
allel to the Santa Maria Scarp and filled with debris and 
soil sediments. The emergence of springs at the base of 
the scarp locates the marly bedrock (Schlier Formation, 
Middle Miocene) at shallow depth, thus supporting the 
Villa Scarp’s interpretation as produced by a fault.

Fig. 4  Stratigraphical scheme 
of the Santa Maria section. 
Upper left: top of the Santa 
Maria scarp. Within the black 
and the red boxes, details of 
the geomorphological features 
observed

Fig. 5  Geological section across the Santa Maria and Villa scarps reconstructed based on field, observations and geognostic data (see Fig. 2a for 
the cross section trace)
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(f) Radiocarbon dating of borehole samples of peaty mate-
rials, found within the second-order alluvial deposits 
and from a shallow swampy-lacustrine level at the base 
of the Fabriano Terrace (third-order alluvial deposits), 
gave ages of 44,460 14C year BP (sample Rome 364) 
and 21,900 ± 300 14C year BP (sample Rome 365), 
respectively (Fig. 4 and 5).

(g) The town of Fabriano has suffered the effects of sev-
eral earthquakes since 1000 AD, six of which are 
characterized by an estimated magnitude (Mw > 6) 
capable of generating significant surface effects (Post-
pischl 0.1985; Castelli and Monachesi 2001) (Fig. 6). 
Among these, only the April 24, 1741 earthquake 
was located close to Fabriano; a minor event (Imax 
MCS = 7, Mw = 5.1) occurred in the surroundings of 
Fossato di Vico on October 14, 1612 (Monachesi 1987; 
Rovida et al. 2011). Differently from most Umbrian-
Marchean earthquakes related to normal faults parallel 
to the Apennine, the isoseismal lines of the April 24, 

1741 earthquake show a NE–SW trend (Pergalani et al. 
1986; Monachesi 1987), parallel to the FV–VE line. 
Moreover, when considering the damage caused to the 
buildings of Fabriano, it can be observed that the most 
significant occurred along a line following the Santa 
Maria Scarp (Marcellini and Tiberi 2000).

Discussion

Geomorphological evolution of the Santa Maria 
and Villa fault scarps

During the first stages of fluvial aggradation, which prob-
ably initiated with the climate cooling occurred around 185 
ky BP (Berger 1978; Margari et al. 2014), it is conceivable 
that both faults were unable to create a scarp: the aggrading 

Fig. 6  Sequence (a), location (b) and list (c) of the main earthquakes that occurred in the study sector since 1000 AD ( modified from Rovida 
et al., 2020)
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alluvial sediments quickly covered the earthquake-induced 
surface steps, recurrently formed in the alluvial plain. Subse-
quently, a phase of slower deposition rate, possibly induced 
by a warmer interval between ca. 170 and 160 ky BP (Berger 
1978; Margari et al. 2014; Rousseau et al. 2020) allowed the 
Villa fault scarp's initial growth. This latter separated the 
no longer active sector of the plain (Villa Bench) from the 
lower one (Santa Maria Bench), where alluvial aggradation 
has continued till the 127 ky BP Eemian Interglacial thermal 
rise (Margari et al. 2014). Subsequently, the step-like fault 
evolution controlled the formation of the scarp with abun-
dant slope debris production. Erosion processes induced by 
the difference in elevation caused the formation of escarp-
ments and gentler slopes that border the higher shelf on the 
other sides.

Unlike what happened for the Villa Scarp, the alluvial 
plain aggradation, more active for the lower position, pre-
vented the Santa Maria fault from forming a scarp until the 
Interglacial, when the alluvial plain aggradation ceased, and 
the Giano River incision started. During the Last Glacial, the 
Fabriano Terrace's gravels accumulated against the already 
present scarp, which was widely affected by slope erosion 
and debris deposition.

Stratigraphic features and chronology of the faulted 
deposits

A detailed analysis of the section at the base of the Santa 
Maria Scarp (Fig. 5) allowed us to relate the fault evolution 
with the slope's geomorphological-stratigraphic features.

The basal level of the Santa Maria Bench alluvial deposits 
may be dated 185 ky BP if referred to the first stages of the 
late Middle Pleistocene Glaciation (according to Margari 

et al. 2014) in agreement with the Rome 364 sample 14C 
dating (> 44,460 14C year BP). It has been displaced by ca. 
35 m, as shown by borehole exploration through the Santa 
Maria Bench.

We may attribute the alternating layers of gravels and red-
dish soil sediments that make up the lower part of the section 
to the Last Glacial coldest interval (22–18 ky BP according 
to Eyles and McCabe 1989).

Then, cold-dry climate conditions induced a drastic 
reduction of the vegetation cover, thus enhancing slope-wash 
and solifluction, and the deposition of stratified debris inter-
fingering with the valley-floor alluvial sediments (Dramis 
1983; Coltorti and Dramis 1988, 1995).

The above observations confirm that recurrent strong 
earthquakes induced by the long-lasting activity of this sec-
tor of the FV-VE line are responsible for the investigated 
stratigraphic features.

Paleoseismological aspects

The trend of the April 24, 1741 earthquake isoseismal lines, 
and the vast damaged area, from the Umbria region to the 
Adriatic coast (Pergalani et al. 1986; Stucchi et al. 1991; 
Boschi et al. 1995, 1997) place with good reliability the 
hypocentre along with the FV-VE transverse structure, 
below the Apennine thrust belt, as also supposed by Castelli 
and Monachesi (2001) from the absence of significant after-
shocks (Fig. 7). In analogy to recent seismic events associ-
ated with transverse structures in the Marche area (Mazzoli 
et al. 2015), we could locate the hypocentre at a depth not 
exceeding 12 km.

Considering that the base of the Santa Maria Bench 
alluvial deposits (185 ky BP, if referred to the early stages 

Fig. 7  Isoseismal maps of the April 24th, 1741, Fabriano earthquake,  modified from Monachesi (1987) (a) and Rovida et al. (2020) b
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of the late Middle Pleistocene Glaciation) has been dis-
placed by ca. 35 m (Fig. 5), we may tentatively assess 
a dip-slip rate of 0.19  mm/year for the Santa Maria 
fault. Comparable values result from the displacement 
of the base of Late Pleistocene stratified slope deposits 
(0.18–0.22 mm/year-ca. 4 m over 22–18 ky).

From the Santa Maria fault total vertical displace-
ment of 35 m over 185 ky, we can calculate a slip rate of 
ca. 0.2 mm/year to which, considering the 60 mm offset 
estimated for the last faulting episode, a return interval 
of ca. 580 year would correspond. However, no events 
compared with the April 24, 1741 earthquake appear in 
the historical record of Fabriano (Castelli and Monachesi, 
2001; Guidoboni et al. 2018) unless moving to the FE-VE 
the strong April 30, 1279 earthquake (Io = 9—Mw = 6.2; 
Rovida et al. 2020) so far located (albeit with some uncer-
tainty) a few tens of kilometers southwards. The above 
considerations would involve a more than one thousand 
years return interval and the possible occurrence of even 
stronger events.

Conclusion

The data so far presented show the Quaternary evolution 
of the Fabriano area is strictly conditioned by tectonic 
movements along “anti-Apennine” faults, connected with 
the Fossato di Vico-Valle dell’ Esino line, a major trans-
versal lineament active since the Messinian.

The recent activity of the Santa Maria fault has pro-
duced visible morphological and stratigraphic effects, 
which are consistent with the seismic pattern of the area. 
In particular, the stratigraphic analysis of a section exca-
vated in alluvial-slope deposits indicates the recurrence 
in the area of strong, deep-rooted earthquakes with a total 
coseismic, vertical fault throw of 35 m since the late Mid-
dle Pleistocene and a slip rate ranging around 0.2 mm/year.

From the above, it is clear how detailed geological-
geomorphological mapping and seismic characterization 
of the transverse tectonic lineaments would be crucial for 
a complete and exhaustive assessment of the earthquake 
hazard in the Apennine belt.
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