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Abstract
The Altaids accreted around, and grew southward, from the Siberian craton, but the time of final amalgamation of this oro-
gen is still controversial. The Eastern Tianshan in the southernmost Altaids is characterized by multiple, late, accreted arcs 
and thus is an ideal tectonic environment to answer the time of final amalgamation of the Altaids. In this study we report 
the results of new field-based lithological mapping and structural analysis on the Kanguer mélange in the Eastern Tianshan, 
which is composed of blocks of basalt, chert, limestone, and other rocks within a strongly deformed and cleaved matrix of 
sandstone and schist. Our geochemical and isotopic data of basaltic blocks from several parts of the Kanguer mélange show 
they are relics of Normal-Mid-Ocean-Ridge (N-MORB)-type oceanic lithosphere, and U–Pb ages and Hf isotopes of detrital 
zircons from the matrix sandstones indicate they were derived only from the Dananhu arc to the north. Accordingly, our 
interpretation is that the Kanguer mélange was part of an accretionary complex that fringed the Dananhu arc, and therefore the 
subduction polarity of the Kanguer Ocean was to the north (present coordinates). The maximum depositional ages (MDAs) 
of our three sandstone samples (08K01, 08K02, and 08K03) from the mélange matrix were 234 ± 14 Ma, 242.5 ± 1.3 Ma, 
and 236 ± 2.0 Ma respectively, indicating that the Kanguer Ocean was still being subducted at ca. 234 Ma, and the accretion 
of the Kanguer mélange must have lasted until that time, when the accretionary complex was still located opposite to the 
Yamansu-CTS accretionary complex to the south. Thus, the final amalgamation of the Dananhu and Yanmansu-CTS arcs 
took place by the welding of two accretionary complexes in the late Middle Triassic (Ladinian) in this part of the southern 
Altaids. Integration with relevant amalgamation histories throughout the Tianshan indicates that the time of terminal amalga-
mation in the southern Altaids was probably in the Middle-Late Triassic, which is much younger than previously envisaged.
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Introduction

The Altaids or the southern Central Asian Orogenic 
Belt, one of the largest accretionary orogens in the world 
(Fig. 1a), accreted around, and grew southward from, the 
Siberian craton by the successive accretion of many arcs, 
accretionary complexes and micro-continents (Bazhenov 
et al. 2003; Buchan et al. 2002; Coleman 1989; Dobretsov 
et al. 1995; Şengör and Natal’in 1996; Şengör et al. 1993; 
Wilhem et al. 2012; Windley et al. 2007; Xiao et al. 2013, 
2018), but there are several contrasting and controversial 
tectonic models to explain that growth (Bazhenov et al. 
2003; Şengör and Natal’in 1996; Windley et al. 2007; 
Xiao et al. 2013, 2015). Also controversial is the time 
of final accretion and amalgamation, which varies from 
the Carboniferous (Gao and Klemd 2003; Han and Zhao 
2018; Qin et al. 2011; Zhou et al. 2004) to the Permo-Tri-
assic (Huang et al. 2018; Mao et al. 2014b; Windley et al. 
2007; Xiao et al. 2010; Xiao et al. 2004). Accordingly, 
the Eastern Tianshan, being located in the southernmost 
Altaids, provides critical information about the final time 
of amalgamation.

The Eastern Tianshan is the graveyard of many island 
arcs and accretionary wedges (Windley et al. 1990; Xiao 
et al. 2010, 2004). The youngest age of the matrix of an 
accretionary wedge is close to the final amalgamation time, 
a detrital zircon U–Pb age is a useful constraint on sedi-
ment provenance (Benyon et al. 2014; Fedo et al. 2003; 
Matthews et al. 2017; Sharman et al. 2015), the youngest 

detrital zircon can constrain the MDA (Coutts et al. 2019; 
Fedo et al. 2003; Nelson 2001), and the lag time between 
zircon crystallization and deposition is commonly very 
short (Cawood et al. 2012). Therefore, the MDA of detrital 
zircons is a useful method to constrain the time of deposi-
tion of sediments in arc-adjacent basins and accretionary 
complexes, particularly where biostratigraphic and mag-
netostratigraphic ages are unavailable (Coutts et al. 2019; 
Sickmann et al. 2018).

The aim of this publication is to report the results of new 
field-based lithological mapping and structural analysis of 
the Kanguer mélange in the Eastern Tianshan, which has 
a block-in-matrix structure. We present new isotopic data 
of the Maximum Deposition Age (MDA) of the sandstone 
matrix, and new geochemical data of basaltic blocks in the 
mélange. The MDA of three samples is consistent, ranging 
from 234 ± 14 Ma to 242.5 ± 1.3 Ma, and the basalts have 
an N-MORB chemical affinity. With these data we demon-
strate that the Kangure Ocean, a branch of the Paleo-Asian 
Ocean, had a far younger subduction record than previously 
envisaged. Therefore, the time of final amalgamation of the 
Altaids in the Tianshan was most likely in the late Middle 
Triassic (Ladinian).

Geological background

The Eastern Tianshan, situated between the Siberian craton 
to the north and the Tarim craton to the south, occupies 
the bulk of the southmost Altaids (Fig. 1a), and comprises 
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Fig. 1   a Schematic tectonic map of Central Asia (Şengör et al. 1993; 
Xiao et al. 2018) showing the position of the Eastern Tianshan in b. b 
The geological map of the Eastern Tianshan showing the distribution 
of the main tectonic unit (modified after Xiao et al. 2004). The loca-

tions of the samples and of Fig. 2 are marked. ① Kawabulake-Xingx-
ingxia fault, ② Aqikekuduke-Shaquanzi fault, ③ Yamansu-Kushui 
fault, ④ Kanguer fault
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E/W-trending accretionary belts, which include continen-
tal margin arcs, microcontinents, island arcs, ophiolites, 
and accretionary wedges (Qin et al. 2011; Xiao et al. 2004, 
2018). The internal tectonic units of the orogen are from 
north to south (Fig. 1b): the Dannanhu arc, the Kanguer 
mélange, the Yamansu arc, the Central Tianshan block, and 
the Southern Tianshan accretionary complex.

The Dannanhu arc is composed predominantly of Ordo-
vician to Permian tholeiitic basalts, calc-alkaline andesites, 
pyroclastic rocks, and tuffs (Du et al. 2018a, b, 2019; Qin 
et al. 2011; Wang et al. 2018). The Yamansu arc consists of 
Devonian-Carboniferous volcanic and intrusive rocks (Du 
et al. 2019; Luo et al. 2016), which (Chen et al. 2019) inter-
preted as a continental arc built on the margin of the Central 
Tianshan Arc. The Central Tianshan block comprises calc-
alkaline basaltic andesites, volcaniclastic rocks, minor I-type 
granites, and a Precambrian basement (Long et al. 2020; 
Ma et al. 2014; Mao et al. 2018) and the South Tianshan 
accretionary complex contains discontinuous slices of Mid-
Devonian to Early Carboniferous ophiolites (Ao et al. 2020; 
Gao and Klemd 2003; Sang et al. 2020).

The Kanguer mélange is situated between the Kanguer 
fault in the north and the Yamansu-Kushui fault in the south 
(Fig. 1c); it was previously mapped as the Carboniferous 

Wutongwozi Formation (XBGMR 1993). It is thrust-imbri-
cated and dismembered, and thus contains blocks of ser-
pentinite, gabbro, basalt, limestone, and chert in a meta-
sandstone matrix. The Kanguer mélange has been variously 
interpreted as an inter-arc basin between the Dannanhu and 
Yamansu arcs (Han and Zhao 2018; Xiao et al. 2004), as a 
component in the final suture zone that separates the Sibe-
rian craton to the north and the Tarim craton to the south 
(Ma et al. 1997), and as an accretionary wedge in a short-
lived minor ocean that formed in the Carboniferous (Wang 
et al. 2019).

Field observations and sampling

In order to understand the composition and structure of the 
Kanguer mélange, four areas from west to east were mapped 
in detail: the Gas pipeline station (GPS), the Haluo high-
way (HLH), the Yamansu West (YMW), and the Huangshan 
South (HSS) (Figs. 1, 2). Our resultant maps included previ-
ous map data (XBGMR 1993). We describe below the main 
lithologies and structures that are representative of the whole 
Kanguer mélange.

Fig. 2   a A geological map of 
the GPS area in the Kanguer 
mélange showing the block-
in-matrix structure. Sample 
locations and cross-section 
are marked. b Stereographic 
projection of cleavages from the 
matrix. All stereonet plots are 
equal-angle lower-hemisphere 
projections, utilizing Stereonet 
11 of (Cardozo and Allmend-
inger 2013). c The cross-section 
illustrates the thrust-imbrication 
of blocks in the matrix of sand-
stone and chlorite schist
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The GPS area

The Kanguer mélange has a characteristic block-in-matrix 
structure (Fig. 2a). The matrix is mainly composed of chlo-
rite-phyllite schist and meta-sandstone, which have a strong 
slaty cleavage that strikes almost E-W and dips moderately 
to sub-vertical (Fig. 2b). The primary depositional features 
of the matrix sediment are difficult to discern, because they 
have been heavily overprinted by the strong cleavage. The 
blocks consist of limestone, chert, sandstone, basalt, dia-
base, and gabbro that have been thrust-imbricated (Fig. 2c). 
Granodiorite intrusions crop out as elongate E/W-trending 
blocks (see upper left corner of Fig. 2a). The limestone and 
diabase blocks generally form ribbons that are several kilom-
eters long. The cherts mostly occur in lenses that are several 
meters to several hundred meters long that have aspect ratios 
of 1:3 to 1:10, and their long axes are parallel to enclosing 
cleavage and to other lithologies. The gabbros and basalts 
form elongate blocks whose long axes are aligned sub-par-
allel to the main EW-trending faults. We consider the blocks 
of basalt, diabase, gabbro, limestone, and chert to be frag-
ments of ocean plate stratigraphy, which were mixed and 
accreted in the original accretionary wedge. Samples from 
eleven basaltic blocks (SQ05-2/3, SQ06-1/3/4/5, SQ07-2/3, 
and SQ09-1/2/3) were collected (Fig. 2a) and analyzed to 
constrain their tectonic setting.

The HLH area

In the HLH area the Kanguer mélange has a block-in-matrix 
structure in which blocks of gabbro, massive basalt, pillow 
basalts, diabase dykes, chert, limestone, and sandstone/silt-
stone are embedded and imbricated in a matrix of chlorite-
phyllite schist and cleaved sandstone (Fig. 3a). The matrix 
sandstones and chlorite-phyllites are highly cleaved and 
were intruded by large quartz veins indicating the movement 
of hydrothermal fluids during the shearing (Fig. 3a). The 
EW-trending, subvertical cleavage in the matrix in the north-
ern (Fig. 3b) and central (Fig. 3c) parts of the HLH area is 
penetrative and has overprinted the bedding so strongly that 
the primary depositional structures are mostly difficult to 
observe.

In the central-northern parts of the HLH area, the blocks 
of gabbro, diabase, and basalt crop out in discontinuous 
lenses or ribbons ranging in length from several meters to 
several hundred meters. The blocks of gabbro and basalt 
are elongate with their long axes aligned sub-parallel to the 
main bounding faults of the mélange. The cherts generally 
crop out as lenses ranging in length from several meters 
to a kilometer with aspect ratios from 1:1.5 to 1:7 with 
their long axes parallel to the adjacent cleavage. The con-
tacts between the blocks and matrix are thrusts. The blown 
sandstones, red cherts, and massive green basalts have a 

clear imbricate structure indicating they have been thrust to 
the south (Fig. 6a, b). Both the basalt and chert blocks are 
more strongly cleaved close to their bordering thrust planes 
(Fig. 7a, b).

Sandstone blocks in the south of the HLH area are huge—
several kilometers wide and tens of kilometers long. The 
limestone blocks form ribbons or discontinuous lenses rang-
ing in length from several meters to tens of kilometers. The 
sandstones and limestones retain their primary sedimentary 
bedding, and appear to be locally coherent in the Kanguer 
mélange. The thick sandstone blocks are intruded by elon-
gate granodiorite dykes that are folded but only weakly 
cleaved; the long axes of the granodiorite intrusions are par-
allel to the regional cleavage. Folded bedding planes indicate 
tight to isoclinal sub-vertical folds in sandstone (Fig. 3d), 
the axes of which are parallel to the east–west cleavage of 
the matrix. Overall, these structures indicate a regional N–S 
compression.

The thrusts and cleavages in the entire HLH area of the 
Kanguer mélange are displaced by late NW/SE-trending 
dextral strike-slip faults. The blocks of sandstone and basalt 
are thrust slices, which belong to top-to-the-south thrust 
duplexes (Figs. 6, 7). All these structures indicate that the 
blocks of basalt, diabase, gabbro, limestone, sandstones and 
chert probably formed in different environments, and were 
inter-mixed during addition to the accretionary complex. 
Three sandstone samples (08K01, 02, and 03) were collected 
in the HLH area and their detrital zircons were analyzed for 
U–Pb dating, Hf isotopes and whole-rock major and trace 
elements. Thirteen basalt samples (HL01-1/3/4, HL05-1/2, 
and HL07-14) were collected (Fig. 3a) for whole-rock geo-
chemical analyses to constraint their tectonic setting.

The YMW area

In the YMW area the Kanguer mélange has a block-in-
matrix structure and has been intruded by granodiorite 
plutons (Fig. 4). The sandstone/pelite matrix has an E-W 
cleavage that is so pervasive that primary depositional struc-
tures are rarely preserved. The blocks are mainly basalts 
that range from hundreds of meters to several kilometers in 
size, and a few ribbon lenses of limestone and chert. In the 
north of the YMW area the basaltic blocks are elongate with 
their long axes aligned sub-parallel to the main thrust faults, 
but in the south the basalt blocks are juxtaposed and sepa-
rated only by thrusts that are marked by ribbons of foliated 
limestone and chert. The southern part of the YMW area 
possibly contains dismembered remnants of oceanic plate 
stratigraphy, and the whole YMW area likely came from 
a high-strain section of an accretionary complex. Eighteen 
basalts were sampled (YM16-1/2/4/5/6, YM17, et al.) for 
geochemical analysis to constrain the tectonic setting of the 
Kanguer mélange.
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The HSS area

In the southern HSS area the Kanguer mélange also has a 
block-in-matrix structure (Fig. 5a). The blocks are mainly 
of basalt, limestones, chert, and sandstone. The blocks of 
limestone and basalt are elongated with their long axes 
sub-parallel to the main enclosing faults. The cherts gen-
erally outcrop as lenses that range in length from several 
meters to a kilometer, and their aspect ratios range from 
1:5 to 1:11. The contacts between the blocks and matrix are 
thrusts. The margins of the blocks are typically fractured 
and foliated; the foliation is parallel to the long axes of the 
blocks and to the cleavage of the matrix. The matrix consists 
of chloritic to phyllitic meta-siltstone/sandstone, which is 
cleaved and locally folded (Fig. 5b, c). The bedding planes 
outline tight to isoclinal sub-vertical folds (Fig. 5b), the 
axes of which are parallel to the E/W-trending cleavage of 
the matrix. In the northern part of the area the chloritic-
phyllitic siltstones/sandstones and the basalts belong to 
thrust imbricates, which indicate top-to-south compression. 
The whole Kanguer mélange in the HSS area is transected 

by several NE/SW-trending dextral strike-slip faults. Five 
basalts (HS19-2/3/4/6/7) were sampled from the area for 
geochemical analysis.

Geochemical results

Whole‑rock analysis

Whole-rock major and trace elements of the basalts are listed 
in Appendix Table 1.

The major element compositions of eleven whole-
rock tholeiitic basalts (Fig. 10b) from the GPS area vary 
across a relatively narrow range with SiO2 = 46.0–48.5 
wt%, Al2O3 = 14.2–15.3 wt%, CaO = 8.8–10.9 wt%, and 
MgO = 6.8–7.9 wt%. These basalts exhibit relatively high 
Cr (81–252 ppm) and Ni (62–103 ppm) concentrations. 
The Na2O concentrations are somewhat variable, possibly 
reflecting seawater alteration. Rare earth element (REE) 
patterns of the basalts (Fig. 9a) are comparable to those of 
N-MORBs with (La/Yb)N contents ranging from 1.7 to 2.0, 

Fig. 4   A geological map of 
the YMW area in the Kanguer 
mélange showing two discord-
ant granodiorite intrusions, and 
the sample locations
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and with positive Ba and Sr anomalies and a negative Gd 
anomaly (Fig. 9b).

Thirteen basalt samples from the HLH area have rela-
tively narrow elemental ratios with SiO2 = 43.7–48.6 

wt%, Al2O3 = 13.1–16.4 wt%, CaO = 7.3 –11.6 wt%, and 
MgO = 6.3–8.4 wt%. These basalts exhibit relatively high 
Cr (184–228 ppm) and Ni (76–111 ppm) concentrations. 
The samples are altered and thus have variable contents of 

Fig. 5   a A geological map of 
the HSS area in the Kanguer 
mélange showing lens-shaped 
blocks in the matrix, a discord-
ant granodiorite intrusion 
and the sample locations. b, c 
Stereographic projections of the 
planes of bedding and cleavage 
of the matrix
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LOI ranging from 2.2 to 40.5 wt%. Na2O concentrations in 
the whole rocks are variable from 1.42 to 4.01 wt%, likely 
reflecting seawater alteration. REE patterns (Fig. 9c) are 
similar to those of N-MORBs with (La/Yb)N ratios between 
0.8 and 2.0; some basalts have positive Ba, Sr, and Zr anom-
alies and a slightly negative Gd anomaly (Fig. 9d).

Eighteen basalts from the YMW area have con-
tents of SiO2 = 41.9–46.7 wt%, Al2O3 = 10.7–17.8 wt%, 
CaO = 8.5–14.3 wt%, and MgO = 3.6–11.9 wt%. These 
basalts exhibit relatively high Cr (293–817 ppm) and Ni 
(115–894 ppm) concentrations. Na2O concentrations in 
whole rocks are variable from 0.9 to 4.2 wt%, maybe reflect-
ing seafloor alteration. REE patterns (Fig. 9e) are compa-
rable to those of N-MORBs with (La/Yb)N ratios between 
0.5 and 1.7, and they have positive Ba and Sr anomalies and 
negative Gd and Ti anomalies (Fig. 9f).

The major element compositions of five basalts from 
the HLH area have variable contents of SiO2 = 42.1–52.9 

wt% and CaO = 5.8–9.1 wt%, and relatively narrow ranges 
of Al2O3 = 12.2–14.1 wt%, and MgO = 2.3–3.8 wt%. 
These basalts exhibit slightly low Cr (33–40 ppm) and Ni 
(34–51 ppm) concentrations. REE patterns (Fig. 9g) are like 
those of N-MORBs, with (La/Yb)N ratios of 0.6–0.7, and 
they have a positive Ba anomaly and negative Sr and Ti 
anomalies (Fig. 9h).

Sr–Nd isotopes

Ten whole-rock basalts were analyzed for their Sr and Nd 
isotopes; the results are listed in Appendix Table 2 and 
shown in Fig. 12b. Two basalts from the GPS area have 
high initial (87Sr/86Sr)i ratios of 0.706040 and 0.706876, 
and εNd (t) values of + 8.30 and + 9.34. Five basalts from 
the HLH area have an initial (87Sr/86Sr)i ratio that varies 
from 0.701248 to 0.707631, and εNd (t) values of + 8.33 
and + 9.45. Three basalts from the YMW area have an initial 
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(87Sr/86Sr)i ratio that ranges from 0.703681 to 0.705359, 
and εNd (t) values of + 9.52 and + 9.89. Sr is a mobile ele-
ment during seawater alteration (Hart and Staudigel 1982), 
thus most of our samples were likely modified by seawater 
alteration.

Zircon U–Pb age and Hf isotopes

A total of 379 analyses of zircon grains from four sedi-
mentary samples from the Kanguer mélange (Figs. 3, 6, 
7) yielded 304 concordant ages (concordance % > 90% 
or < 110%). All the U–Pb and Lu–Hf isotopic data are shown 
in Appendix Tables 3 and 4, respectively. Only concordant 
ages are described and discussed below.

Zircons from sample 08K01 are 100 μm long, have length/
width ratios of 1.3–2.0, prominent zones in CL images, and 
they have variable contents of Th (28–1623 ppm) and U 
(69–5065 ppm), and Th/U values of 0.12–1.35. Of one hun-
dred and sixty analyzed zircon grains, one hundred and ten 
yielded concordant ages with major concordant age peaks 
at 288.1 ± 0. 56 Ma (60.4% of the total), a secondary peak 
at 433.3 ± 0. 97 Ma (32.4% of the total), and scattered 
ages at 1209.2 ± 5.8 Ma (7.2% of the total) (Fig. 11a). The 
youngest three zircon ages are 209 ± 16 Ma, 228 ± 5 Ma, 
and 236 ± 2 Ma, which give a mean age of 234 ± 14 Ma 
(Fig. 11b). This mean age is interpreted as the MDA of the 
sandstone. Lu–Hf isotopic analyses of the detrital zircons 
yielded εHf(t) values ranging from − 8.1 to + 13.2 (Fig. 12a).

Zircons from sample 08K02 are dark, irregular, have a 
grain-size of 120 μm, and clear zones in CL images. The 
zircons contain variable contents of Th (54–659 ppm) and 
U (59–2102 ppm), and Th/U values of 0.23–1.28. Of sixty 
analyzed zircon grains, fifty-nine yielded concordant ages 
with two major concordant age peaks at 288.32 ± 0. 55 Ma 
(47.5% of the total) and at 415.23 ± 0.82 Ma (45.8% of the 
total), and scattered ages at 879.1 ± 4.4 Ma (6.3% of the 

total) and 2361 ± 22 Ma (1.7% of the total) (Fig. 11c). The 
youngest three zircon ages are 241 ± 2 Ma, 243 ± 2 Ma, 
and 243 ± 3 Ma, which yield a mean age of 242.5 ± 1.3 Ma 
(Fig. 11d), which we interpret as the MDA of the sandstone. 
Lu–Hf isotopic analyses of the detrital zircons yield εHf(t) 
values ranging from − 12.6 to + 12.1 (Fig. 12a).

Zircons from sample 08K03 are irregular, are about 
100 μm in size, and have sharp zones in CL images. The 
grains show variable contents of Th (24–1953 ppm) and U 
(44–3760 ppm), and Th/U values of 0.04–1.95. One hun-
dred and sixty-one zircon grains were analyzed of which 
one hundred and thirty-five yield concordant ages with 
major and minor concordant age peaks at 292.18 ± 0. 52 Ma 
(64.9% of the total) and 436.9 ± 1.4 Ma (26.9% of the total), 
respectively (Fig. 11e). They also have scattered ages at 
1001.6 ± 4.9 Ma (4.4% of the total) and 1510 ± 13 (3% of 
the total). The youngest three zircon ages are 236 ± 2 Ma, 
237 ± 6 Ma, and 240 ± 5 Ma, which yield a mean age of 
236.9 ± 2.0 Ma (Fig. 11f), which we interpret as the MDA of 
the sandstone. Lu–Hf isotopic analyses of the detrital zircons 
yield εHf(t) values ranging from − 16.5 to + 23.7 (Fig. 12a).

Discussion

Tectonic setting of the Kanguer mélange

The Kanguer mélange is characterized by block-in-matrix 
structures and has been thrust-imbricated. Blocks in the 
mélange consist of gabbro, massive basalt, pillow basalt, 
diabase dykes, chert, limestone, and sandstone, which are 
enclosed in a matrix of chlorite-phyllite schist and cleaved 
sandstone (Figs. 2, 3, 4, 5). On a kilometer scale, blocks of 
different lithologies are repeated several times and exhibit 
top-to-the-south imbricate structures (Figs. 2b, 6, 7). The 
sandstone blocks (Fig. 3a, d) and the matrix (Fig. 5) con-
tain sub-vertical isoclinal folds, the axes of which strike 

Fig. 8   Micro-photos of dated samples. a Sample 08K01, showing 
poor sorting, high proportions of detrital altered matrix. Grains are 
angular and subrounded. b Sample 08K02 and c Sample 08K03, 

showing weak-orientated and poor sorting, high proportions of detri-
tal and diagenetically altered matrix and a mix of quartz, feldspar and 
lithic framework fine grains
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east–west. All these structures indicate that the Kanguer 
mélange underwent intense top-to-the-south thrusting and 
shearing. The blocks of basalt, diabase, gabbro, limestone, 
and chert are probably fragments of oceanic plate stratigra-
phy, which, if intact, would have provided information on 
the travel history of the oceanic plate from ridge to trench 
(Kusky et al. 2013); the fragments are inter-mixed in the 
mélange and accreted into the accretionary complex (Festa 
et al. 2019; Raymond 2019; Wakabayashi 2019). Although 
no ultramafic blocks/serpentinized or otherwise crop out in 
the Kanguer mélange, some ophiolites were reported by Li 
et al. (2008) in the mélange to the northwest of our study 
area. Thus, the lithologies, field relationships, and struc-
tural characteristics indicate that the Kanguer mélange is a 
classic ophiolite-bearing tectonic mélange that formed at a 
convergent margin and was created by subduction-accretion 
processes (Kusky et al. 2020; Wakabayashi 2015; Xiao et al. 
2015) (Fig. 8).

All the blocks of basalt from the GPS, HLH, YMW, 
and HSS areas in the Kanguer mélange are tholeiitic and 
have consistent geochemical compositions, suggesting they 
formed by the same petrogenetic processes. Their REE pat-
terns (Fig. 9a, c, e, g) are similar to those of N-MORBs, as 
also are the similar trace element patterns with their positive 
Rb, Ba, and Sr anomalies (Fig. 9b, d, f, h). Their enrichments 
in fluid-soluble elements and ratios such as Sr–Nd isotopes 
indicate seawater alteration (Kelley et al. 2003) (Fig. 12b). In 
Th/Yb–Nb/Yb and V-Ti/1000 diagrams (Fig. 10c, d), most 
of the basalts plot in the field of N-MORB, but some in the 
island arc field, probably because of fluid enrichments due 
to seawater alteration (Furnes and Safonova 2019; Reagan 
et al. 2010). All the geochemical and Sr–Nd isotopic fea-
tures demonstrate that the basalts in the Kanguer mélange 
belt were probably generated in a Mid-Ocean-Ridge, where 
erupted lavas were influenced by seawater penetration. We 
envisage that most of the basaltic blocks in the Kanguer 
mélange belt were scraped off a downgoing slab of oceanic 
crust, which had been generated in a Mid-Ocean-Ridge.

MDA of the Kanguer mélange

There are several methods for calculating the MDA of sedi-
mentary rocks from their detrital zircon U–Pb ages (Coutts 
et al. 2019). Here we use the youngest three grains that 
overlap at a 2σ uncertainty. The sandstone samples (08K01, 

08K02, and 08K03) yield mean ages of 234 ± 14  Ma, 
242.5 ± 1.3 Ma, and 236.9 ± 2.0 Ma, respectively (Fig. 11b, 
d, f). All the youngest three grains overlap in age at a 2σ 
uncertainty, which indicates that the mean age for each sam-
ple is robust. The lag time between zircon crystallization and 
real deposition can be very short in some geologic settings, 
e.g., when a sediment is sourced from an active magmatic 
arc (Cawood et al. 2012). We interpret the MDA of each 
sample to indicate that the overall deposition was at 234 Ma 
in the late Middle Triassic (Ladinian).

The youngest MDA of the sandstone matrix of the 
Kanguer mélange belt was in the mid-Triassic, which indi-
cates that the Kanguer Ocean still existed at 234 Ma, and 
that the final accretion of the Kanguer mélange was after 
the Ladinian.

Provenance of the Kanguer mélange

The Kanguer mélange is located between the intra-oceanic 
Dannanhu arc in the north and the Yamansu-CTS arc in the 
south (Fig. 1b). Therefore, these intra-oceanic island arcs 
were the main potential provenance for the sandstone matrix 
of the Kanguer mélange.

In the cross-sections of Fig. 6a and b the three sand-
stones (08K01, 02 and 03) have similar and consistent 
detrital zircon U–Pb age populations (Fig. 11a, c, e) with 
dominant age peaks in the period 288–292 Ma, a second 
peak at 415–436 Ma, and some scattered Precambrian ages 
(less than 8% of the total concordant ages for each sample). 
Lu–Hf isotopic analyses of these detrital zircons yielded 
εHf(t) values from − 16.5 to + 23.7 (Fig. 12a). The Dan-
nanhu intra-oceanic arc contains major Permian and Ordo-
vician magmatic rocks (but no Precambrian rocks), which 
are largely tholeiitic basalts and calc-alkaline andesites and 
granitoids that have subduction-related geochemical features 
with positive whole-rock εNd(t) and zircon εHf(t) values (Du 
et al. 2018a; Mao et al. 2019; Mao et al. 2014b; Qin et al. 
2011; Wang et al. 2018; Yuan et al. 2010). The Dananhu arc 
is interpreted as an intra-oceanic arc that formed in the early 
Ordovician (Du et al. 2019; Xiao et al. 2004). Both the detri-
tal zircon age spectra and εHf(t) values are comparable with 
the magmatic record in the Dananhu intra-oceanic arc. The 
sedimentary samples (08K01, 02, and 03) were probably 
derived from the Dananhu intra-oceanic arc in the north, 
which means that Kanguer mélange probably formed in the 
forearc of the Dananhu intra-oceanic arc.

Provenance variations in the Kanguer mélange

As discussed above, the Kanguer mélange is an accretion-
ary complex, which indicates that the matrix of the mélange 
was scraped off from sediments of the downgoing slab. So, 

Fig. 9   Chondrite-normalized REE (a, c, e, and f) and Primitive 
Mantle (PM) normalized multi-element (b, d, f, and g) diagrams of 
basalts from the Kanguer mélange belt. Chondrite values are from 
(Boynton 1984). The PM values are from (Sun and McDonough 
1989). All the blocks of basalt from the GPS, HLH, YMW, and HSS 
areas in the Kanguer mélange are similar to those of N-MORBs

◂
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the provenance variations of the matrix can shed light on 
the spatiotemporal framework of the arc and accretionary 
complex.

The Kanguer Ocean subducted to the north and gener-
ated the Kanguer ophiolite (494 Ma) in a supra-subduction 
zone in the Late Cambrian (Li et al. 2008) and the Dan-
anhu intra-oceanic arc in the Ordovician (Xiao et al. 2004). 
Therefore, the Kanguer mélange probably formed as early 
as the Ordovician. Chen et al. (2019) reported detrital zir-
con U–Pb age spectra in late Devonian sedimentary rocks in 
the Dananhu arc which have a unique age peak at ~ 400 Ma 
with no Precambrian ages (Chen et al. 2020), which suggests 
that the Kanguer Ocean between the Dananhu intra-oceanic 
arc and the Yamansu-CTS composite continental arc was 
quite wide in the Devonian. Our Triassic samples (08K01, 
02, and 03) from the Kanguer mélange received sediments 
mainly from the Dananhu intra-oceanic arc in the north and 
very few from the Yamansu-CTS composite arc in the south, 

suggesting that the Kanguer Ocean was sufficiently narrow 
for their proximity. This provenance variation supports the 
idea that the Kanguer mélange formed in the forearc of the 
Dananhu intra-oceanic arc.

Tectonic evolution and implications for the Altaids

The Kanguer mélange belt has been interpreted as: (1) an 
inter-arc basin between the Dannanhu and Yamansu arcs 
(Han and Zhao 2018; Xiao et al. 2004); (2) a mélange in 
the terminal suture zone between the approaching Siberian 
craton and Tarim craton (Ma et al. 1997); (3) a short-lived 
limited ocean rifted on the accretionary wedge (Wang et al. 
2019). The third interpretation is inappropriate, because, if 
the rifting was caused by an upwelling mantle plume, the 
basalts in the Kanguer mélange should display an oceanic 
island basalt (OIB) affinity, and the contact between basalts 
and their wall-rocks should be intrusive. However, all the 
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basalts in this study have an N-MORB signature and have 
been thrust within mélange matrix. The Kanguer ophiolite 
was reported to have formed in a supra-subduction zone at 
494 Ma (SHRIMP zircon U–Pb age) (Li et al. 2008), which 

suggests that the Kanguer Ocean was open and being sub-
ducted in the late Cambrian. Therefore, the Kanguer Ocean 
was a long-lived branch of the Paleo-Asian Ocean in the 
southern Altaids.
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to indicate that the overall deposition was at 234 Ma in the late Mid-
dle Triassic (Ladinian), which indicates that the Kanguer Ocean still 
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The final closure time of the Paleo-Asian Ocean is con-
troversial: 1. late Carboniferous (Han and Zhao 2018; Wang 
et al. 2016; Wu et al. 2016; Zhang et al. 2005); 2. late Per-
mian to early Triassic (Chen et al. 2019; Huang et al. 2018; 
Mao et al. 2020; Mao et al. 2014a; Xiao et al. 2018; Zhang 
et al. 2007; Zheng et al. 2020). The late Carboniferous time 
of final closure of the Paleo-Asian Ocean in the Eastern 

Tianshan is mainly based on the following evidence: (1) No 
ophiolites or ultrahigh-pressure metamorphic rocks younger 
than 300 Ma have been found in the eastern North Tian-
shan suture (Han and Zhao 2018). (2) an 40Ar/39Ar age of 
278–254 Ma on biotite and hornblende from granitic plu-
tons reflects collision-induced regional metamorphism and 
deformation (Wang et al. 2008). However, this evidence is 
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Fig. 13   Tectonic model show-
ing two stages of evolution in 
the Eastern Tianshan. a In the 
Permian to Middle Triassic, the 
Kanguer ocean, a branch of the 
Paleo-Asian Ocean, remained 
open and was subducting 
on both sides. The blocks of 
N-MORB-affinity, diabase, 
limestone, and chert were 
accreted to the fore-arc of the 
Dananhu arc of the growing 
Kanguer accretionary complex, 
in which detrital zircons in the 
youngest matrix sediments have 
MDAs of 234 Ma. b In the Mid-
dle to Late Triassic (234–
217 Ma), the Kanguer ocean 
closed by double subduction, 
and the Dananhu intra-oceanic 
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accretionary complexes
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circumstantial and not robust. First, the formation age of an 
ophiolite only indicates the time when oceanic crust was 
generated and does not provide information on the time of 
ophiolite emplacement and the ocean closure (Coleman 
1981; Dilek and Furnes 2011). Second, the 40Ar/39Ar age 
of biotite and hornblende can also be interpreted as the time 
of a magmatic reset of the Ar–Ar system, particularly in 
view of the fact that ca. 275–267 Ma mafic-intermediate 
intrusions occur in the same area (zircon U–Pb ages, (Wang 
et al. 2014)). Moreover, juvenile magmatic arc accretion and 
continental growth are characteristic of the Altaids, which 
was commonly produced by oceanic slab subduction and 
intrusion in accretionary prisms (Jahn 2004; Jahn et al. 2000; 
Windley et al. 2007; Xiao et al. 2015). Therefore, only the 
age of the youngest subduction-related intrusions can be 
used to define the final amalgamation age in a long-lived 
accretionary orogenic belt such as the Altaids.

Accordingly, we update our tectonic model of the Eastern 
Tianshan in the southern Altaids (Fig. 13) using our new and 
published data in the light of the above discusssion. Our new 
detrital zircon U–Pb ages of matrix sandstones indicate that 
one major branch of the Paleo-Asian Ocean, the Kanguer 
ocean, was still open at ca. 234 Ma. The youngest 234 Ma 
age of the matrix in the Kanguer accretionary mélange that 
contains blocks of N-MORB basalts provides a snapshot of 
the mid-Triassic northward subduction of the Paleo-Asian 
Ocean in the Eastern Tianshan (Fig. 13a). This tectonic sce-
nario is consistent with the presence of 243–234 Ma adak-
ites, which were generated by slab-melted, lower crust of the 
Dananhu arc (Mao et al. 2020). In the Middle to Late Trias-
sic (234–217 Ma), the Kanguer ocean closed, and the Dan-
anhu intra-oceanic arc was amalgamated and welded with 
the Yamansu-CTS continental arc (Fig. 13b). Large-scale 
syn- to post-collisional granites intruded in the Eastern Tian-
shan in the Late Triassic (Li et al. 2012; Wang et al. 2016).

Combined with the Mid-Late Triassic peak metamorphic 
ages of eclogites in the Western Tianshan (Sang et al. 2017, 
2020; Zhang et al. 2007), we consider that the final time of 
amalgamation of the southern Altaids, recorded in the whole 
Tianshan orogenic belt, was most likely in the Late Triassic.

Conclusions

(1) Field relations and map data indicate that the Kanguer 
mélange has a characteristic block-in-matrix structure and it 
underwent intense top-to-the-south thrusting and shearing. 
The blocks of basalt, diabase, gabbro, limestone, and chert 
are probably fragments derived from a downgoing oceanic 
plate, which were accreted to the evolving accretionary 
complex.

(2) Geochemical and isotopic data of basalts from the 
Kanguer mélange belt have the same diagnostic signatures 
as those of N-MORBs.

(3) The MDAs of sandstones from the matrix of the 
Kanguer mélange belt are 234 ± 14 Ma, 242.5 ± 1.3 Ma, 
236.9 ± 2.0 Ma and 274 ± 3 Ma, which indicates that the 
Kanguer Ocean was still open at 234 Ma.

(4) The basalts and sandstone occur in imbricate thrust 
slices, suggesting the accretion of the Kanguer mélange belt 
should be later than 234 Ma. The final time of amalgamation 
of the southern Altaids in the whole Tianshan orogenic belt 
was probably in the mid-late Triassic.

Appendix analytical methods

Zircon U–Pb analyses were performed at the Beijing Quick-
Thermo Science & Technology Co., Ltd, using an ESI New 
Wave NWR 193UC (TwoVol2) laser ablation system con-
nected to an Agilent 8900 ICP–QQQ, following analytical 
procedures described in (Ji et al. 2020). In situ zircon Lu–Hf 
isotopic were analyzed with a Neptune Multi-Collector 
ICP-MS equipped with a Geolas-193 laser-ablation system. 
Lu–Hf isotopic data were obtained from the same dated zir-
con grains (Wu et al. 2006).

The whole-rock trace elements were analyzed by Induc-
tively Coupled Plasma Mass Spectrometry on an Agilent 
7500a in the Institute of Geology and Geophysics, Chinese 
Academy of Sciences (IGGCAS) in Beijing. The detailed 
procedure followed that of Yang et al. (2012).

About 100 mg of whole-rock powder was decomposed in 
a mixture of HF–HClO4 in Teflon beakers to which appro-
priate amounts of mixed 87Rb–86Sr and 149Sm–150Nd were 
added. The isotopic ratios were measured on a MAT262 
IsoProbe-T thermal ionization mass spectrometer in the 
IGGCAS. The detailed analytical procedures for the chemi-
cal separation and isotopic measurements were described 
by Chu (2009).
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