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Abstract
The NE–SW trending Mahendragarh–Dehradun Fault (MDF) is a basement fault in the western Ganga plain. The earthquake 
(4.7 mb) epicentered on this fault on 2nd June 2017 was focused around 10 km depth and does not show any surface rupture. 
Ground Penetrating Radar (GPR) survey around the epicenter detects few shallow-depth subsurface normal faults parallel 
to the MDF. However, it is unclear whether these normal faults are linked with the 2017 earthquake or other previous earth-
quakes. Seismic record (USGS) since 1975 to 2017 suggests occurrence of 22 earthquakes (~ 5 mb) around the MDF and 
majority (~ 63%) of these are clustered around Delhi and Rohtak. Following the 2017 earthquake, frequency of earthquakes 
occurence sharply increased than previously recorded instrumentation period from 1975 to 1995. Majority of the seismicity 
is focused around 10 km depths, shallowing to depths of 25–207 km recorded from 1975 to 2004. Earthquakes clustered 
along the Main Himalayan Thrust (MHT) shows similar temporal trend as near the MDF. Southward thrust movement of 
the Himalaya orogenic wedge predicts to impose strike-slip motion on the orthogonal-oriented steep basement faults, which 
is consistent with geologic and geomorphic field relations, and seismicity focal mechanisms along the MDF. The observed 
upper crustal deformation associated with such fault deformation pattern may be partly influenced by the MDF and partly 
by the foreland bulge seismicity. Potential tectono-geomorphic parameters and soil-chronosequence may suggest the surface 
deformation is active through the Holocene.
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Introduction

Precambrian basement of the Indian peninsula is flexed and 
buried under thick pile of Tertiary-Quaternary sediments 
of the Ganga plain. Southern margin of the Ganga plain 
is confined by the peripheral bulge produced by increased 
loading in the Himalayan orogen caused down-bending of 
the under-thrusted lithospheric plate (Agrawal et al. 2002) 
in Late Quaternary (Singh and Bajpai 1989). Though the 
location, wavelength, and amplitude of this flexural bulge 
are not readily apparent as the Indian shield surface is deeply 

eroded (Bilham et al. 2003). The peripheral bulge is char-
acterized by long-wavelength elevation in a magnitude of 
few hundred meters (Singh and Bajpai 1989; Singh 1996). 
It is coinciding with the NW–SE trending Delhi-Sargodha 
High (Blisniuk et al. 1998). Geological and geophysical 
evidences (Sastri et al. 1971; Valdiya 1976; Kumar et al. 
2013; Godin and Harris 2014) suggest the basement is cut 
by fault-bounded ridges and troughs underlying the sedi-
ments cover (Rao 1973; Raiverman et al. 1983; Kumar 
et al. 2013) and hence sediment thickness in the plain varies 
laterally and longitudinally from up to a few meters to a 
several kilometers both along the ridges or in the depres-
sions. Intraplate seismicity in this region is likely due to the 
strain produced in the Indian lithosphere, imposed by north-
ward convergence of the Indian plate being accreted with 
Eurasia (Dubey et al. 2012). The basement faults bordering 
the ridges in the Ganga plain may represent old basement 
faults formed prior to India-Asia collision (Gahalaut and 
Kundu 2012; Godin and Harris 2014). Favorably oriented 
orthogonal-faults to the Himalayan orogen could promote 
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reactivation as normal or strike-slip faults. Their interaction 
with the Himalayan front causes seismicity in the Ganga 
plain (Raval 2000; Thakur 2004; Arora et al. 2012; Kumar 
et al. 2013; Verma et al. 2017). These faults experience 
both normal and strike-slip motions as evidenced by previ-
ously studied focal mechanism solution of the earthquakes 
associated with the MDF (Shukla et al. 2007; Prakash and 
Shrivastava 2012). Southwestwardly deviation of stress field 
contours along these basement faults suggests that, along the 
MDF and other basement faults; the stress field migrates into 
the Indian peninsular region (Fig. 1). Frequent earthquakes 
of varying focal-depths from 10 to 207 km (USGS 2017) 
have been observed near the vicinity of this fault, which 
include both strike-slip and normal fault focal mechanism. 
Focal depth and magnitude of these earthquakes control the 
degree of surface rupture.

Occurrence of numerous shallow-focus earthquakes (less 
than 70 km, Ram and Yadav 1982; USGS 2019) along the 
MDF is a clear manifestation of active nature of this fault 
(Fig. 2). Our ability to infer the tectonic regime using earth-
quake data is conducted via an integrated study using GPR 
and tectonic geomorphological analysis. As the fault projects 
to extend near the vicinity of Delhi, the national capital and 
a densely populated area (> 2.4 million population, Fig. 3), 
a substantial knowledge about the behavior of the fault is 
necessary for the hazard risk assessment of the region. Other 
prominent tectonic features in and around Delhi region are: 
Delhi-Haridwar ridge (DHR), Sohna fault and Moradabad 
fault (Fig. 2; Bansal and Verma 2012; Prakash and Shriv-
astava 2012). This region lies in the seismic zone IV (IS 
1893-Part 1, 2002) and is classified as tectonically active 
region (Das et al. 2018). An earthquake of magnitude 4.7 mb 
occurred at 10 km depth, epicentered at Rohtak, Haryana on 
2nd June 2017. Due to thin cover sediment (~ 40 m around 

Rohtak), surface ruptures was expected. However, fieldwork 
around the epicenter region revealed no surface rupture or 
any other kind of damage to the property. 2-D Ground Pen-
etrating Radar (GPR) survey around the epicenter region 
documents evidence of many subsurface normal faults at 
shallow-depth. However, their strike-slip component if any 
cannot be detected from the 2-D GPR profiles. In addition, 
it is unclear whether these normal faults are associated with 
the 2017 earthquake or any other previous earthquakes. In 
this study, we evaluate seismic data from various depths 
around the MDF in correlation with tectono-geomorphic and 
soil-chronosequence analyses. 

Analysis of recently recorded epicenters around this fault 
reveals the occurrence of a series of earthquakes in recent 
years with varying magnitude (3.7mb to 5.1mb) and focal-
depth (10 to ~ 207 km). ~ 63% of earthquakes are clustering 
around the national capital Delhi and Rohtak, on the flex-
ural bulge of the basement. Earthquake occurrence was low 
between 1975–1995 (3 events), and then increased in fre-
quency from 1995 to 2017 (19 events). Majority (~ 63%) of 
earthquakes are focused around 10 km depth. Geomorphic 
markers such as offset streams, linear streams patterns, and 
topographic profile across the fault may suggest the MDF 
connects with these shallow subsurface faults as a seismi-
cally active fault system. The associated soil chronosequence 
(Bhosle et al. 2008; Pati et al. 2018) suggests that major 
activity along this fault occurred since at least 4.5 Ka during 
which major relief changes occurred across the fault. The 
present and paleo-fluvial geomorphology across the fault 
are validating with the historical and recent seismic data.

Geological setting

Basement configuration and the basement faults in the 
Ganga plain have been mapped using aeromagnetic survey 
(Agocs 1957), drilling and geophysical survey (gravity, 
aeromagnetic and ground magnetic, reflection and refrac-
tion seismic survey) by Oil and Natural Gas Corporation 
(ONGC) (Sastri et al. 1971; Rao 1973; Karunakaran and 
Ranga Rao 1976; Raiverman et al. 1983). Based on the 
aeromagnetic and gravity survey, basement faults have 
been mapped by the geological survey of India and pub-
lished in the seismotectonic atlas of India (GSI 2000). 
From the seismotectonic atlas of India, we have traced 
the MDF which runs NE–SW about 295 km, along with 
the eastern margin of the Delhi-Haridwar subsurface 
basement ridge (Fig. 4). This westernmost basement fault 
in the Ganga plain links the Himalayan Frontal Thrust 
(HFT) in the north to the Indian peninsular craton in the 
south, cutting through the peripheral flexural bulge of 
the Indian peninsula. This fault meets the HFT where the 

Fig. 1  Stress field in the Ganga plain based on distribution and orien-
tation of faults. Locations of basement faults show deviation of stress 
contour indicating stress transfer towards the peninsular region (after 
Das 2008)
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outer Himalaya shows local strike deviation (the Siwalik 
hills show local change in orientation from N58°W in the 
western side of the fault to S17°E in the eastern side of 
the fault; Supplementary Fig. 1). Several authors (Bilham 
et al. 1997; Powers et al. 1998; Lavé and Avouac 2000; 
Jade 2004; Burgess et al. 2012; Gavillot 2014; Gavillot 
et al. 2016) have calculated varying rates of convergence 
at the thrust front in different parts of the Himalaya. Geo-
detically-constrained convergence rate between India and 
Tibet at the junction of the MDF with the HFT is estimated 
to be 10–18 mm/year (Jade 2004). The cover sediment 
(mainly alluvium) thickness over this fault varies from 
3000 m around the HFT (close to the Himalayan moun-
tain front) to about 40 m around Rohtak (epicenter of the 
present earthquake, GSI 2000). Due to this tectonic set-
ting, this fault coinciding with the fore-bulge experiences 
frequent seismic events.

Methodology

Methodology in this study includes tectonic geomorphol-
ogy, seismic record (1975–2017), and GPR data across 
the fault.

Tectonic geomorphology

In the Ganga plain, tectono-geomorphological features has 
been successfully used to map active surface faults (Singh 
et al. 2006; Bhosle et al. 2008; Pati et al. 2011a, 2019). In 
this study, role of active tectonics in characterization of the 
fluvial landscape around the MDF (fault zones) has been 
investigated through digital topography (SRTM-30 m) and 
morphometric analysis.

Fig. 2  a Seismic hazard map of 
the study area (data compiled 
from https ://asc-india .org), inset 
shows seismic zone of India 
with location of study area and 
b Seismicity and fault map of 
western Ganga plain. Sardarsa-
har Fault (SSF), Mahendragarh-
Dehradun Fault (MDF), Sohna 
Fault (SF), Moradabad Fault 
(MF), Great Boundary Fault 
(GBF), Lucknow Fault (LF) 
(seismic data taken from Prabhu 
and Raghukanth 2015)

https://asc-india.org
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Fig. 3  Indo-Asian collision zone shows the estimated slip poten-
tial along the Himalaya. Shaded areas with dates are the epicenter 
and zones of rupture of major earthquakes in the Himalaya and the 
Kachchh region. (Inset) This simplified cross section through the 
Himalaya indicates the transition between the locked, shallow por-

tions of the fault that rupture in great earthquakes and the deeper 
zone where India slides beneath southern Tibet without earthquakes. 
Between them, vertical movement, horizontal contraction, and seis-
micity are currently concentrated (modified after Bilham et al. 2001)

Fig. 4  The plot shows the cor-
relation between the earthquake 
magnitude and focal-depth fall-
ing in the fault zone of the MDF 
throughout its length. Cross-
section represents the basement 
and surface profile along the 
same length of the fault
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Morphometric analysis

Surface movements produced by active faults affect the 
topography as well as the drainage response (Jackson and 
Leeder 1994). Morphometric analysis is being used as a 
powerful tool to quantify uplift, incision and erosion rates, 
and slip rates on faults at short (103–106 year) time scales 
(Burbank and Anderson 2001; Keller and Pinter 2002). Pre-
vious studies in the Ganga plain have used alluvial channels 
to interpret for local tectonic control to surface responses 
(Singh et al. 2006; Bhosle et al. 2009; Pati et al. 2011a).

Commonly used morphotectonic indices such as basin 
asymmetry, longitudinal and transverse channel profiles, 
Sinuosity Index (SI), valley width/height ratio and aban-
donment of paleo-courses of channels are generally used to 
evaluate the relationship between tectonics and geomorphic 

response (Bull and McFadden 1977; Bull and Wallace 1985; 
Pinter and Wallace 1996; Raj et al. 2003; Silva et al. 2003; 
Goudie 2004; Jacques et al. 2014; Kale et al. 2014). In this 
study, we integrate morphotectonic parameters, SRTM DEM 
(30 m) analysis, published topographic maps and ETM+ 
imagery from LANDSAT-7. Distance around 30 km across 
the MDF zone was studied for morphotectonic parameters. 
Drainage morphometry of rivers such as Yamuna, Kirsuni 
and Hindon which are passing through the MDF zone were 
analyzed. Satellite imagery (ETM+, Band combination of 
7-4-2, Fig. 5) has been used for the drainage anomaly study.

Tectonics and associated channel morphology

Drainage analysis is a powerful tool to infer recent tectonic 
activity and uplift (Ouchi 1985; Clark et al. 2004; Delcaillau 

Fig. 5  Offset drainage identified 
in the study area. Standard FCC 
(ETM+ image, 7-4-2 band com-
bination). The satellite image 
shows offset channel of Hindon, 
Kirsuni and Yamuna rivers 
across the fault in enlarged view 
of rectangles a, b, c, respec-
tively
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et al. 2011), as river channels are very sensitive to changes in 
the parameters that control their shape and gradient (Whip-
ple and Tucker 1999). Stream development and channel 
response can serve as sensitive morphometric indicators to 
reinforce evidence of active deformation, including faults 
evolution in an area. Drainage patterns in an area of active 
deformation reveal aspects of faults and anticline growth 
(Medwedeff 1992; Mueller and Talling 1997; Delcaillau 
et al. 1998, 2006; Burbank and Anderson 2000; Husson 
and Mugnier 2003; Gupta and Ellis 2004; Sung and Chen 
2004). Climate and lithology play equal roles in drainage 
morphology and reorganization. Channel reorganization and 
evolution can provide insights of potential tectonic control. 
Structural control on a river system can be inferred from 
various observations such as abrupt changes in river mor-
phology from braiding to entrenched meanders, alluvial 
fills accumulation, flow direction, offset or linear channels, 
location of sag-ponds or springs, convexity and knickpoint 
in longitudinal river profiles (Holbrook and Schumm 1999; 
Schumm et al. 2002; Singh et al. 2006; Miller et al. 2012; 
Whittaker 2012). We have identified several of these char-
acteristics near the inferred location of the MDF fault zone 
along the Ganga plain (Fig. 6), which have been investigated 
and discussed.

Parallel drainage patterns are usually found where there 
is pronounced slope or bedrock structural control, which 
lead to regular spacing of parallel or near-parallel streams 
(Thornbury 1989). This has been observed in the northern 
part of the study area (piedmont zone) where due to steep 
slope streams show parallel to sub-parallel pattern. Seg-
ments of the Yamuna river and its tributaries are oriented 
parallel to the MDF which may indicate the effect of fault 
on channel orientation (Fig. 6).

Offset of stream channels Large-scale river channel deflec-
tions may infer strike-slip fault offsets (Bloom 2002; Zámolyi 

et al. 2010). However, normal faulting can equally produce 
offset channels, if motion of the uplifted or tilted block is 
oblique to the regional slope, where the stream course devi-
ates to follow the fault for a few kilometers, crosses the fault 
at a lower elevation and continues along the regional slope 
(Singh et al. 2006; Supplementary Fig. 2). Across the MDF, 
the Yamuna, Kirsuni and Hindon rivers offset of 5, 7.5, and 
3.5 km, respectively, may suggest structural control on the 
local drainage patterns that coincide with the inferred loca-
tions of the MDF (Fig. 5). Some of the largest river mean-
ders in the Yamuna, Kirsuni, and Hindon rivers that have 
apparent deflection to the southwest (versus to the S or SE) 
coincides with the inferred surface projection of the MDF.

Initiation of new streams along the fault zone New streams 
generation in the fault zone of normal and reverse faults 
is common in the Ganga plain (Singh et  al. 2006; Bhosle 
et al. 2009; Pati et al. 2011b). Initiation of several such new 
streams near the Yamuna, Kirsuni and Hindon rivers align 
linearly along the MDF (Fig. 6). We interpret here that these 
first-order stream originates in response to gully erosion and 
vertical relief across the fault zone.

Longitudinal profile of  rivers and  knickpoints Longitudi-
nal river profile is a very sensitive linear aspect of tectonic 
deformation in the earth crust (Demoulin 1998; Holbrook 
and Schumm 1999; Whittaker et al. 2007; Lahiri and Sinha 
2012; Viveen et al. 2012; Fekete and Vojtko 2013; Goren 
et al. 2014) and hence is a universally practiced tool in tec-
tonic research (Roy and Sahu 2015). Long profiles of allu-
vial channels and many bedrock or mixed-bedrock-alluvial 
channels are typically concave-up, a shape traditionally 
equated with a graded, equilibrium profile (Mackin 1948; 
Pazzaglia et al. 1998; Whipple 2004). Deviations from this 
may indicate that the fluvial system is in a transient state of 
adjustment to a base level, tectonic, climatic, or rock-type 

Fig. 6  Geomorphic signatures of modern channels around the MDF
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perturbation (Molin and Fubelli 2005). In particular, convex 
segments called knickpoints or knickzones depending upon 
their length can be investigated to evaluate their coincidence 
with tectonic perturbations at scales ranging from the whole 
chain to local structures (Molin and Fubelli 2005). Knick-
points in a longitudinal river profile could serve as good 
indicators of active structures (Wobus et al. 2005; Delcaillau 
et al. 2011) along the path of a river. Fault movements can 
generate many small knickpoints within a channel profile 
(Zhang et al. 2011). In this study, longitudinal river profile 
has been prepared for the Yamuna, Kirsuni and Hindon riv-
ers (Fig. 7) using SRTM DEM. All three rivers show mul-
tiple local convexities along the longitudinal river profiles. 
Some of these local river convexities associated with knick-
points coincide with the intersections of the MDF along 
the Yamuna and Kirsuni rivers (Fig. 7). Hence we interpret 
here that some of these knickpoints are related to fault activ-
ity. It is important to note that several knickpoints do not 
align with known evidence of faults, which may relate to 
transient drainage integration from river confluences and/or 

anthropogenic activities (Fig. 7). The Hindon river shows no 
prominent local convexity across the location of the MDF 
(Fig. 7), and may be attributed to a deeper fault location and 
more diffuse surface response of the MDF buried beneath 
thick (~ 2500 m) local sediments cover (GSI 2000).

River style River style is one of the tools which define the 
tectonic activity along the river course. The Yamuna river 
shows significant change in channel style while crossing the 
MDF, from braided channels (upstream of the fault) to anas-
tomosing channels (downstream of the fault). In fact, this 
river shows anastomosing channels pattern up to a distance 
of about 5 km (Fig. 8). This can be explained in terms of 
slope change across the MDF and locally increased sedi-
ment production by river bed scouring.

Paleochannels around the MDF

Ancient civilizations were built-up along the river banks 
in India (Valdiya 2002). Traces of paleochannels mapped 

Fig. 7  Longitudinal river 
profile of the rivers a Yamuna, 
b Kirsuni and c Hindon. (Y-1, 
Y-2) shows anomaly due to 
confluence of the streams with 
the Yamuna river and anthropo-
genic activity. (K-1, K-2) shows 
anomaly due to confluence of 
the stream with Kirsuni river. 
(H-1, H-2) shows anomaly due 
to confluence of the stream with 
Hindon river and anthropogenic 
activity
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by integrating locations of ancient civilization sites in this 
study show abrupt end along the MDF (Fig. 9). Abrupt end-
ing of multiple paleochannels along a tectonically adverse 
feature (MDF in this study) may be interpreted as tectoni-
cally caused rather than climatic. A recent compilation of 
the ancient civilization sites by Uesugi (2018) suggests the 
paleochannels in the area were parts of the paleo-Ghagghar-
Hakra and Paleo-Yamuna river systems. Optically stimulated 
luminescence (OSL) chronology of these paleochannels was 
carried out in the OSL laboratory in the Department of Earth 
Sciences, Indian Institute of Technology, Roorkee, India. 
The data yields the abandonment of these coeval channel 
systems occurred between 2.5 and 3 Ka (Pati et al. 2018) 
which is inferred due to fault-related uplift from the MDF 
and other associated surface faults.

Soil‑chronology and soil properties around the MDF

Soil-chronology and soil properties have been used in 
the Ganga plain to demarcate active faults (Singh et al. 
2006; Bhosle et al. 2008; Pati et al. 2018). In this study, 
soil properties such as solum thickness, degree of pedality, 
and B-horizon thickness have been used to distinguish the 

fault zone-soil from either side of the fault (Table 1). Solum 
thickness on the NW and SE block of the MDF varies up to 
450 cm and 320 cm, respectively, with well developed pedo-
features. However, the fault zone shows weekly developed 
soil with solum thickness varies up to 150 cm. This contrast-
ing soil properties may be explained as lower degree of soil 
development from a younger sedimentation event localized 
in a linear trough mapped along the MDF (Fig. 10). 

GPR study around the MDF

The recent 2nd June 2017 earthquake was studied by field 
work and shallow subsurface sediment offset using GPR 
around the epicenter. During fieldwork conducted between 
4th June to 8th June 2017 around Rohtak and nearby area 
within 20 km radius of the epicenter (Fig. 11), no surface 
rupture (geomorphic or infrastructural) were found.

GPR instrumentation consisted of a shielded antenna 
of 100 MHz (GSSI-SIR-3000) was used for this investiga-
tion. The antenna of this range provides the best balance 
between depth of penetration and resolution (Bristow and 
Jol 2003; Neal 2004). GPR profiles were taken in distance 
mode (using survey wheel) along straight lines transverse 
to the strike of the MDF. Fiber optic cable was used for 
data transfer from the antenna to control unit. All sources of 
electromagnetic waves such as mobile phones, hyper-tension 

Fig. 8  Yamuna river around the MDF. The upstream block shows 
numerous braid bars whereas, the downstream block shows anasto-
mosing channel properties

Fig. 9  Paleochannels mapped by integrating historical civilization 
sites shows abrupt ending along the MDF and OSL sample locations 
are marked around the MDF (Data source: Valdiya 2002; Bhosle el 
al. 2008; Pati et al. 2018)
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lines and electric poles were avoided to the best possibility 
to avoid any signal interference while working the equip-
ment. Running vehicles, passing trains or other heavy traffic 
which cause vibrations and induce noise in the data were 
also obviated. The GPR was moved on a plain surface with 
no grits or gravels to avoid noise to the data. Each GPR 
profile was about > 1 km length. The range of the signal for 
depth penetration was kept at 800–1000 ns.

The collected data were processed with RADAN-5 soft-
ware as methods suggested by Fisher et al. (2000) and GPR 
manual provided by Geophysical Survey System Instru-
ments (GSSI). Data processing software and tools were 
used through the Finite Impulse Response (FIR), Infinite 
Impulse Response (IIR), gain control, 2-D spatial fast 

Fourier transform filters, deconvolution, surface normaliza-
tion, hyperbola migration, and band pass filtering. For the 
data processing obtained from GPR at 100 MHz frequency, 
the filter bandwidth applied was 40/50 and 150/180 MHz as 
suggested by Fisher et al. (2000). Reflection of the waves 
caused by the air and other surficial matters were removed.

GPR profiling around the area (Fig. 11) reveals the pres-
ence of many near-vertical faults with apparent normal fault 
offset (Fig. 12) at the basement sediment interface. No clear 
evidence of strike-slip offset can be resolved from the GPR 
profile. Around Rohtak (Fig. 11), multiple vertical faults are 
observed to a depth of ~ 40 m with a throw of ~ 5 m (Fig. 12). 
These apparent normal faults could have been linked with 
the recent earthquake or any other previous earthquakes. 

Table 1  Detailed description of various pedons across the Mahendragarh–Dehradun Fault (Refer Fig. 10 for location)

Location of 
soil profile

Solum 
thickness 
(cm)

B horizon Mottles/Fe–Mn concretions in 
horizon

Thickness (cm) Structure Color Texture

Kakrana 450 300 Well developed sub-angular blocky 
structure

2.5 Y/2
5/4, 6/4

Sandy Loam Fe, Mn nodules in A and B horizon

Gangtan 150 100 Weakly developed pedo-features 2.5 Y 5/3 Sandy Mottles in BC horizon
Bhaproda 320 200 Well developed sub-angular blocky 

structure
5 Y 5/2
5/4, 6/4

Sandy Loam Fe, Mn nodules in B and C horizon

Fig. 10  a SRTM DEM of the study area,  a1 and  a2 mark the location 
of topographic profile and soil profile across the MDF, b topographic 
profile along the  a1 and  a2, c–e are field locations of soil profile in 

upthrown block, fault zone and downthrown block, respectively. Stud-
ied soil profiles at f Kakrana, g Gangtan and h Bhaproda
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These shallow faults may or may not connect at depth to the 
deeper inferred MDF fault resolved presumably by geophysi-
cal investigations such as aeromagnetic, ground magnetic, 
gravity and seismic surveys and the deep drilling conducted 
in the area (Sen-Gupta 1964; Fuloria 1969; Sastri et al. 
1971; Valdiya 1976). Nature of these steep vertical faults 
suggests that the MDF is more likely controlled at the shal-
low subsurface as normal fault system.

Study of recent earthquakes around the MDF

Recent earthquake data and trend of seismicity was studied 
using USGS earthquake catalog (1975–2017). Distribu-
tion of twenty-two earthquakes (3.7 mb–5.1 mb) occurred 
around the MDF since 1975 to 2017 (Fig. 2a; Table 2; 

data source: USGS 2017), with a cluster around Rohtak. 
The focal mechanism solution of the earthquakes (Fig. 13; 
Shukla et al. 2007) shows epicenters of four earthquakes 
are lying on the MDF. Out of the previously studied focal 
mechanism solutions by Shukla et al. (2007), four of them 
suggest the associated faults are trending parallel to the 
MDF. However, all other’s orientation do not coincide 
with that of the MDF, and hence may suggest the exist-
ence of other faults may be related and/or accentuated 
to lithospheric crustal loading of the Himalaya orogen 
on the Delhi-Sargodha Ridge (Dubey et al. 2012; Sup-
plementary Fig. 3). Magnitude and frequency of occur-
rence of these earthquakes show an inverse correlation. 
Except for one earthquake, all other earthquakes occurred 
within 10–76 km depth. However, most of the earthquake 

Fig. 11  Location of GPR profile across the MDF, enlarge view of circle shows study area around the epicenter of recent earthquake on 2nd June 
2017 with GPR profile locations, a–c shows detailed locations of GPR profile on Google earth image
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Fig. 12  a, c GPR profile across the MDF shows discontinuities in the shallow subsurface sediment layers and b, d Undisturbed Holocene sedi-
ments sequence and discontinuities surface redrawn from GPR profile

Table 2  Earthquake epicenter 
data around Mahendragarh–
Dehradun Fault zone as 
obtained from USGS (https ://
earth quake .usgs.gov)

mb body wave magnitude

S. no Date (DD-MM-YYYY) Epicenters Depth (km) Mag-
nitude 
(mb)

Latitude (°N) Longitude (°E)

1 06-11-1975 29.497 78.084 33 4.9
2 15-05-1990 29.178 76.73 33 4.1
3 15-11-1995 29.058 76.791 24.9 4
4 12-11-1996 29.919 77.172 53.7 4.5
5 30-03-1998 28.211 76.241 10 3.9
6 22-03-1999 29.257 76.94 207.6 4.1
7 28-02-2001 28.629 76.04 33 3.8
8 28-04-2001 28.588 76.841 10 3.7
9 13-09-2001 28.851 77.22 10 4.1
10 02-05-2002 27.696 75.81 33 4.1
11 27-07-2004 29.25 77.23 75.7 4.1
12 31-03-2006 28.976 76.606 10 3.9
13 07-05-2006 28.975 76.561 10 4.3
14 25-11-2007 28.555 77.057 10 4.7
15 16-08-2008 30.185 77.836 10 3.8
16 07-09-2011 28.724 77.189 10 4.3
17 05-03-2012 28.809 76.649 10 5.1
18 19-06-2012 28.728 76.685 10 4.1
19 20-12-2012 27.651 76.116 10 3.9
20 10-09-2016 28.7684 76.5733 10 4.1
21 16-11-2016 28.0012 76.7017 10 4.4
22 02-06-2017 28.9744 76.7797 10 4.7

https://earthquake.usgs.gov
https://earthquake.usgs.gov
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hypocenters are confined in the basement within 10 km 
depth from the surface. 

Discussion

Basement features of the Ganga plain

The basement of the Indian peninsula below the Ganga 
plain hosts many NE-SW trending basement ridges named 
from west to east as: the Delhi-Haridwar ridge, the Faizabad 
Ridge and the Munger-Saharsa ridge (Fig. 14; Patel et al. 
2018; Godin et al. 2019). These ridges are the extension 
of the Indian peninsular shield through the Ganga basin 

transverse to the Himalayan trend (Eremenko et al. 1968; 
Yin 2006; Godin et al. 2019). Prominent inherited basement 
faults (Godin et al. 2019) are running along the flanks of 
these basement ridges from Indian peninsular shield to the 
Himalayan front, and some of these are cross-cutting the 
Himalaya (Godin and Harris 2014) described as tear faults 
by Valdiya (2002). In addition to these, few other basement 
faults are also present in the Ganga plain following the 
trend of the basement ridges. These faults are interpreted 
to have been reactivated during the continental collision 
and formation of the Himalayan orogen (Valdiya 1976). 
Temporal reactivations of these basement faults since their 
development have been documented in the Permo-Triassic 
sedimentation cycles in the associated basins (Veevers and 
Tewari 1995). However, the reactivation history during the 
Paleozoic and Mesozoic is poorly documented due to limited 
rock exposure (Godin et al. 2019) and thick Late Cenozoic 
sedimentary cover on these faults. The edges of the base-
ment ridges have been postulated to be seismically active 
(Dasgupta et al. 1987; Mugnier et al. 2017).

The MDF in this study demarcates the eastern bound-
ary of the Delhi–Haridwar basement ridge and western 
boundary of the Shimla and Dehradun lineaments (Godin 
and Harris 2014; Godin et al. 2019). This lithospheric-scale 
feature possibly marks the contact between the Rajasthan 
and Bundelkhand cratons at depth (Mitra et al. 2011) and 
coincides with the subsurface change in crustal composition 
(Yin 2006). This basement feature may be capable of accom-
modating differential tensile deformation due to bending of 
the Indian plate as it underthrusts the Himalaya (Mitra et al. 
2011). Similar deformation patterns are observed from geo-
physical data along the subduction zone in the northwestern 
and central Betic Cordillera (Ruiz-Constan et al. 2011) and 
Fiordland, New Zealand (Smith and Davey 1984; Reyners 
et al. 2002), that show tensile focal mechanism associated 
with the bending of the lithosphere. In addition, the NW–SE 

Fig. 13  Focal mechanism solutions of the seismic events along the 
MDF (Fault plane solutions data taken from Shukla et al. 2007)

Fig. 14  Distribution of basement faults and basement ridges in the Ganga plain
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trending peripheral flexural bulge of the Indian peninsula 
bordering the Ganga plain in its southern part, formed due 
to isostatic load of the Himalayan orogenic wedge, may also 
accentuates tensile deformations (Agrawal et al. 2002).

Seismicity around the MDF

Seismicity around the basement faults in the Ganga plain 
including the MDF is controlled by the Himalayan tectonics. 
The Himalaya is characterized by a series of south verg-
ing thrust splays branched off the MHT (Yin and Nie 1996; 
Powers et al. 1998; Gavillot et al. 2018). In this study, it 
has been observed that the southward thrust movements 
do influence the seismicity of the MDF and the peripheral 
bulge due to their preferred orientation to the thrust move-
ment. The earthquakes associated around the MDF indicate 
evidence of being an active fault, which has implication for 
earthquake hazards assessments. Its position along the tran-
sition of the Ganga and Indus plains emphasizes the study 
regarding the behavior of the transitional margin fault to the 
ongoing tectonics. Similarly, its coincidence with the eastern 
margin of the Delhi-Haridwar subsurface basement ridge 
invites further studies along the buried basement faults in the 
Ganga plain. As this fault passes through the national capital 
Delhi, its seismotectonic evaluation is important regarding 
prediction of its seismic characteristics at different spatial 
and temporal scales in this highly populated region.

Earthquakes in the basement of the Ganga plain have 
different origin such as normal faulting at the flexural axis 
along the foreland bulge, reverse faulting within the base-
ment blocks around the thrust uplift, and normal and/or 
oblique-slip motion along the basement fault-zone like the 
MDF. Bending of basement along the periphery of the basin 
due to thrust overloading (Supplementary Fig. 3) may be the 
source of earthquake clusters around the flexural bulge of the 
basement. The basement contour DEM (Fig. 15) suggests an 
NW–SE axial trend anticlinal high around Rohtak that may 
represent this flexural bulge, which is the probable extension 
of the Delhi-Sargodha ridge.

Focal mechanism solutions of previously studied earth-
quakes along the MDF support oblique-slip movement 
(Shukla et al. 2007). Irrespective of nature of the move-
ment, basement faults in the Ganga plain show around a 
30 km wide zone of surface deformation (Verma et al. 2017). 
However, the width of the zone is comparatively less around 
those faults developed along the basement ridges such as 
for the MDF.

In our study, geomorphic markers such as offset chan-
nels, initiation of new streams along the fault zone, elevation 
gradient in longitudinal channel profile that coincide with 
the subsurface projection of the MDF may suggest Quater-
nary fault activity. Geomorphic markers such as convergence 
of drainage, change in channel sinuosity are also potential 

geomorphic markers for both normal and reverse faults in 
the Ganga plain (Singh et al. 2006; Bhosle et al. 2009; Pati 
et al. 2011b, 2019). However, in this study these parameters 
did not provide convincing result about the presence of the 
fault. Sediment cover thickness, pre-existing basement struc-
tures, and bedrock channel lithology likely control lateral 
variation in channel response to local fault activity of the 
MDF.

Block tilting due to faulting is common in the Ganga plain 
(Mohindra et al. 1992; Pati et al. 2011a), which results in 
channel abandonment and migration to lower topographic 
level. Using ancient civilization sites continuity of paleo-
channels were marked around the MDF (Fig. 9). These pale-
ochannels show an abrupt truncation at the MDF, which has 
been interpreted here as tectonically caused rather than cli-
matically. OSL chronology of these paleochannels suggests 
2.5–3 Ka of channel abandonment. The fault zone shows 
weakly developed soil as compared to the adjacent region 
(Fig. 10). Soils in either side of the fault zone show high 
solum thickness varies from 320 to 450 cm and well devel-
oped pedo-features whereas, in the fault zone soils show 
lesser development of pedo-features and thickness.

Available record of twenty two earthquakes around the 
fault establishes good correlations among the frequency of 
occurrence, depth and magnitude with time and space. The 
frequency of occurrence of the earthquakes around the MDF 

Fig. 15  Digital elevation model (DEM) of basement depth around the 
study area



702 International Journal of Earth Sciences (2020) 109:689–706

1 3

shows a major gap from 1975 to 1990. The earthquakes 
along the basement faults act as suitable avenues for stress 
transfer towards the stable craton from the active Himalayan 
front. The earthquakes clustered along the MHT projected 
along the main central thrust (MCT) within the time window 
(1975–2017) shows a positive correlation (Fig. 16). Periods 
marked by the occurrence of earthquakes along the MDF 
are also marked by seismically active period along the MHT 
and vice versa. This suggests a good temporal correlation 
among the Himalayan seismicity with that of the Ganga 
plain, particularly along the basement fault (MDF) and the 
peripheral bulge.

As no direct exposure of the fault is available, determin-
ing the fault kinematic is also difficult. GPR study brings out 
the presence of shallow-depth, near-vertical normal faults 
along the fault zone of the MDF. However, the strike-slip 
component cannot be determined from the 2-D GPR pro-
file. Southward thrust movement of the Himalaya orogenic 
wedge would predict to impose strike-slip motion on orthog-
onal-oriented vertical basement faults, but the associated 
geology, geomorphology and the previously studied focal 
mechanism solutions suggest oblique-slip motion along the 
MDF. The present stress field configuration and the fluvial 
anomaly may suggest oblique-slip motion. This integrated 
approach provides several lines of evidence that suggest seis-
mic activity near the MDF may exert surface deformation 
enhanced by regional stress of the Indian plate convergence 
with the Himalaya orogenic wedge. The area of study is 
part of the upper Ganga plain which has a thin sequence 
of Tertiary-Quaternary sediments with respect to its lower 
counterpart. Gawthorpe and Leeder (2000) explained the 
growth of the secondary faults associated with the basement 

faults (Fig. 17) in a foreland basin. The MDF is manifested 
on the surface by forming a zone comprising one or more 
secondary faults leading to the change of topographic relief. 
The MDF and other nearby basement structures (periph-
eral bulge) are the sources of localized seismic activity near 
Delhi area, including the recent earthquakes in 2017, which 
may be linked to the quasi-synchronous Himalayan seismic 
cycle.

Conclusions

Based on GPR study, seismic analysis, fluvio-geomorphic 
characteristics, soil chrono-association, basement and ter-
rain morphology around the MDF, the following conclusions 
may be drawn:

1. Seismicity around the MDF is quasi-synchronous with 
the Himalayan seismic cycle. It is probably the fact that 
southward thrust migration causes strain release along 
the basement fault and flexure on the peripheral bulge.

2. Tectonic geomorphological characteristics, GPR and the 
previously studied earthquake focal mechanism solu-
tions suggest normal and oblique-slip motion along the 
MDF.

3. Associated channel morphology, soil chrono-associa-
tion, and OSL chronology of the paleochannels across 
the MDF suggests that the fault is active since the Holo-
cene.

Fig. 16  a Earthquake epicenters along the MDF and MCT. b Time vs magnitude plot of earthquakes along the MDF and MCT
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