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Abstract

Understanding the exhumation of middle to lower crustal rocks is of utmost importance to unravel intracrustal mass trans-
fer processes during orogenic build-up. The Figueira de Castelo Rodrigo—-Lumbrales Anatectic Complex (FCR-LAC) is
located within the autochthonous terrane of the Variscan Central Iberian Zone and is an example of the association between
S-type granites and migmatites. The anatectic complex contacts to the north and south with low-grade metamorphic units
through the Huebra and Juzbado—Penalva do Castelo shear zones, respectively. Integration of new U-Pb zircon and apatite
age data allowed us to obtain Variscan crystallization ages, inherited zircon ages and unprecedented cooling rates for differ-
ent facies of the FCR-LAC granites. The zircon crystallization ages mostly cluster around 313-317 Ma for the syn-tectonic
granites, whereas the dated late-tectonic granite provided an age of 300 Ma. The cooling rates range from 13 to 35 °C Ma™!,
which implies fast exhumation (0.3-0.84 mm a~!) and shallow emplacement (ca. 8 km deep), compatible with exhumation
facilitated by large crustal-scale shear zones. Inherited zircon in the granites reveals melting of Cadomian metasediments
(650-550 Ma), Upper Cambrian—-Lower Ordovician (495-470 Ma) metaigneous rocks (Ollo de Sapo formation) and of minor
older components, suggesting protolith affinity with the Northern Domain of the Central Iberian Zone.

Keywords Iberian Variscan Orogeny - Syn-tectonic granites - U-Pb geochronology - Cooling rates - Exhumation rates

Introduction

Development of collisional orogens implies low-pres-
sure—high-temperature (LP-HT) metamorphism, crustal
anatexis and generation of crustal-derived granitic magmas
as late-stage features (e.g. Zak et al. 2011). The study of
granitic magmatism is, of great importance to understand the
evolution of orogenic belts, providing information regarding
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the interactions between magmatism and tectonics, as well
as intracrustal heat and mass transfer processes.

The Variscan orogenic belt in Europe is a collisional oro-
gen that developed during the complex collision of the Lau-
russia and Gondwana continents during the Devonian and
Carboniferous periods (e.g. Nance et al. 2010; Kroner and
Romer 2013). Along the European Variscan Belt, the initial
continental collision and related crustal thickening precede
the formation of metamorphic core complexes characterized
by exhumed mid-crustal migmatites, LP-HT metamorphism
and large volumes of granitic magmas (Schulmann et al.
2002, 2008; 74k et al. 201 1; Villaros et al. 2018).

Large volumes of granites can also be found in the Ibe-
rian Variscan Belt, particularly in the Central Iberian Zone
(CIZ), (Ferreira et al. 1987; Dias et al. 1998; Villaseca et al.
1998; Azevedo and Valle Aguado 2013; Valle Aguado et al.
2017; Dias da Silva et al. 2018), a zone which has been
interpreted as a section of the Gondwana margin partially
underlying a set of allochthonous tectonic slices of continen-
tal and oceanic affinities (e.g., Ribeiro et al. 2007; Arenas
et al. 2016; Mateus et al. 2016). In the CIZ, granitic plutons

@ Springer


http://orcid.org/0000-0002-6076-1149
http://orcid.org/0000-0003-4589-0222
http://orcid.org/0000-0001-9028-2483
http://orcid.org/0000-0001-5769-7708
http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-019-01755-1&domain=pdf
https://doi.org/10.1007/s00531-019-01755-1

2154

International Journal of Earth Sciences (2019) 108:2153-2175

were emplaced after the first Variscan compressive event and
Barrovian metamorphism, being usually interpreted as the
result of syn-orogenic collapse (Escuder-Viruete et al. 1994;
Valle Aguado et al. 2005; Dias da Silva et al. 2017). How-
ever, some of these complexes are associated with strike-
slip shear zones (e.g., Costa et al. 2014; Pereira et al. 2017)
raising an interesting and unsolved question concerning the
role of the shear movements in the exhumation of anatectic
complexes and, consequently, in the timing of the generation
and emplacement of the associated Variscan granites during
the intracontinental collision stages.

This study focuses on the granites within the Figue-
ira de Castelo Rodrigo—Lumbrales Anatectic Complex
(FCR-LAC), constrained by a major strike-slip shear zone:
the Juzbado—Penalva do Castelo Shear Zone (JPCSZ; Igle-
sias and Ribeiro 1981). The FCR-LAC has been the target
of recent studies that partially constrained its evolution (Diez
Fernandez and Pereira 2016, 2017; Pereira et al. 2017; Alves
Ribeiro et al. 2017). However, for the complete understand-
ing of this complex, it is still necessary to characterize/quan-
tify the emplacement conditions of these anatectic granitic
bodies, namely through the determination of crystallization
ages and exhumation rates. Indeed, to date, and besides
some past geochronological studies using K—Ar and Rb—Sr
methods (Macedo 1988; Ribeiro 2001), only two studies
presented U-Pb ages for granites of this complex (Diez
Fernandez and Pereira 2017; Pereira et al. 2018) although 10
distinct intrusive facies have been described (Ribeiro 2001).

The main objective of this work is to present new U-Pb
zircon and apatite ages for distinct FCR-LAC granite facies
with the purpose of, for the first time, constrain their crys-
tallization ages and cooling rates, and, therefore, their
emplacement conditions within the framework of the Vari-
scan Orogeny. This innovative study aims to bring a better
understanding for the tectono-metamorphic evolution of the
internal zone of the Iberian Variscides, as well as for the role
of intracontinental first-order shear zones in the exhumation
of deep settled rocks in collisional orogens worldwide.

Geological setting

The Figueira de Castelo Rodrigo-Lumbrales
Anatectic Complex

The Gondwana-Laurussia continental collision sets the
beginning of the Variscan orogeny, being responsible for
the tectonometamorphic evolution of the Iberian Massif
from the Upper Devonian to the late Carboniferous (e.g.
Matte 1991; Ribeiro et al. 2007). The effects of continental
collision in the Central Iberian Zone (CIZ), started at ca.
370-360 Ma and led to multistage deformation and meta-
morphic events (Dallmeyer et al. 1997; Martinez Catalin
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et al. 2014; Dias da Silva et al. 2017; Diez Fernandez and
Pereira 2017; Pastor-Galan et al. 2019). Three regional tec-
tono-metamorphic events have been identified in the CIZ
(e.g., Valle Aguado et al. 2017, and references within):
(1) The D, deformation phase, caused crustal thickening/
shortening and Barrovian metamorphism between 365
and 340 Ma (Dallmeyer et al. 1997); (2) The local D,
extensional phase (340-320 Ma; e.g., Martinez Catalan
et al. 2014; Gutiérrez-Alonso et al. 2018, and references
within) produced flat-lying extensional detachments and
related low-dipping foliation preserved in low- to high-
temperature/low-pressure metamorphic rocks, including
migmatites (see Rodrigues et al. 2013; Dias et al. 2016
and Pereira et al. 2017 for alternative interpretations); (3)
the D5 phase favoured the reactivation of several first-order
transcurrent shear zones, the emplacement of crustal-
derived melts (320-295 Ma; Valle Aguado et al. 2017)
and regional retrograde metamorphism, synchronous with
regional uplift (e.g., Martinez Catalan et al. 2014).

The FCR-LAC, located in the Iberian Variscan Belt
within the autochthonous terrains of the CIZ (Fig. 1), is an
anatectic complex composed of migmatites (metatexites
and diatexites) that are gradually transforming into S-type,
two-mica granites with several distinct facies, that can be
differentiated by grain size and by the relative abundance
of micas (muscovite and biotite) (Fig. 2a, b). The different
facies were named Iy to Xy, from oldest to youngest, and
their distinction was based on deformation and field rela-
tionships (Ribeiro 2001). Some granitic plutons (e.g., Ily)
reveal deformation structures concordant with the direction
of the Juzbado—Penalva do Castelo shear zone supporting its
syn-kinematic nature.

Granitic plutons outcropping in the FCR-LAC have
been previously dated yielding a K—Ar age of 319 +6 Ma
(Macedo 1988) and an U-Pb age of 307.8+3.1 Ma for
the Sdo Pedro-Vieiro granite (Diez Fernandez and Pereira
2017), as well as an U-Pb age of 318.7+4.8 Ma for the
Méda-Escalhdo-Penedono granite (Pereira et al. 2018). The
FCR-LAC extends to Spain where the Lumbrales granite,
yielded a Rb—Sr whole-rock age of 300+ 8 Ma (Garcia
Garzon and Locutura 1981) re-estimated in 311.2+3.7 Ma
using “°Ar/*Ar step-heating micas (Roda-Robles et al. 2009,
2018; Vieira 2010).

Associated with the S-type, two-mica granites occur
metatexites and diatexites forming together an anatectic
complex. The metatexites exhibit stromatic textures, and
occasionally it is noticeable centimetric to millimetric layers
of peritectic sillimanite associated with muscovite (Fig. 2¢).
At times, the metatexites are intersected by leucosomatic
veins or pockets of granitic, pegmatitic or diatexitic mate-
rial. Diatexites show restitic nodules (Fig. 2d), schlieren
structures, and, occasionally, ptygmatic folding. When near
local shear zones, the diatexites reveal a steep foliation
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Fig. 1 a Location of the studied area in the Iberian Massif context (modified from Dias et al. 2016); b geological map of the Figueira de Castelo
Rodrigo-Lumbrales Anatectic Complex (modified from Silva and Ribeiro 2000)

parallel to the shear direction (E-W). Nebulitic textures in
diatexites are also occasionally present.

The anatectic complex is 5—15-km wide, delimited by
two sinistral, east—west to ENE-WSW trend, first-order
shear zones (Fig. 1) that juxtapose the complex onto the
low-grade metamorphic units of the Ediacaran—Cambrian
Douro-Beiras Supergroup (Sousa and Sequeira 1993) and
the Ordovician Armorican Quartzites (Sa et al. 2005;
Gutiérrez-Alonso et al. 2007). These two sinistral shear
zones that limit the FCR-LAC are the Huebra Shear Zone
at the North, and the Juzbado—Penalva do Castelo Shear
Zone to the South (Iglesias and Ribeiro 1981; Pereira et al.
2017). The JPCSZ extends for 200 km and its sinistral
displacement took place at least during the D5 intracon-
tinental collision stage (Iglesias and Ribeiro 1981; Villar
Alonso et al. 2000; Pereira et al. 2017). The last activity

of this strike-slip shear zone was dated at 309 +2.5 Ma
(4°Ar/39Ar on synkinematic white micas), in the eastern
part of it (in Juzbado; Gutiérrez-Alonso et al. 2015).
Recently, Valle Aguado et al. (2017) suggested that the
JPCSZ movement in the western termination ceased dur-
ing the emplacement of the late-tectonic Viseu batholith
at ca. 299 Ma (U-Pb zircon ages), indicating diachronism
in the shearing propagation.

The JPCSZ has been suggested to have played an impor-
tant role for the exhumation of the FCR-LAC with an esti-
mated minimum vertical displacement of 7-13 km and a
horizontal displacement of 65-100 km by simple shear-dom-
inated transpression during the Variscan D5 orogenic events
(Pereira et al. 2017). Yet, it is still not clear when anatexis
took place and what mechanisms controlled the genesis and
final emplacement of the anatectic complex.

@ Springer
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Fig.2 a Medium-grained, two-
mica granite (IXy) intruded by a
pegmatitic vein; b fine-grained,
porphyritic granite (Xy); ¢
metatexite exhibiting stromatic
texture; d diatexite including a
restitic nodule

Sample description and analytical
techniques

Sample description

Granite samples were collected within the FRC-LAC at
the localities indicated in Fig. 1. The Iy granite crops out
between the migmatite belt and the JPCSZ, elongated accord-
ingly with the shear-zone direction (WSW-ENE). This mus-
covite > biotite granite is fine-grained and reveals meso- and
microscopic deformation. The mineral assemblage is defined
by quartz + plagioclase + muscovite + biotite + ortho-
clase = chlorite + zircon + apatite + opaque minerals. The IIIy

@ Springer

granite has a porphyroid texture (feldspar megacrysts) within
a medium grain-size matrix. It is composed by quartz + pla-
gioclase + microcline + biotite + muscovite + ortho-
clase = fibrolitic sillimanite + zircon + apatite &+ opaque
minerals. The Vy granite is a biotite > muscovite facies and
it has a coarse-grained texture. The mineral assemblage of
this granite consists in quartz + plagioclase + potassic feld-
spar + biotite + muscovite + chlorite + fibrolitic silliman-
ite + zircon + apatite + opaque minerals. The IXy granite is
the most representative facies in the study area. Its grain
size ranges between fine- and coarse-grained. The mineral
assemblage is represented by quartz + plagioclase + potas-
sic feldspar + biotite + muscovite + chlorite + fibrolitic
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sillimanite + zircon + apatite + rutile + opaque minerals.
The Xy granite is a muscovite > biotite granite, essen-
tially coarse-grained, at times exhibiting a porphyroid
fine-grained texture. Its mineral assemblage is composed
of quartz + plagioclase + microcline + muscovite + bio-
tite & orthoclase =+ chlorite + fibrolitic sillimanite + zir-
con =+ apatite + rutile + opaque minerals.

Analytical techniques

All samples were prepared for the different types of ana-
lytical procedures at the Mineral Separation Lab of GeoF-
CUL—Department of Geology of the University of Lisbon.
Zircon and apatite crystals were picked from a 63- to 250-um
fraction, after heavy liquid and electromagnetic separation.

Grains, mounted in epoxy resin mounts, were attached
to metallic stubs with thin copper strips, and coated with a
1-nm pulverized gold film. Zircon and apatite grains were
observed using a ZEISS EVO10MA scanning electron
microscope (SEM) at the University of Portsmouth (UoP).
For backscatter electron (BSE) imaging, an accelerating
voltage of 20 kV and 700 pA beam current was applied to
reveal internal structures in the analyzed grains.

U-Pb isotopic analyses were performed using an ASI
RESOIlution 193 nm ArF excimer laser coupled to the ANA-
LYTIK JENA Plasma Quant Elite quadrupole ICP-MS at
UoP. The detailed instrumental setup and ablation conditions
can be found in Supplementary Material. For zircon U-Pb
dating, a beam spot size of 20 pm (cores) and 11 pm (smaller
grains and rims) was preferred. Beam energy densities used
ranged from 2.1 to 2.5 J cm ™2, with a 2-Hz repetition rate. As
for apatite, a beam spot size between 50 and 20 um was used,
with beam energy densities ranging from 2.8 to 3 J cm™2,
and a 3-Hz repetition rate. For additional information on the
analytical conditions used for the LA-ICP-MS analyses, see
Supplementary Material 1.

PleSovice was used as a primary standard for zircon
(337.13+0.13 Ma; Slama et al. 2007) whereas the Mada-
gascar standard was used for apatite (473.5+0.7 Ma; Thom-
son et al. 2012). 91500 (1062.4 +0.4 Ma; Wiedenbeck et al.
1995), and GJ1 (608.5 +0.4 Ma; Jackson et al. 2004) were
used as zircon secondary standards, whereas for apatite
were used McClure (523.51 +2.09 Ma; Schoene and Bow-
ring 2006) and Xuxa (unpublished, ca. 572 Ma, provided by
courtesy of C. Lana, Federal University of Ouro Preto) (see
Supplementary Material 2). For all the above, reproducibil-
ity of the secondary standards was within 2%.

IOLITE 3.31 software package was used for data reduc-
tion. A sample-standard bracketing method was used to
correct for both instrumental drift and elemental mass
fractionation.

For zircon, Wetherill concordia and weighted mean
233U/2%Pb ages were calculated using ISOPLOT/EX 4.1

(Ludwig 2003). From the youngest zircon population data,
only grains that were 95-105% concordant were used to
determine crystallization ages.

For apatite, the isotopic data was processed using Vizual-
Age_UcomPbine DRS and measured 207py (Chew et al.
2014). This data reduction scheme allows for common-Pb
(Pb,,,) correction of the primary standard based on their
known radiogenic and variable Pb,, compositions. This cor-
rection is then applied to the unknowns.

Apatite Tera—Wasserburg concordia ages were deter-
mined using ISOPLOT/EX 4.1 (Ludwig 2003).

Trace element analyses in zircon were performed using
the same instrument setup as for U-Pb, and a standard-sam-
ple bracketing method to correct for instrumental drift. The
following isotopes were analyzed: 2°Si, 3'P, ¥K, *°Ca, ¥*Sc,
4975 51y 52Cr, 55Mn, $Rb, ¥7Sr, 7Y, %Zr, Nb, “Mo, 18Sn,
121G, 133, 137Ba, 1394, 149Ce, 1Py, 46Nd, 47Sm, S3Eu,
157G, 159Tb, 163Dy, 165Ho, 16Er, 19Tm, 172Yb, 5Ly, 77H,
181, 182y 208pp, 20985 232Th ang 238,

A laser beam diameter of 40 um for NIST612, 35 um for
secondary standards and 35-25 pm for unknowns was used,
with beam energy densities ranging from 3.8 to 4.1 J cm™2,
with a 4-Hz repetition rate (Supplementary Material 1).
NIST612 was used as primary standard using concentrations
by Jochum et al. (2011), whereas 91500 (Wiedenbeck et al.
1995) and GJ1 (Jackson et al. 2004) were used as second-
ary standards, as they are relatively homogenous in terms
of trace element concentrations. Zr was used as an inter-
nal calibration standard, considering zircon stoichiometry
(Zr=43.1 wt%). Most analyzed elements are within 10%
and 5% accuracy relative to secondary standards published
values, and *’Ti is within 10% uncertainty of reported val-
ues (see Supplementary Material 2), excluding uncertainties,
with a detection limit of 3 ppm.

Results
Zircon U-Pb ages

U-Pb zircon ages were obtained for five of the granite facies
from the FCR-LAC defined by Ribeiro (2001) (Fig. 1;
Table 1): Sao Pedro-Vieiro (IIy), Ribeira de Massueime-
Galegos (IIIy), Chas-Amargo (Vy), Méda-Escalhdo (IXy)
and Sta. Comba-Algodres granite (Xy).

Zircon external morphology has been widely used in
petrogenetic studies, particularly those targeting granitoids
(e.g., Pupin 1980; Barbarin 1988; Belousova et al. 2006;
Koksal et al. 2008). Zircon morphology depends on the
crystallization rate, fluid composition and on the tempera-
ture of the crystallization medium (Corfu et al. 2003). Pupin
(1980) established a systematics for zircon using the relative
development of the prismatic and pyramidal crystal forms,

@ Springer
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Table 1 (continued)

Final ages (Ma)

Common-lead uncorrected

Th/U

Th (ppm)

U (ppm)

Id

+ 206  Concord-

207Pb /206Pb

+ 20

207Pb/235U + 20 206Pb/238U

Rho?

+ 20

+20  Pp/MU

207Pb/235U

ance (%)°

99
100

68

299
295

314
315
315
315

318
315
313
321
318
323

0.15

0.0006
0.001

0.0498
0.

0.012

0.37

0.20
0.08
0.01

1635 335

1195
2004

M6_34_14e

M6_34_1l4c

98

12
21

0.001
0.31

05
05
05

0.016

0.364
0.363
0.373

90
17
3950
225
2210

M6_34_24e

100

170

288
348

0.0012
0.001

0.

0.029

M6_34_27c

98

99
66

12

0.001
0.28

0.

0.016

3.66
0.14
1.76
0.16
0.18
0.13

1080
1623
1254
1508
908

M6_34_5e

100

274
344
272
357
320

317
318
318
318
320

0.00068
0.001

0.05038
0.

0.012

0.370
0.375

M6_34_25c¢

98
101

100

12
11

0.001

05

0.016

M6_34_13c

98

316
325

0.016 0.051 0.001 0.001

0.364
0.379

249

M6_34_33c

98

100

13
12

0.001 0.001

0.051

0.017

165
173

M6_34_22c

99

100

322

0.001 0.001

0.051

0.016

0.374

1308

aRho is calculated by Iolite package software and it corresponds to the correlation between the given errors of the 2’Pb/**3U and 2°°Pb/?*8U ratios

(%Pb/?8U age)/(*""Pb/?35U age) x 100

®Concordance

considering the development of prismatic faces mainly
related with the temperature of crystallization and the
pyramidal faces with chemical factors. These parameters
inferred from a zircon population can be helpful to charac-
terize the evolution of a magma system (Corfu et al. 2003).
However, the morphology systematics proposed by Pupin
(1980) has been questioned by several authors (e.g., Vavra
1990, 1993; Benisek and Finger 1993) which advocate that
the zircon morphologies can only reflect the latest stages of
growth. Sometimes, it is possible to distinguish igneous and
metamorphic zircon from its morphology. In general, euhe-
dral, concentric oscillatory zoning and euhedral, prismatic
external morphology are evidences for igneous zircons. Zir-
con from a high-grade metamorphic environment can exhibit
patchwork zoning and multifaceted, equant, tabular external
morphology (e.g., Aleinikoff et al. 2006). However, at very
high metamorphic grade, these morphological distinctions
related with the origin (igneous vs. metamorphic) are not so
clear, especially under anatectic conditions (Aleinikoff et al.
2006). Th/U ratios has also been used to distinguish meta-
morphic (< 0.1) and magmatic (> 0.1) zircons (e.g., Wil-
liams et al. 1996; Rubattto and Gebauer 2000), yet its use
for such purpose is debatable (see Discussion).

Considering all these mentioned features, the selection
of zircon grains for dating was made taking into account
the maximum number of characteristics that was possible
to determine/observe.

Sao Pedro-Vieiro granite (lly)

Zircon morphology of the Sdo Pedro-Vieiro granite varies
among elongated prismatic and oval shape (Fig. 3a). Occa-
sionally, zircon grains show the development of bipyramidal
terminations (most of them 211), whereas others have one
pyramid developed in one direction and the opposite edge
is rounded. About the zircon prisms, most of them are 100.
Regarding zircon internal morphology, oscillatory zoning
is rare. All zircon crystals have narrow rims (2—18 um), but
most of them depicting an unzoned core and intermediate
zones. At times, a few zircons appear fractured. The Th/U
ratio ranges from 0.07 to 0.54.

From this granite, we analyzed 22 zircon grains for U-Pb.
From 5 younger zircon cores (Table 1) yielding 300+2.2 Ma
(MSWD =1.4) (Fig. 4a), we determined the crystallization
age of the IIy granite, significantly younger than the K—Ar
crystallization age (319 +6 Ma) obtained by Macedo (1988).

Recently, Diez Fernandez and Pereira (2017) obtained a
SHRIMP U-Pb zircon age of 307.8+3.1 Ma (MSWD=1.8)
for the Sao Pedro-Vieiro granite, which is slightly older
than our estimate and outside analytical uncertainty of our
measurement.

Eleven zircon grains with concordant inherited cores
yield dates ranging from Lower Devonian (400 Ma) to

@ Springer
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Fig. 3 Back-scattered electron images of representative zircon grains
of the five studied granites: a Sdo Pedro-Vieiro granite (Ily); b
Ribeira de Massueime-Galegos granite (IIly); ¢ Chas-Amargo granite
(Vy). d Méda-Escalhdo granite (IXy); e Sta. Comba-Algodres granite
X7
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Paleoproterozoic (2000 Ma) (Table 2). From the inherited
zircon cores, it was observed 4 younger overgrowths with
Variscan age.

Ribeira de Massueime-Galegos granite (llly)

In general, the Ribeira de Massueime-Galegos granite con-
tains prismatic zircon, although a few crystals have acicular
shape with oscillatory zoning and others have oval shapes
with rounded terminations. When the oscillatory zoning is
present, it is more visible in the thin zircon rims (5—18 um)
surrounding the unzoned cores and, quite rarely, the cores
appear with convoluted zoning (Fig. 3b). This feature is
typical of zircon growing during high-temperature meta-
morphism (Corfu et al. 2003). The majority of the zircon
grains have 211 pyramids and 100 prisms, and sometimes
they appear fractured. The Th/U ratios are low, ranging from
0.01 to 0.06.

The ablation was done in 22 grains of the IIIy granite. The
young concordant dates (Table 1) (1 core and three rims)
allowed to estimate the 314.1 £2.6 Ma MSWD =0.12) crys-
tallization age for this granite (Fig. 4b). Five old zircons
provided Cambrian and Ediacaran ages around 485-600 Ma
(Table 2).

Chas-Amargo granite (Vy)

Zircon grains from the Chas-Amargo granite have prismatic
and oval morphology, sometimes with rounded terminations
and narrow rims (4—18 pum) (Fig. 3c). The zircon typology
is heterogeneous, since the pyramids range between 211 and
101, and prisms between 110 and 100. The Th/U ratio varies
between 0.005 and 0.24.

Thirty zircon grains were analyzed and it was determined
adate of 316.2+3.9 Ma MSWD =1.10) for the Vy granite,
using 5 younger zircons (Table 1) (4 cores and 1 rim), which
is ascribed as its crystallization age (Fig. 4c). From the 30
grains, 16 of them correspond to older concordant dates with
ages from Lower Devonian (400 Ma) to Paleoproterozoic
(2500 Ma) (Table 2).

Méda-Escalhao granite (IXy)

The Méda-Escalhido granite carries prismatic zircon grains,
at times with planar or oval shape. Many crystals have the
pyramids developed in one direction and occasionally, they
appear fractured. In addition, they have thin rims and faint
zoning in both cores and rims (3-26 pum) (Fig. 3d). Most
of the zircon grains exhibit 211 pyramids and 100 prisms.
The Th/U ratio fluctuates between very low values of 0.004
and 0.13.

The U-Pb dating was carried out on 23 grains. From 4
younger zircon grains (Table 1) (3 cores and 1 rim) was
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determined a date of 317.4+2.1 Ma (MSWD =0.097) that
corresponds to the crystallization age of the IXy granite
(Fig. 4d).

Pereira et al. (2018) dated this granite facies (Mé&da-
Escalhdo-Penedono massif) to the west of the FCR-LAC,
estimating a LA-ICP-MS U-Pb zircon age of 318.7 +4.8 Ma
(MSWD =0.22) which is in agreement with the age obtained
in this study, within error.

Five concordant old cores stand out, from the group of 23
grains, showing Cambrian and Cryogenian ages from 500
to 750 Ma (Table 2).

Sta. Comba-Algodres granite (Xy)

Most of the zircon that compose the Sta. Comba-Algodres
granite are prismatic and elongated, and a minority have
acicular shape. The zircon rims (6—-20 pm) are narrow and
some of them have an incipient oscillatory zoning in the core
(Fig. 3e). A large proportion of the zircon have 101 pyramids
and 100 prisms. The Th/U ratio exhibits a large range of
values, from 0.02 to 7.1.

Thirty-three zircons were analyzed, resulting in 26
grains with younger dates. From the 26 younger dates, 20
of them defines a cluster of absolute dates between 307 and
320 Ma (Table 1), similar within error between them, whose
weighted mean average date is 312.9+ 1.6 (MSWD=1.6)
(Fig. 4e) which is considered the crystallization age of the
Xy granite. Three concordant older zircon grains provide
Neoproterozoic dates from 600 to 750 Ma (Table 2).

Inherited zircon

A general overview of the inherited zircon grains found in
the granites (total of 40 concordant ages) allowed to ascribe
them to different age groups: 400-500 Ma, 500-650 Ma,
650-850 Ma and 2000-2500 Ma (Table 2). These age distri-
butions help us constraining possible protoliths as the source
of the FCR-LAC granites.

Apatite U-Pb ages

In general, the apatite grains appear as elongated prisms, but
occasionally show anhedral rounded shapes. Regarding the
texture, the apatite grains do not show oscillatory zoning at
backscattered electron imaging. However, the BSE imag-
ing revealed several very small zircon inclusions (Fig. 5).
Apatite ages analyses (Table 3) are plotted in the Tera—Was-
serburg (TW) diagrams due to their high and variable com-
mon Pb (Pb_, )/radiogenic Pb ratios, precluding further Pb_
corrections. The TW regression results in the determination
of the initial Pb, composition and cooling age.

Regarding the number of analyzed grains, around 25 apa-
tite grains per granite were targeted, and apatite ages were

estimated from ca. 22 grains. All these grains fall on an
isochron in the TW diagram supporting the idea that they
are cogenetic despite their rounded morphologies.

For the five granitic facies mentioned above, the following
TW Concordia lower-intercept apatite ages were obtained:
IIy (301.4 +2.6 Ma; MSWD =0.8), IIIy (288.0+ 14.0 Ma;
MSWD =3.3), Vy (306.6 +8.5 Ma; MSWD =3.9), IXy
(307.0+10.0 Ma; MSWD =3.6), and Xy (302.6+5.6 Ma;
MSWD=1.9) (Fig. 6). The apatite ages reflect the timing at
which the apatite closure temperature (450-550 °C; Schoene
and Bowring 2007) was reached after their crystallization
and are, therefore, younger than the equivalent magmatic
zircon ages.

Discussion
Th/U zircon ratios in S-type granites

Th/U ratios have long been considered as an effective dis-
criminator between metamorphic and magmatic zircon, with
the value of 0.1 being a threshold below and above which,
respectively, are placed those two types of zircons (e.g., Wil-
liams et al. 1996; Rubatto and Gebauer 2000). However, it
has been demonstrated that Th/U ratios can not be used as
a rule of thumb given that the Th/U ratio of zircon largely
depends on the coexistence with Th-rich minerals such as
monazite and allanite (Moller et al. 2003; Schaltegger and
Davies 2017). For example, Rubatto (2017) showed that the
occurrence of high-grade metamorphic rocks with zircons
depicting Th/U > 0.1 is not rare, while Yakymchuk et al.
(2018) referred a population of metamorphic zircons from
Western Australia having a mean Th/U ratio of 0.4. On the
other hand, Lopez-Sanchez et al. (2016) reported Th/U <0.1
for zircon overgrowths of magmatic origin.

Considering all these facts, the reported Th/U ratios
(Table 1) might be considered with caution. Indeed, due to
the petrogenetic nature of these granites, with the melt being
segregated from a HT metamorphic rock, it is expectable
that magmatic zircon shows variable Th/U ratios. Under
these circumstances, the determined zircon Th/U ratios can
not be used as an independent discriminant factor for mag-
matic vs. metamorphic origin.

The timing of granites emplacement

The FCR-LAC granites have different facies allowing their
subdivision in 10 distinct granitic bodies, referred as Iy to
Xy, from oldest to young, based on the geometries of their
contacts (Ribeiro 2001).

In this study, we obtained U-Pb zircon ages for the five
most representative granite facies, (Ily, Iy, Vy, IXy and
Xy). Many of our ages are identical within error, despite
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«Fig.4 Wetherill concordia diagrams showing the U-Pb crystal-
lization ages for: a Sdo Pedro-Vieiro granite (IIy); b Ribeira de
Massueime-Galegos granite (IIly); ¢ Chas-Amargo granite (Vy);
d Méda-Escalhdo granite (IXy). e U-Pb crystallization ages of Sta.
Comba-Algodres granite (Xy) are represented by a weighted mean
average diagram

ages spanning from 300.0 +2.2 Ma (IIy) to 317 +2.1 Ma
(IXy). In the light of these new results, our data indicate
that the FCR-LAC granite suite crystallized between 317
and 313 Ma with the final emplacement of Ily at ca. 300 Ma,
supported by its intrusive field relationships with respect to
the anatectic complex (Fig. 4).

It must be emphasized that the complexity of this gra-
nitic region can be higher than it can be inferred from the
10 mapped facies. Indeed, for the IIy granite, besides the
age here presented (300.0+2.2 Ma), another age has been
obtained, with similar number of zircons used to infer a
concordia age, yielding 307.8 +3.1 Ma (Diez Fernandez
and Pereira 2017). This suggests that the IIy granite can
comprise more than one late intrusive body, but reinforces
it being a late magmatic episode affecting this region. The
crystallization age of the Ily granite is substantially younger
than the age obtained by Macedo (1988) of 319+ 6 Ma using
the K—Ar dating method. However, K—Ar ages are known
to be prone to the effects of post-magmatic alteration pro-
cesses leading commonly to younger ages by Ar loss (e.g.
Baksi 1994), but also to older ages as a consequence of
preferential K mobility (e.g., Cerling et al. 1985). Indeed,
these authors demonstrated that low-temperature alteration
involving meteoric water can result in hydrogen exchange
by K* and Na™ without significant alteration of other ele-
ments, conditions under which Ar also appears to be less
mobile than alkali ions. Also, Mata et al. (2015) noticed
that dates determined by the K—Ar method elsewhere for
doleritic rocks portraying evidences for alteration, resulted
in older dates than those obtained by more robust methods.

The obtained age for Iy granite confirms the diachro-
nous deformation along this shear zone, progressing from
east (Juzbado) to west (Penalva do Castelo), as previously
suggested by Pereira et al. (2017). Indeed, in Juzbado, the
eastern sector of the JPCSZ, the last shear event has been
dated at 309 +2.5 Ma (**Ar—°Ar in white micas; Gutiér-
rez-Alonso et al. 2015). Later, Valle Aguado et al. (2017)
showed that in the western sector deformation continued
until ca. 299 Ma, which is within error of the date, we
obtained for the D;-affected Ily granite (300.0 +2.2 Ma).

In the CIZ, significant granitic plutonism has been con-
sidered to occur during syn-, late- and post-Dj stage (e.g.,
Ferreira et al. 1987; Azevedo and Valle Aguado 2013). Par-
ticularly, granites from this studied region have been clas-
sified as syn-D; which has been mainly developed between
310 and 320 Ma (e.g. Ribeiro 2001; Azevedo and Valle

Aguado 2013). However, as mentioned before, IIy gran-
ite (300.0 +2.2 Ma) was clearly deformed by D; allowing
to consider it as late-D5, while the other dated facies are
syn-Ds.

Protoliths of the granites

The obtained data for inherited zircon data were compared
with published detrital zircon ages from distinct domains
of the Douro-Beiras Supergroup in the CIZ, namely the
metasediments from the Northern and Southern domains
(Orejana et al. 2015). Comparison with the kernel density
estimate (KDE) plots for these domains (Fig. 7) puts in evi-
dence the similarities between metasediments of the North-
ern domain with our data, namely the existence of a main
age group of the Lower Cambrian/Cryogenian, with minor
Tonian and Paleoproterozoic contributions, and the absence
of Mesoproterozoic ages.

Moreover, the second representative group of ages,
400-500 Ma (Upper Cambrian/Lower Devonian), seems
to be related with the Ollo de Sapo formation that was
emplaced in the Iberian Massif between 495 and 470 Ma
(Garcia-Arias et al. 2018). These ages suggest that the
Douro-Beiras Supergroup metasediments that melted to
form these granites also included Ollo de Sapo magmatic
rocks.

Cooling and exhumation rates

In this work, we determined U-Pb ages for zircon and apa-
tite occurring in the same rocks (see above), providing an
opportunity to assess the cooling history of the granitic rocks
where they crystallized. Indeed, closure temperatures (7,)
for the system U-Pb are usually considered to be in excess
of 900 °C for zircon (Cherniak and Watson 2000), while for
apatite 7, of 450-550 °C has been usually considered (Sch-
oene and Bowring 2007). However, there have been reported
apatite closure temperatures above 800 °C in doleritic rocks
from the Armorican Massif (Pochon et al. 2016).

The concept of closure temperature was proposed by
Dodson (1973) as referring to the temperature of a mineral
at the time of its apparent (“freezing”) age. It can be deter-
mined from:

E/RT, = In [-AD\RT?/{a*(dT /d1) E}],

where E is the activation energy for the diffusion process,
R is the ideal gas constant, T is the closure temperature,
A is a numerical constant depending on the geometry of
the grain (spherical or cylindrical), Dy, is the diffusion coef-
ficient at infinitely high temperature, d7/dt is the cooling
rate and a is an effective diffusion dimension (i.e., radius in
the case of a sphere). This approach has implicit the role of
the daughter element volume diffusion over time, which is
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5 function of temperature. Moreover, the T, is also depend-
S B% ent on the cooling rate. The 7, parameter appears on both
§ gl &sss= 88&¢€ sides of equation, so the equation is solved through several
iterations for a given value of cooling rate. This procedure
& = 223 2-. S w9 e allows to calculate a consistent set of closure temperatures
H - - - - and cooling rates from the ages of two mineral species. For
- these calculations, the zircon and apatite diffusion param-
§m eters compiled by Hodges et al. (2003) were used.
E =8 2R T 3« Ti-in-zircon and the zircon saturation (77;,.,) geother-
S S T nee mometers were determined in this study. The Ti-in-zircon
o geothermometer uses the Ti content in the zircon structure,
Y Q S ooy S which is dependent on temperature and independent of
pressure, to estimate the magma temperature at the time
& g of zircon crystallisation (Watson et al. 2006). The T, .
o o © ®w o o® S8 g g prec.ilcts. the temperature at which zircon crystallisation
g ] RERCERCEE R = begins in a cooling magma, and, on the other hand, the
OE % temperatures above which zircon dissolution should occur
& o o~ 0 o« - - s 8@ g (Watson and Harrison 1983).
§ " - oo T o IR - g In the case of zircon, we were faced with the prob-
\5 = p:’ n lem that the experimental closure temperature (> 900 °C;
g |8 s 8 Cherniak and Watson 2000) is clearly above of those
E § @ 5 E §l§ % % é % E g ; determined by Ti-in-zircon and T, geothermom-
= “ § go eters (Table 4), indicating that the studied zircon grains
= = o 9oy o o 2 grew below their closure temperatures and, consequently,
£ = 88s8s ER-R-1-F} that diffusion did i llizati
= S 3S 333 SS S| ES n processes di not occur after crysta 1zat1.0n.
5 & Recently, Siégel et al. (2018) have shown that T, ., is a
° § E 9 § § g S g § 5 X dynamic variable that changes during magma crystallisa-
N S S S 333 S S 3| o @ . . .
H 3 S 3333 SS S| 8 tion, and, thus, can not be used to constrain magmatic or
5 %D partial melting temperatures. Consequently, we used the
E,D - ° . o — ?, iE Ti-in-zircon geothermometer (Watson et al. 2006), which
E 2 eIz e S S gl T8 is considered as providing very reliable zircon crystalli-
T |8 S S 3323 g % n zation temperatures, and therefore used as zircon closure
g o o < < o o g ;Ej temperatures. For the granite facies Vy, IXy and Xy the
E i § ‘é § § § § § § § § = use of this thermometer led to the following crystallization
g = %’ temperatures: Vy=_825+22 °C, IXy=836+22 °C, and
i’ = 2 B Xy=783+31 °C (Table 4).
g |4 - 288z © 8 . §_ & The obtained temperatures are endorsed by data pub-
g § G 2SSz 22284 lished by Pereira et al. (2017) pointing to metamorphic tem-
o8 - § = peratures in excess of 800 °C at the onset of partial melting.
= o St o < wo é ,Zéo These results are also consistent with extensive literature
= S g9z 2333 N = on the melting of pelitic rocks to form anatectic granitoids
g a (e.g. Clemens 2003; Bento dos Santos et al. 2011; Clemens
g g .EE and Stevens 2016).
& « e % T The next step was to obtain the apatite closure tempera-
= = =rErtroE 35 ture for each granite facies through Dodson’s equation, using
N 5 é g 5 T,=446 °C as an initial experimental value, as proposed by
é " Y P % . j; % Cherniak et al. (1991). This provided T results between 483
2o § 00—~ a— g N £ and 465 °C (Table 5).
Ei e 5 AT Combining the zircon and apatite T, with their respec-
E 2 % 8 E - < 283 g tive ages, the cooling rates for the IIly, Vy, IXy and Xy
‘:’ g' 53’ Ql Ql Ql Ql Ql g §§I §§I Xl § E granite facies are of 13, 34, 35 and 28 °C Ma™!, respec-
< \Eol 5 §I %rl %rl %rl %rl (:i §I §I §| £ tively (Table 5). It was not pos51b1.e to infer the closure
ez = A e temperatures and respective cooling rates for the Ily
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Fig.5 Back-scattered electron images of representative apatite grains of four studied granites: a Sdo Pedro-Vieiro granite (IIy); b Ribeira de
Massueime-Galegos granite (IIly): ¢ Méda-Escalhdo granite (IXy); d Sta. Comba-Algodres granite (Xy)

granite, because the apatite ages are slightly older than
the zircon ages obtained for this sample, even considering
their errors.

Cooling rates of plutons are highly variable, with pub-
lished values differing by more than two orders of magnitude
(e.g. Chesley et al. 1993; Tsuchiya and Fujino 2000; Meert
et al. 2001; Miyazaki and Santosh 2005). It depends essen-
tially on the way heat is exchanged between the hot intrusive
body and their surroundings. The heat transfer may be done
by conduction or by fluid-assisted advection. Considering
that thermal diffusivity is strongly dependent on tempera-
ture, with which correlates negatively, and the role of the
latent heat of crystallization on lowering the cooling rate of
a crystallizing melt (Whittington et al. 2009; Nabelek et al.
2012), the rates of conductive cooling are very low when
compared with advective cooling.

Although it was not possible to infer the cooling rate for
the IIy granite, the closeness of the zircon and apatite crys-
tallization ages points to an abrupt cooling, at least until the
apatite 7. This suggests the localized intervention of sig-
nificant fluid circulation during cooling within the JPCSZ.
This hypothesis receives some support from the occurrence
of abundant tourmaline in the diatexites and significant iron

@ Springer

oxides enrichment in the metasedimentary rocks in contact
with this granite facies.

The estimated granite cooling rates are similar for Vy
and IXy, (34 +4.1 and 35 +3.1 °C Ma™") and lower for IITy
and Xy granite concerning their absolute value (13 +16.5
and 28 +39.5 °C Ma_l). Nonetheless, these cooling rates
are all identical within error. Comparing these cooling rates,
particularly the Vy and IXy granites yielding small uncer-
tainties, with high temperature metamorphic complexes
(Spear and Parrish 1996; Bento dos Santos et al. 2010,
2014), allows us to infer fast cooling conditions. In geody-
namic settings where granitoid cooling is mainly driven by
denudation, cooling rates are substantially lower, typically
spanning from 0.5 to 5 °C Ma™' (Ashwal et al. 1999; Munha
et al. 2005; Gallien et al. 2010; Bento dos Santos et al. 2010,
2014; Scibiorski et al. 2015). Cooling rates of the FCR-LAC
granites are, therefore, compatible with rapid exhumation
mechanisms and shallow crustal emplacement.

Gravity has been considered an important constrainer
during the late stages of the collisional orogens, when the
tectonic driving orogenic forces diminishes or ceases its
influence (Jadamec et al. 2007). This leads to lateral release
of potential gravitational energy characterizing the thickened
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Table 3 LA-ICP-MS U-Pb apatite data of the Figueira de Castelo Rodrigo-Lumbrales anatectic complex granites

Id U(ppm) Pb(ppm) 2%Pb., ZBU?Pb +26 2Pb/’®Pb +26  Rho®  Final ages (Ma)°

207Pb/235U + 26 206Pb/238U + 26

Sao Pedro-Vieiro granite (Ily)

M4_36_1 111 10 0.36 134 0.29 0.3393 0.0029 0.56 1523 17 464 10
M4_36_10 299 11 0.18 16.98 0.37  0.1991 0.0021 046 978 15 369 8
M4.36.2 99 10 0.38 13.22 0.30 0.3572 0.0048 0.32 1574 20 470 10
M4_36_3 246 10 0.19 16.96 0.37 0.2073 0.0018 0.31 1002 14 369 8
M4_36_4 79 12 0.50 11.13 0.26  0.4357 0.0052 0.54 1879 20 554 12
M4_36_5 51 9 0.54 10.18 023 0472 0.005 0.63 2029 20 604 13
M4_36_6 359 13 0.18 17.32 0.36  0.195 0.0012 040 951 13 362

M4_36_7 311 11 0.16 17.39 0.36 0.1892 0.0014 0.32 930 13 361

M4_36_8 262 13 0.23 16.19 0.34 0.2352 0.0016 043 1116 15 386

M4.36_9 65 9 0.48 11.15 025 0.4212 0.0045 0.37 1852 20 554 12
M4_36_11 116 11 0.25 15.45 0.24  0.2587 0.0024 0.38 1213 12 404 6
M4_36_12 181 10 0.22 16.36 0.25 0.2267 0.0021 0.32 1084 11 383 6
M4_36_13 88 9 0.51 9.94 0.16  0.4691 0.0056 0.51 2043 15 618 10
M4_36_14 225 12 0.64 791 0.13  0.5522 0.0072 0.53 2395 17 767 12
M4_36_16 293 13 0.19 17.14 026  0.1979 0.0016 032 967 10 366 5
M4_36_17 54 10 0.22 16.36 025 0.222 0.002 0.29 1068 11 382 6
M4_36_18 42 11 0.35 13.63 0.20 0.3369 0.0032 0.54 1505 13 456 7
M4_36_19 317 11 0.39 12.48 0.19 0.3743 0.0032 0.51 1660 13 497 7
M4_36_20 295 13 0.38 12.23 0.19 0.3763 0.0037 0.54 1680 14 507 8

Ribeira de Massueime-Galegos granite (IIIy)
M5_13_1 62 10 0.19 10.55 0.23  0.4309 0.0072 0.58 1919 19 584 12
M5_13.2 59 9 0.20 10.85 024 0431 0.009 0.60 1893 19 568 12
M5_13.3 61 12 0.22 9.05 0.20  0.4806 0.0094 0.21 2150 22 675 15
M5_13_4 36 12 0.25 7.09 0.16  0.5756 0.0102 0.56 2536 20 851 18
M5_13.5 70 9 0.17 11.49 0.25 0.4034 0.0066 040 1792 19 538 11
M5_13_6 48 12 0.23 8.48 0.19 0.52 0.01 0.53 2281 20 719 15
M5_13.8 61 9 0.18 10.64 0.27  0.4409 0.0152 0.53 1930 22 579 14
M5_13.9 89 11 0.17 11.64 0.26  0.3950 0.0062 049 1762 18 531 11
MS5_13_12 87 11 0.16 12.53 0.20 0.3827 0.0076 0.19 1674 15 495 8
MS5_13_13 78 10 0.14 14.03 022 0.326 0.007 0.42 1458 13 444 7
M5_13_14 67 10 0.26 8.01 0.15 0.558 0.0132 0.09 2393 20 759 13
M5_13_15 497 100 0.15 13.56 022 0.3492 0.0064 0.39 1536 13 459 7
MS5_13_16 75 11 0.16 13.72 023 0.3542 0.0098 0.39 1536 15 454 7
MS5_13_17 80 10 0.14 13.59 031 0.3518 0.0186 —0.60 1530 34 458 10
MS5_13.20 6l 9 0.20 10.46 0.18  0.4589 0.0116 0.61 1979 15 588 10
Chas-Amargo granite (Vy)

MI1_12.1 98 20 0.55 9.42 020 0.4846 0.0029 0.54 2121 19 650 13
M1_12_10 92 10 0.40 12.41 028 0.372 0.0037 —-0.06 1659 20 500 11
M1 _12.2 94 11 0.38 12.47 026 0.361 0.003 0.50 1630 18 497 10
M1_12.3 106 15 0.49 11.58 025 0.445 0.004 0.55 1869 19 534 12
Ml1_12.4 176 15 0.33 13.78 0.28 0.3137 0.0019 0.40 1442 17 452 9
M1_12.5 155 13 0.31 13.87 0.29 0.3076 0.0022 0.33 1421 17 449 9
M1_12.6 95 19 0.54 9.38 020 0.4878 0.0031 0.40 2132 19 653 13
M1_12.7 95 18 0.53 9.6 020 04811 0.0029 0.36 2097 19 639 13
Ml1_12.8 69 7 0.36 12.86 0.28 0.3544 0.0031 0.49 1592 18 483 10
M1_12.9 59 13 0.58 9.0 020 0.4985 0.0041 0.10 2188 21 679 14
M1_12_11 89 20 0.55 8.78 020 0.5123 0.0048 0.57 2233 21 695 15
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Table 3 (continued)

Id U(ppm) Pb(ppm) 2%Pb,, 2¥U7%Pb +26 2Pb/’Pb +26  Rho®  Final ages (Ma)

207Pb/235U + 26 206Pb/238U + 26

M1_12_12 &4 16 0.52 9.62 022 0.479% 0.0053 0.47 2095 21 639 15
M1_12_13 98 11 0.40 12.37 029 0.3652 0.0041 032 1647 20 501 11
Mi1_12_14 12 23 0.94 1.62 0.04 0.781 0.0082 021 4277 26 3104 61
MI1_12_15 85 15 0.51 9.94 023 0.4665 0.0047 0.50 2039 21 618 14
M1_12_16 80 12 0.50 10.5 024 0.4421 0.0043 0.53 1944 20 586 13
M1_12_17 90 12 0.45 11.16 025 0413 0.004 0.61 1834 20 553 12
M1_12_18 94 14 0.46 10.7 0.24 0.4301 0.0038 0.46 1906 20 576 13
MI1_12_19 130 18 0.45 10.94 029 0.401 0.005 -022 1824 26 564 14
M1_12.20 90 12 0.42 11.38 026 0.3918 0.0039 0.56 1773 20 543 12
M1_12.21 99 17 0.43 10.05 0.27 0.463 0.008 0.56 2018 24 611 16
M1_12.22 85 24 0.57 7.63 020 0.557 0.0082 0.55 2436 25 794 20
M1_12.23 97 15 0.42 10.42 0.28 0.4501 0.0075 031 1959 25 591 15
M1_12.24 83 15 0.47 9.71 0.27 0.485 0.008 0.58 2082 25 628 16
M1_12.25 84 15 0.64 9.98 029 04779 0.0092 0.57 2049 26 615 17
Meéda-Escalhdo granite (IXy)
M4_45_1 141 11 0.32 13.92 029 0.3122 0.0024 0.39 1429 17 447 9
M4_45_10 141 16 0.41 12.44 0.26 0.376 0.0022 0.40 1668 18 498 10
M4_45_2 114 15 0.41 11.75 0.25 04012 0.0027 0.54 1767 18 527 11
M4_45.3 139 12 0.34 13.54 029 0.325 0.0024 0.55 1481 17 459 10
M4_45_4 140 18 0.43 11.87 0.25 0.3946 0.0024 0.48 1746 18 522 11
M4_45.5 138 14 0.37 12.68 0.27 0.356 0.0024 0.43 1606 18 489 10
M4_45_6 138 18 0.42 11.72 0.25 0.3958 0.0022 0.58 1759 18 528 11
M4_45_7 115 15 0.42 11.75 025 0.3977 0.0027 0.55 1760 18 526 11
M4_45_8 146 15 0.36 12.79 0.28 0.3564 0.0027 0.41 1600 18 485 10
M4_45_9 136 14 0.39 12.88 0.28 0.356 0.0025 0.26 1594 18 482 10
M4_45_11 159 14 0.44 11.67 0.18 0.4123 0.0036 0.56 1796 13 530 8
M4_45_14 126 17 0.40 11.66 0.18 0.3791 0.0035 0.51 1725 14 530 8
M4_45_15 128 15 0.67 6.49 0.13  0.6188 0.0075 0.08 2684 21 924 17
M4_45_16 33 12 0.40 12.6 0.19  0.3699 0.0036 0.51 1641 13 492 7
M4_45_18 135 13 0.34 13.25 021 0.35 0.0036 0.51 1558 13 469 7
M4_45_19 282 18 0.25 15.08 023 0.2729 0.0023 0.51 1269 11 414 6
M4_45_20 130 14 0.41 12.58 0.19 0.374 0.0034 0.53 1653 13 493 7
M4.4521 153 15 0.39 13.07 034 0.3421 0.0054 0.57 1545 22 475 12
M4.4522 55 8 0.62 10.88 032 0431 0.011 045 1884 28 567 16
M4_45_23 123 19 0.49 10.17 028 0.4232 0.0067 0.46 1930 25 604 16
M4_45_24 149 15 0.40 12.7 034 0.3512 0.0052 0.49 1589 22 488 13
M4_4525 138 16 0.38 12.11 032 0.3784 0.0054 041 1690 23 511 13
Sta. Comba-Algodres granite (Xy)
M4 341 3824 8.359 0.57 9.08 020 0.5113 0.0057 0.57 2201 20 673 14
M4_34_10 44.61 8.646 0.53 9.62 021 0.4816 0.0047 0.51 2097 20 638 14
M4.34.2 3545 8.788 0.60 8.36 0.18  0.5302 0.0055 0.57 2308 20 728 15
M4_34.3  53.08 8.5 0.46 10.63 024 0.4365 0.0043 0.70 1924 19 580 12
M4_34 4 54.59 8.46 0.45 10.7 024 04217 0.0041 0.46 1890 19 576 12
M4.34.5 5754 8.24 0.48 11.24 024 0419 0.004 0.51 1839 19 549 11
M4.34 6 5441 9.529 0.49 10.19 022 0.4586 0.0037 0.43 2003 19 603 13
M4.34_7  43.07 8.873 0.55 9.35 0.20 0.4952 0.0047 0.66 2146 20 655 14
M4_34.8  54.15 8.225 0.49 10.89 024 0.4298 0.0043 0.50 1889 19 566 12
M4.34 9 4822 8.475 0.52 10.14 0.23  0.4604 0.0049 0.64 2010 19 606 13
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Table 3 (continued)

Id U(ppm) Pb(ppm) 2%Pb,, 2¥U7%Pb +26 2Pb/’Pb +26  Rho®  Final ages (Ma)

207Pb/235U + 26 206Pb/238U + 26
M4_34_12 55.07 8.82 0.68 6.86 0.11  0.595 0.006 0.54 2600 16 877 13
M4_34_13 52.78 8.571 0.74 5.63 0.09 0.6467 0.0063 0.59 2864 16 1053 16
M4_34_14 48.76 8.42 0.75 5.56 0.10 0.6421 0.0074 0.57 2869 16 1065 17
M4_34_15 52.77 8.349 0.72 6.62 0.11  0.6046 0.0063 0.55 2649 16 907 14
M4_34_16 45.28 8.54 0.35 13.41 022 0.3476 0.0039 0.10 1542 16 464 7
M4_34_17 38.68 9.23 0.26 15.75 025 0.259 0.0034 0.06 1202 14 397
M4_34_19 51.81 8.844 0.37 12.6 021  0.3749 0.0043 045 1653 14 492
M4_34_20 53.53 8.96 0.24 15.87 024  0.2465 0.0024 021 1160 12 394
M4_34_21 54.86 8.97 0.49 10.5 0.30 0.4455 0.0091 0.60 1940 25 586 16
M4_34_22 39.26 8.8 0.51 8.94 026 0.519 0.012 0.57 2214 28 683 19
M4_34_23  40.62 8.34 0.45 9.48 028 0.498 0.011 0.56 2127 28 647 19
M4_34_24 54.88 9.63 0.56 10.07 0.28 0.4551 0.0086 0.49 1998 26 610 17

Rho is calculated by Iolite package software and it corresponds to the correlation between the given errors of the 2*3U/?%Pb and 2°7Pb/?%Pb

ratios

®Pb,,, not corrected

crust, leading to orogenic collapse (Rey et al. 2001 and ref-
erences therein). The pressure release associated with such
collapse can be viewed as one of the triggering mechanisms
for crustal partial melting. Yet, mantle to crust heat transfer
and intra-crustal radioactive heating might also be consid-
ered as significant mechanisms behind crustal melting (Van-
derhaeghe 2009). Independent of the cause, partial melting
triggers a significant strength/viscosity and density decrease,
promoting the exhumation of migmatitic/granitic complexes,
which tend to form domes, emplaced at shallow crustal lev-
els (Vanderhaeghe 2009; Vanderhaeghe et al. 2018). This
must be the case of the Tormes dome in the CIZ (Escuder-
Viruete et al. 1994).

However, it is not yet clear how fast the exhumation caused
by orogenic collapse can be (Vanderhaeghe and Teyssier 2001;
Scibiorski et al. 2015). Moreover, the interpretation of the fast
cooling rates reported on this study can not be done without
taking into account that the anatectic complex is delimitated
by high-angle crustal-scale shear zones, which juxtapose
side-by-side rocks with clearly distinct metamorphic grades,
a structural architecture also evidenced by magnetotelluric
imaging (see Fig. 7 in Alves Ribeiro et al. 2017). Granites and
the associated high-grade metamorphic rocks preserve a low-
dipping non-horizontal transport lineation (6°-12°; Pereira
etal. 2017), clearly indicative of a significant net vertical mass
transfer when the 65-100 km lateral displacement is taken into
account. Indeed, the associated migmatites of the FCR-LAC
endured a significant tectonic exhumation, corresponding to
a combined vertical displacement of 5-8 km (Pereira et al.
2017), which suggest that the granitic rocks within the com-
plex must have endured the same tectonic uplift. Consider-
ing the upper Carboniferous geothermal gradient calculated

by Pereira et al. (2017) for the FCR-LAC (42 °C km™"), and
taking into account the estimated closure temperatures and
ages for zircon and apatite, the vertical exhumation of granitic
rocks would have been, indeed, of ~8 km, thus reinforcing the
idea of a common assisted tectonic exhumation for granites
and migmatites inside the JPCSZ. Considering these ~8 km
vertical exhumation required for the determined cooling rates,
exhumation rates of 0.3-0.8 mm a~' are obtained. Such exhu-
mation rates are clearly faster than those inferred for erosional
denudation of granitic plutons (0.16 mm a~'; Yuguchi et al.
2017), but similar to granite exhumation rates in strike-slip
shear zones (0.6—1 mm a~!: Steenken et al. 2002; Zhang et al.
2004; Annen et al. 2006).

In conclusion, our unprecedented results for cooling and
exhumation rates of the FCR-LAC granites clearly support the
role of first-order shear zones in assisting the exhumation of
mid-crustal rocks as has been described elsewhere (e.g., Steen-
ken et al. 2002; Corsini and Rolland 2009; Schulmann et al.
2008; Bento dos Santos et al. 2010, 2014; Fernandez et al.
2013; Diaz-Azpiroz et al. 2014; Pereira et al. 2017), emphasiz-
ing the role of the JPCSZ in the emplacement of some Iberian
collision-related Variscan granites. This mechanism should
also be considered of utmost importance in intracrustal heat
transfer, influencing the rheological behavior of the continental
crust during and after collisional orogenesis.

Conclusions
The Variscan orogeny dynamics was responsible for the

emplacement of several plutono-metamorphic complexes
in the Iberian Massif and other sectors of the European
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Fig.6 Tera—Wasserburg U-Pb lower-intercept apatite ages for the five studied granites: a Sao Pedro-Vieiro granite (Ily); b Ribeira de Massue-
ime-Galegos granite (IIly); ¢ Chas-Amargo granite (Vy); d Méda-Escalhdo granite (IXy); e Sta. Comba-Algodres granite (Xy)
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Table 4 Zircon

. Ti-in-zircon thermometer
geothermometers applied to the

Zircon saturation thermometer

Vy, IXy and Xy granites Id SiO, (wt%) Ti(ppm) Error T (°C)Zircon Error Zr(ppm) M Zr. satlev- Ty o (°C)
els (ppm)
Vy 71.39 24 1.8 825 22 116 1.11 819 779
IXy 73.6 26.8 1.9 836 22 84 1.12 82.6 751
Xy 7097 17.3 2.8 783 31 287 1.22 89.6 854

Variscan Belt. The Figueira de Castelo Rodrigo-Lum-
brales Anatectic Complex (FCR-LAC) is an example of
a plutono-metamorphic complex where the granite—mig-
matite association is delimited by two sinistral, east—west
to ENE-WSW trending, first-order shear zones (Juz-
bado-Penalva do Castelo and Huebra shear zones). New
U-Pb zircon crystallization ages were determined for 5 dif-
ferent granite facies of this anatectic complex, yielding ages
between 300 and 317 Ma, confirming that most of these

granites formed during the syn-D; magmatic stage, with
the exception of one late-tectonic granite facies which is
clearly intrusive into the other facies and yet is affected by
the late stages of Variscan shearing. Moreover, since these
granites are genetically related with migmatites and both
formed and exhumed together, these syn-Dj; crystallization
ages (317 +2.1-313 + 1.9 Ma) represent the maximum age
(end of D, and beginning of D;) and the duration of anatexis
(ca. 5 Ma).
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Table 5 Zircon and apatite estimated closure temperatures for the granites in study and the respective cooling and exhumation rates

Id Zircon age (Ma) Apatite age (Ma) At (Ma) Zircon T, (°C) Apatite T, (°C) Cooling rate Exhuma-
CMa™h tion rate
(mma™h)
Iy 300+2.2 301+2.6 - - - - -
Iy 314+2.6 288+ 14 26 814 465 13+£16.5 0.3
Vy 316+3.9 306+8.5 10 825 482 34+4.1 0.8
IXy 317+2.1 30710 10 836 483 35+3.1 0.8
Xy 313+1.9 302+5.6 11 783 478 28+39.5 0.7

*Value estimated by the average of the other temperatures

The inherited zircon population of these granites suggest
that they are melting restites of units with Cadomian (650
to 550 Ma) and Upper Cambrian-Lower Ordovician (495
to 470 Ma) ages. In addition, these zircon age distributions
reveal a protolith affinity with the Douro-Beiras Supergroup,
as retrieved from the Spanish sector. It should also be noted
a remarkable contribution of Upper Cambrian—-Lower Ordo-
vician ages, which point out to the contribution of metaigne-
ous rocks of the Ollo de Sapo formation

Combining the U-Pb zircon ages with the U-Pb apa-
tite ages and their respective closure temperatures, it was
possible, for the first time, to quantitatively constrain
the emplacement conditions of the FCR-LAC gran-
ites. Zircon (317 +2.1-313 +1.9 Ma) and apatite
(307 +10-288 + 14 Ma) enable the calculation of cooling
rates ranging from 13 to 35 °C Ma~!. The closure tempera-
tures of both geothermometers (zircon and apatite) allowed
to estimate the emplacement of the studied granites at
approximately 8 km of depth due to a fast exhumation mech-
anism. Such emplacement conditions are compatible with
the transpressive shearing associated with the movement of
the Juzbado—Penalva do Castelo shear zone, the most likely
mechanism for the exhumation of the FCR-LAC (Pereira
et al. 2017).

This novel application of zircon and apatite as petrochro-
nometers, particularly in the CIZ where this approach was
used for the first time, has proven to be useful in constrain-
ing the emplacement conditions (e.g., crystallization tem-
peratures, cooling and exhumation rates) of syn-tectonic,
S-type granitoids. This new type of approach is, therefore,
important to understand the behavior of the continental crust
during orogenic processes.
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