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Abstract
This study is focused on ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert of Egypt. The 
rocks include serpentinized peridotites, serpentinites together with talc– and quartz–carbonates. The primary spinel relict is 
Al–chromite [Cr# > 60], which is replaced by Cr–magnetite during metamorphism. The high Cr# of Al–chromites resembles 
supra-subduction zone (SSZ) peridotites and suggests derivation from the deeper portion of the mantle section with boninitic 
affinity. These mantle rocks equilibrated with boninitic melt have been generated by high melting degrees. The estimated 
melting degrees (~ 19–24%) lie within the range of SSZ peridotites. The high Cr# of spinel and Fo content of olivine together 
with the narrow compositional range suggest a mantle residual origin. Serpentinized peridotite and serpentinites have low 
Al2O3/SiO2 ratios (mostly < 0.03) like fore-arc mantle wedge serpentinites and further indicate that their mantle protolith 
had experienced partial melting before serpentinization process. Moreover, they have very low Nb, Ta, Zr and Hf concentra-
tions along with sub-chondritic Nb/Ta (0.3–16) and Zr/Hf (mostly 1–20) ratios further confirming that their mantle source 
was depleted by earlier melting extraction event. The high chondrite normalized (La/Sm)N ratios (average 10) reflect input 
of subduction-related slab melts/fluids into their mantle source.
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Introduction

Peridotites as ultramafic mantle section cropped out at the 
surface of the Earth can offer important information on the 
geochemical and geodynamic evolution of the upper mantle 
(e.g., Sano and Kimura 2007; Dai et al. 2011, 2013; Uysal 
et al. 2012; Khedr et al. 2014).

The Arabian–Nubian Shield (ANS) marks the northern 
part of the East African Orogen and was formed close to 
the end of the Proterozoic due to collision between major 
fragments of East and West Gondwana and termination of 

the Mozambique Ocean (Stern 1994; Johnson et al. 2003). 
Accretion of intra-oceanic island arcs and collision between 
these arcs and a continental margin produced the ANS and 
created suture zones outlined by ophiolites (Stern 1994, 
1996; Stern et al. 2004). Ophiolite sequences are widely 
distributed in the central and southern segments of the East-
ern Desert (ED) of Egypt (Fig. 1). The complete ophiolite 
successions (e.g., Wadi Ghadir, Gabal Gerf and Fawakhir) 
are scarce, whereas the dismembered ophiolitic fragments 
are several (El-Sharkawy and El-Bayoumi 1979; El-Bay-
oumi 1980; Shackleton et al. 1980; El-Sayed et al. 1999; 
Abd El-Rahman et al. 2009a, b; El Bahariya 2008, 2012; 
Abdel-Karim et al. 2016). Fawakhir ophiolitic complex dates 
736.5 ± 1.2 Ma (Andresen et al. 2009).

A SSZ setting of the ED ophiolites is commonly 
acknowledged (El Bahariya and Arai 2003; Azer and 
Khalil 2005; Azer and Stern 2007; Ahmed et al. 2012; 
Abdel-Karim et al. 2016, 2017). However, debate exists 
on whether they were formed in back-arc or fore-arc set-
tings. A back-arc setting is usually concluded based on 
the geochemical signatures of the volcanic units of the 
ophiolite assemblage (El-Sayed et al. 1999; Ahmed et al. 
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Fig. 1   Ophiolites distribution in the central and southern Eastern 
Desert of Egypt and the location of Um Halham (H) and Fawakhir 
(F) ophiolites (after Shackleton 1994). Inset displays the general map 

of Egypt and the location of figure is shown. CED Central Eastern 
Desert, SED Southern Eastern Desert
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2001; El Bahariya and Arai 2003; Farahat et al. 2004; El-
Gaby 2005; Abdel-Karim et al. 1996, 2008). In contrast, 
based on the mineral and bulk-rock data of the serpent-
inites a fore-arc setting was proposed (Stern 2004; Azer 
and Stern 2007; Abd El-Rahman et al. 2012; Azer et al. 
2013; Abdel-Karim et al. 2015, 2016, 2017). To contrib-
ute toward solving this issue; we present bulk-rock and 
mineral compositional data for the metaultramafics of Um 
Halham and Fawakhir areas to better constrain their geo-
chemical and geodynamic evolution.

Field characteristics

Um Halham

Um Halham area (Fig.  2) is situated between latitudes 
26°19′48″–26°23′24″ N and longitudes 33°41′24″–33°48′36″ 
E in the western part of the CED and is covered mainly 
by volcano-sedimentary sequence thrusted to south over 
El-Rubshi ophiolites. The volcano-sedimentary sequence 
around Um Halham represents an interbedded sequence of 
clastic metasediments and metavolcanics. The western part 

Fig. 2   Geologic map of Um Halham area (after Abu El-Ela 1990). Sample numbers are indicated



2340	 International Journal of Earth Sciences (2018) 107:2337–2355

1 3

of the sequence starts at the base with clastic metasediments 
enclosing thin intercalations of iron ore bands, up to 10 cm 
thick, interbedded with metavolcanics (Abu El-Ela 1990). 
The eastern part of the sequence is represented mainly by 
pyroclasts and minor lava flows interbedded with metasedi-
ments. Um Halham ophiolites include talc–carbonates, ser-
pentinites and chromitites. The area is intruded by small 
bodies of syn-tectonic granites and Abu Hayaya post-tec-
tonic granites (Fig. 2). Serpentinite forms mountainous ridge 
with sharp irregular peaks (Fig. 3a). Talc–carbonates are 
thrusted over the volcano-sedimentary sequence (Fig. 3b). 

In some places, talc–carbonates exhibit conspicuous cavern-
ous structure (Fig. 3c). Sometimes, chromite-rich serpent-
inites occur as fragments of variable sizes and shapes within 
talc–carbonates (Fig. 3d).

Fawakhir

Fawakhir area (Fig. 4) is located 93 km west of the Red Sea 
coast along Qift–Quseir asphaltic road between latitudes 
25°57′36″–26°01′48″ N and longitudes 33°34′12″–33°40′12″ 
E. The total mapped area covers ~ 88  km2. Fawakhir 

Fig. 3   Field photographs of Um Halham showing a serpentinites 
form mountainous-ridge with sharp irregular peaks; b talc–carbon-
ates thrusted over volcano-sedimentary sequence; c talc–carbonates 

exhibit conspicuous cavernous structure; d chromite-rich serpentinite 
fragments in talc–carbonate rocks
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ophiolites situated between the Dokhan volcanics to the 
west and the Meatiq Dome ~ 15 km to the east. East dip-
ping thrust zone characterized the western contact between 
the Fawakhir ophiolite suite and the Hammamat sediments, 
whereas its eastern contact with the Meatiq rocks is char-
acterized by a zone of tectonic mélange, mylonitized rocks 
and highly-deformed ‘flaser’ gabbro. They contain mostly 
serpentinites, metagabbros, and metabasalts (El-Sayed et al. 
1999). The Dokhan Volcanic rocks constitute a small mass 
located at the extreme western part of the study area. The 

serpentinites and metagabbros are intruded by Fawakhir 
post-tectonic granites with sharp contact (Fig. 5a). The 
serpentinites bordered Fawakhir granitoids from the west, 
north and south, however most of the eastern side lacks 
them (Fig. 4). Many shear zones cut across the serpentinized 
ultramafics which are altered to talc–carbonates along these 
shears (Abd El-Rahman et al. 2009a). Sometimes, the mas-
sive serpentinites show talc–carbonate alteration (Fig. 5b). 
The metaultramafics and adjacent rocks display sharp and 
distinct contacts. Serpentinites display sharp contact with 

Fig. 4   Geologic map of Fawakhir area (after El-Sayed et al. 1999)
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the underlying mélange. This sharp contact is characterized 
by a NNW–SSE trending deep thrust fault and a relatively 
narrow dark green schistose amphibolite band between the 
ultramafic and the mélange (Hassanen 1985). The adjacent 
country rocks lack the thermal metamorphic effect of the 
serpentinites indicating tectonic emplacement of the serpen-
tinites (El-Sayed et al. 1999).

Petrography

The studied ophiolitic rocks are partially to completely ser-
pentinized and comprise both massive and sheared varieties. 
Serpentinized peridotites and serpentinites belong to mas-
sive varieties while talc– and quartz–carbonates affiliated to 
sheared serpentinites. Both the Um Halham and Fawakhir 
metaultamafic rocks comprise serpentinized peridotites, ser-
pentinites together with talc– and quartz–carbonates. They 
contain olivine, chromite and pyroxene relicts. Chromites 
are represented by homogenous and zoned crystals. The 

zoned chromites have darker cores compared to the outer 
rims which have lighter gray color and higher reflectance.

Serpentinized peridotites in Um Halham contain relicts 
of olivine (Fig. 6a) and clinopyroxene (Fig. 6b). Serpentine, 
tremolite–actinolite, chlorite and talc are the main metamor-
phic products. As metamorphism progresses, serpentinized 
peridotites change to serpentinites and carbonate–serpen-
tinites. Serpentinites contain mainly serpentine minerals 
together with minor amounts of carbonates and opaques. 
Olivine relict and talc are recorded in few samples. Ser-
pentinites show both pseudomorphic and interpenetrating 
textures. Serpentines formed after olivines exhibit mesh tex-
ture (Fig. 6c), whereas those developed after orthopyroxene 
display bastite texture (Fig. 6d). Sometimes, bastite texture 
accompanies schiller structure where magnetite grains out-
line original orthopyroxene cleavage planes (Fig. 6d). Car-
bonates exist as fine- to medium-grained patches substituting 
bastites or as veinlets substituting pre-existing chrysotile. 
Talc–carbonates consist principally of clusters or sparse 
patches of carbonates set in talc matrix, whereas quartz–car-
bonates essentially contain carbonates together with minor 
amounts of quartz. Chromites occur as zoned (Fig. 6e) and 
homogenous crystals with subordinate amounts of magnet-
ites and sulfides.

Serpentinized peridotites in Fawakhir area consist of 
serpentine together with minor relics of olivine, chromite 
and pyroxene. Tremolite, talc, chlorite and iron oxides are 
secondary minerals. Serpentine minerals after olivine show 
pseudomorphic textures. The serpentinization affected oli-
vine grain boundaries and fractures forming olivine mesh 
center (Fig. 6f). In the serpentinized peridotites pyroxene 
relicts present and sometimes replaced by talc (Fig. 6g). 
Serpentinites consist mainly of serpentine minerals associ-
ated with variable amounts of talc, carbonate and opaques. 
They exhibit pseudomorphic, interpenetrating (Fig. 6h) and 
hourglass textures (Fig. 6i). Talc–carbonates are fine-grained 
rocks with brownish yellow to reddish brown color. They 
contain essentially talc and carbonates with rare serpentine, 
chlorite and opaques. Talc occurs as vein-like and in the 
groundmass with clusters and patches of carbonate minerals. 
Zoned and homogenous chromites (Fig. 6j) occur with minor 
sulfides and magnetites.

Analytical techniques

A total of 46 mineral chemical analyses of olivine (12), 
clinopyroxene (12) and chromite (22) were performed using 
Phillips XL30 analyzer at the Central Laboratories of the 
Geological Survey in Cairo, Egypt. Operating conditions 
were 15 kv accelerating voltage, 20 nA beam current and 
1 µm beam diameter. The raw data were corrected using 
ZAF correction factors. The analytical results (normalized 

Fig. 5   Field photographs of Fawakhir area showing a sequence of 
serpentinite, metagabbro and post-tectonic granite along Qift–Quseir 
Road. Photo looking east; b massive serpentinite altered to talc–car-
bonate (buff color)
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to 100%) of different minerals are given in Supplementary 
Table S.

Eighteen representative samples of Um Halham and 
Fawakhir were analyzed for major and trace elements. 
Major elements were analyzed using XRF techniques at 
the Institute of Geothermal Science, Noguchibaru, Beppu 
city, Japan. Fused beads were prepared from a mixture of 
specimen and Li2B4O7 flux, diluted 1:5 at 950 °C to achieve 
accurate and precise results. Replicate analyses provided 
an overall procedural uncertainty better than 2% for major 
elements. The trace elements were analyzed after lithium 
metaborate/tetraborate fusion as well as nitric acid digestion 
of a 0.2-g sample using inductively coupled plasma–mass 
spectrometry techniques (ICP–MS) at the Acme Analyti-
cal Laboratories in Vancouver, BC Canada. The accuracy 
and reproducibility of this method lie within 2%. Bulk-rock 
geochemical analyses with detection limits are presented in 
Table 1.

Results

Mineral chemistry

Chromite chemical analyses are presented in Table S. 
Homogenous chromites and internal cores of zoned crys-
tals are classified as Al–chromites while the outer rims have 
Cr–magnetite compositions (Fig. 7a). The fresh Al–chro-
mite cores plot close to the Cr–Al join whereas the altered 
Cr–magnetite rims plot along Cr–Fe3+ join (Fig. 7a). Spinel 
in mantle peridotites is relatively unaffected by alteration 
and its Cr# particularly appears to remain unchanged during 
sub-solidus stage (Arai 1994). Geochemical consequences 
due to spinel alteration are discussed below. Al–chromites 
in the studied rocks have higher Cr# (> 60) akin to those 
of ophiolitic ultramafics of ANS including SED and CED 
(Fig. 7b, c) (Stern et al. 2004; Farahat et al. 2011; Ahmed 
et al. 2012; Abdel-Karim et al. 2016; Obeid et al. 2016). 
Their TiO2 and Al2O3 contents are comparable to SSZ peri-
dotites and overlap those of peridotites from Izu–Mariana 
and New Caledonia arcs (Fig. 7d; Kamenetsky et al. 2001).

Olivines range in composition from Fo85.54–95.30 in Um 
Halham and from Fo89.33–91.65 in Fawakhir and are like 
primary olivine relicts of ophiolitic metaultramafics from 
the ED of Egypt (Fo89–96) (Table S) (Khudeir 1995; Khalil 
and Azer 2007; Khedr and Arai 2013; Obeid et al. 2016). 
These compositions correspond to chrysolite and forsterite. 
Moreover, their Fo-enriched nature is comparable to those 
observed in the ANS ophiolites and fore-arc peridotites fur-
ther confirming their primary nature and suggest that the 
studied rocks are residual mantle after extensive melting 
(Stern et al. 2004). These inferences are also supported by 
spinels compositional data of the present study.

Clinopyroxenes have Mg# varying between 0.82 
and 0.90 in Um Halham, and between 0.54 and 0.60 
in Fawakhir. Their compositions rang from augite 
(En47.94–65.38Wo27.32–41.27Fs6.46–10.53Ac0.27–0.47) in Um Halham 
to pigeonite (En44.92–48.35Wo10.48–13.67Fs39.42–43.01Ac0.22–0.53) 
in Fawakhir (Table S) (Fig. 8a). Most of the clinopyroxenes 
in the serpentinized peridotites have Al2O3 (> 0.2 wt%) and 
Cr2O3 (> 0.4 wt%) contents higher than those observed in 
metamorphic clinopyroxenes reflecting magmatic origin 
(Nozaka 2010). The analyzed clinopyroxenes have low TiO2 
content characteristic of non-alkaline rocks (Le Bas 1962) 
and display a strong affinity to intra-oceanic fore-arc bonin-
ites (Fig. 8b). Their lower Na2O and K2O contents (≤ 0.15 
and ≤ 0.04 wt%, respectively) indicate depleted nature of 
their host rocks. Moreover, the low Na2O and TiO2 suggest 
sub-oceanic source (Delavari et al. 2009).

Geochemistry

Bulk-rock chemistry of the studied rocks from Um Halham 
and Fawakhir is listed in Table 1. To diminish the effect of 
variable element dilution result from serpentinization pro-
cess, major element oxides were recalculated on an anhy-
drous basis and plotted volatile-free. The rocks in both areas 
display different stages of metamorphism starting from the 
least affected serpentinized peridotites (LOI = 6.76–11.02) 
and then serpentinites (LOI = 12.46–26.78) to the most 
affected talc– and quartz–carbonates (LOI = 14.12–41.11). 
MgO is less affected by serpentinization and its higher con-
tent (MgO = 29.82–48.71 wt%) indicates more depleted 
mantle nature (Frey et al. 1985; Parkinson and Pearce 1998). 
The Mg# ranges from 0.85 to 0.94 in Um Halham and from 
0.89 to 0.92 in Fawakhir, and are comparable to those from 
modern oceanic peridotites (Bonatti and Michael 1989) indi-
cating also a limited adjustment of Mg and Fe. The deple-
tion of Na2O (< 0.05 wt%) and K2O (∼ 0.01 wt%) further 
confirms this implication (e.g., Abdel-Karim et al. 2016). 
Geochemical consequences due to alteration and metamor-
phism are also discussed below.

Al2O3 content seems to be relatively not influenced by 
serpentinization process demonstrating that the bulk-rock Al 
content typically reflects its original primary concentration 
(Bonatti and Michael 1989). The studied rocks have Al2O3 
contents (0.15–3.52 wt%) overlap those from oceanic and 
active margin peridotites and fore-arc and Pan-African ser-
pentinites (Floyd 1991; El Bahariya and Arai 2003; Abdel-
Karim and Ahmed 2010). Their SiO2/MgO ratios and Al2O3 
contents are akin to ophiolitic peridotite (Bodinier and God-
ard 2003; Abdel-Karim et al. 2016) (Fig. 9a). Serpentinized 
peridotite of Um Halham (H.21) has higher Al2O3 (3.52 
wt%) and CaO (8.18 wt%) compared to that of Fawakhir 
(F.98) (Al2O3 = 1.54 wt% and CaO = 0.9 wt%). Further-
more, serpentinites in both areas have low Al2O3 contents 
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(0.15–0.86 wt%) and have a wide range of CaO (0.06–8.84 
wt%). The low Al2O3 and CaO contents in most samples 
are comparable to fore-arc peridotites of ED (Zimmer et al. 
1995; Azer and Khalil 2005; Azer and Stern 2007; Azer 
et al. 2013; Abdel-Karim et al. 2016). The Al2O3/SiO2 and 
MgO/SiO2 ratios are comparable to those of Arabian shield 
and fore-arc peridotites (Fig. 9b; Parkinson and Pearce 1998; 
Pearce et al. 2000; Ahmed and Habtoor 2015).

The studied rocks are enriched in compatible trace ele-
ments (Cr = 1338–3082  ppm, Ni = 557.6–2882.2  ppm 
and Co = 73.3–117.8 ppm) reflecting development from a 
depleted mantle peridotite source. Their trace element pat-
terns (Fig. 10a) show fluid mobile element (FME; such as 
Cs, U, and Pb) enrichments resembling those of fore-arc ser-
pentinites along with Sr enrichment which is not observed 
in serpentinized peridotite (Pearce et al. 2000; Song et al. 
2009). These enrichments in FME, most likely point to the 
higher concentrations of these elements in the hydrating flu-
ids of the mantle wedge. These hydrating fluids are rich in 
Cs, Pb, and Sr indicating that they were produced from sedi-
ment dehydration during shallow subduction (e.g., below 
fore-arcs; Deschamps et al. 2013 and references therein). 
Moreover, the high LILE contents [e.g., Ba/Th (up to 350), 
Ba/La (up to 70)] overlap those observed on mantle wedge 
serpentinites from diverse fore-arc systems suggesting inter-
action with sediment-derived fluids (Aziz et al. 2011; Kodo-
lányi et al. 2012; Deschamps et al. 2013). Most of the trace 
elements (except Cs, U, Sr and Pb) are depleted compared 
to primitive mantle values (Fig. 10a; McDonough and Sun 
1995) similar to mantle wedge serpentinites (Deschamps 
et al. 2013). Both the positive Pb-anomaly and the nega-
tive Nb-anomaly characterize the studied rocks (Fig. 10a). 
The overall low concentrations of trace element suggest high 
degrees of melt extraction of the mantle protolith, similar to 
mantle wedge serpentinites (Deschamps et al. 2013).

The REEs mobility during serpentinization process is 
insignificant, so they preserve the geochemical characteris-
tics of the original mantle protolith (Deschamps et al. 2013). 
Bulk-rock REE contents of the studied rocks are relatively 

variable. Serpentinized peridotites have LREE composition 
ranging from ~ 2 to ~ 5 Chondrite and HREE from ~ 0.4 to 
~ 2 Chondrite, whereas serpentinites have LREE composi-
tion ranging from ~ 1.5 to ~ 5 Chondrite and HREE from 
~ 0.08 to ~ 0.3 Chondrite (Fig. 10b). Moreover, talc– and 
quartz–carbonates have LREE compositions varying from 
~ 1.5 to ~ 4 Chondrite and HREE from ~ 0.2 to ~ 2 Chondrite 
(Fig. 10b). The studied rocks show no correlations between 
REEs and LOI confirming that the REE signatures of the 
mantle protolith were preserved during serpentinization and 
metamorphism (e.g., Savov et al. 2005a, b; Deschamps et al. 
2013).

Serpentinized peridotite of Um Halham has both enriched 
LREE [(La/Yb)N = 2.1] and HREE [(Gd/Yb)N = 1.03] pat-
terns as do quartz–carbonate [(La/Yb)N = 2.4 and (Gd/
Yb)N = 1.32] (Fig. 10b). On the other hand, serpentinites 
and talc–carbonate rocks exhibit enriched LREE patterns 
with (La/Yb)N = 3.1–32.3 and depleted HREE patterns with 
(Gd/Yb)N = 0.47–0.83. Generally, serpentinites represent 
the most LREE-enriched rocks. Serpentinites, talc– and 
quartz–carbonates show variable positive Eu-anomaly com-
pared with serpentinized peridotite (Fig. 10b).

Serpentinized peridotite of Fawakhir is LREE-enriched 
[(La/Yb)N = 16.74] relative to HREE [(Gd/Yb)N = 2.21] pat-
terns (Fig. 10b). Moreover, serpentinites and quartz–carbon-
ate have LREE patterns [(La/Yb)N = 3.6–14.35] higher than 
HREE patterns [(Gd/Yb)N = 0.55–2.32]. On the other hand, 
talc–carbonate (F.117) exhibits both LREE- and HREE-
enriched patterns [(La/Yb)N = 11.5 and (Gd/Yb)N = 17.5]. 
In contrast to serpentinized peridotites, the analyzed samples 
from Fawakhir also display variable positive Eu-anomaly 
(Fig. 10b).

Discussion and conclusion

Geochemical consequences due to alteration 
and serpentinization

Generally, the ophiolitic ultramafics in the ED of Egypt are 
affected by low-grade green schist to medium-grade amphi-
bolite facies metamorphism and altered to serpentinite and/
or to combinations of serpentine, talc, chlorite, carbonates 
and magnetite (e.g., El-Sayed et al. 1999; Farahat 2008; 
Khedr and Arai 2013). Carbonate alteration affected the 
Egyptian ultramafic rocks but its timing and source remain 
controversial. It was attributed to mixing between CO2-rich 
(mantle-derived) fluids and remobilized sedimentary car-
bonate (Stern and Gwinn 1990). Pure mantle (CO2-bearing) 
source is also proposed based on stable isotope (i.e. O, C) 
(Boskabadi et al. 2017). Moreover, some magnesite veins 
in serpentinites from the ED were ascribed to an influx of 

Fig. 6   Photomicrographs taken under crossed nicols (e and j are back-
scattered electron; BSE) displaying a fractured olivine crystal altered 
at margin to talc and serpentine minerals in serpentinized peridotite 
of Um Halham; b pyroxene crystal replaced by serpentine minerals in 
serpentinized peridotite of Um Halham; c mesh texture with isotropic 
mesh center in serpentinite of Um Halham; d bastite texture associ-
ated with schiller structure in serpentinite of Um Halham; e zoned 
chromite crystal mantled by Cr–magnetite with sharp contact in ser-
pentinite of Um Halham; f mesh texture with olivine mesh center in 
serpentinized peridotite of Fawakhir; g talc and relics of pyroxene in 
serpentinized peridotite of Fawakhir; h chrysotile veinlet traversing 
antigorite matrix forming interpenetrating texture in serpentinite of 
Fawakhir i hourglass texture in serpentinite of Fawakhir; j fractured 
chromite crystal filled with serpentine minerals in serpentinite of 
Fawakhir

◂
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mantle and metamorphic-degassing of CO2 (e.g., Ghoneim 
et al. 2003; Hamdy and Lebda 2007).

Despite the mineralogical modifications in peridotites 
during serpentinization processes, geochemical studies of 
serpentinites show insignificant changes in major elements 
(except for Ca) at the hand-specimen scale (e.g., Mével 
2003; Deschamps et  al. 2010, 2013). However, except 
for two samples (H.21 and H.28), the low CaO contents 
(0.06–4.63 wt%) in the serpentinized peridotite and serpen-
tinites reflect limited effect of Ca–metasomatism which is 
further supported by the absence of appreciated correlation 
between CaO and LOI in all samples. Moreover, bulk-rock 
data of serpentinized peridotites similarly indicate insignifi-
cant modifications occur in the trace element compositions 
(excluding U or Sr) during serpentinization (e.g., Niu 2004; 
Paulick et al. 2006; Deschamps et al. 2013). Consequently, 
major and trace element compositions can be used to define 
the nature of the serpentinites protolith in subduction zones 
(Chalot-Prat et al. 2003; Hattori and Guillot 2007; Des-
champs et al. 2013).

Low-temperature serpentinization process leads to ini-
tial growth of slightly Fe-enriched chromite because of 
fluid infiltration along chromite cracks and grain boundaries 
(Barnes 2000). At higher temperature, further fluid access 
and reaction give rise to extensive magnetite replacement 
of chromite (Barnes 2000). Chromite alteration caused by 
serpentinization process in the late stage of magmatism and 
possibly accompanying emplacement of the ophiolite com-
plex (e.g., Khudeir et al. 1992; Khalil and Azer 2007). The 
altered Cr–magnetite rims have higher total iron and lower 
Cr2O3, Al2O3, MgO and Cr# than the fresh Al–chromite 
cores (Table S) indicating an alteration event. Moreover, the 
Cr–magnetite plot on the Cr–Fe3+ joins close to Fe3+ apex 
(Fig. 7a) reflecting Fe2O3 increase and loss in Cr2O3 and 
Al2O3 during alteration. Their high Fe3+ reflects oxidation 
conditions during alteration (Anzil et al. 2012).

Metamorphic grade

Chromite cores continually equilibrated with magnetite rims 
document metamorphic grade conditions (Barnes 2000). 
The relative proportions of the trivalent ions (i.e. Cr3+, Al3+ 
and Fe3+) of chromite are unaffected by metamorphism up 
to lower temperature amphibolite facies implying restricted 
mobility of these elements occurred under lower amphibo-
lite (Barnes 2000). Therefore, chromite in lower temperature 
amphibolite facies preserves its primary igneous chemistry 
and can be used to estimate the metamorphic grade (Barnes 
2000). According to Fig. 11, almost all the Al–chromite 
cores are equilibrated at temperature below ~ 500–550 °C 
corresponding to lowest amphibolite facies metamorphism 
(Sack and Ghiorso 1991; Barnes 2000). So, they reflect mag-
matic composition not influenced by metamorphism (e.g., Ta

bl
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Fig. 7   Plot of chromites on a Cr–Fe3+–Al ternary diagram. Green-
schist and lower-amphibolite metamorphic facies compositional fields 
are after Evans and Frost (1975) and Suita and Strieder (1996); b Cr# 
versus TiO2. The abyssal peridotites compositional field and trends 
of the effect of MORB–melt reaction on refractory abyssal perido-
tite spinels and of boninite–melt reaction on refractory SSZ perido-
tite spinels are from Choi et  al. (2008); c Cr# versus Mg# diagram 

exhibit fields of different tectonic setting (Dick and Bullen 1984; 
Bloomer et al. 1995; Ohara et al. 2002; Stern et al. 2004). Chromite 
compositional fields of SED (Ahmed et al. 2012) and CED (Farahat 
et al. 2011) serpentinites are also shown; d Al2O3–Ti2O. Spinels com-
positional fields of SSZ and MORB-type peridotites as well as those 
of fore-arc peridotites from the Izu–Mariana and New Caledonia are 
after Kamenetsky et al. (2001)

Fig. 8   Plot of the analyzed pyroxenes on a En–Wo–Fs ternary diagram (after Morimoto et al. 1988); b SiO2–TiO2–Na2O ternary diagram (after 
Beccaluva et al. 1989)
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Barnes 2000). On the other hand, altered chromite rims 
have nearly pure magnetite compositions with restricted 
Cr-solubility indicating magnetite development at < 500 °C 
(Fig. 11; Sack and Ghiorso 1991; Barnes 2000).

Indeed, this inference is confirmed by plotting the ana-
lyzed Al–chromite cores in the primary spinel fields of 
greenschist and lower-amphibolite metamorphic facies 
(Fig. 7a: Evans and Frost 1975; Suita and Strieder 1996). 
Thus, the studied rocks experienced metamorphism grade 

from greenschist up to lower-amphibolite metamorphic 
facies (Figs. 7a, 11).

Modification of the mantle source by subducted 
components

The studied rocks exhibit very low Nb, Ta, Zr and Hf 
concentrations along with sub-chondritic ratios of Nb/Ta 
(0.3–16) and Zr/Hf (mostly 1–20) indicating depletion of 
their mantle source by earlier melting extraction event (e.g., 
Yang and Zhou 2009).

Mantle source modification by continental materials and/
or subduction-related slab melts/fluids has been confirmed 
for ophiolitic utramafics (e.g., Sharma and Wasserburg 
1996; Gruau et al. 1998; Delavari et al. 2009; Ahmed et al. 
2012; Abdel-Karim et al. 2016). Ahmed et al. (2012) which 
suggested that Gebel Mudarjaj ultramafics were formed by 
contamination of arc-related magmas by lower crustal gab-
broic rocks. Recently, Abdel-Karim et al. (2016) indicated 
that the Gerf serpentinites could have been generated by 
contamination of their mantle source with crustal material 
and/or subduction-related slab fluids.

On the (La/Sm)N versus (1/Sm)N diagram of Sharma 
and Wasserburg (1996) (Fig. 12), a comparison presented 
between the studied metaultramafics and model peridotites 
produced from contaminated residual harzburgites with 
MORB melts or continental crust components. The stud-
ied rocks display LREE-enrichment [(La/Sm)N average 10; 
Fig. 12]. Moreover, they plot around lines demonstrating 
mantle modified with crustal materials and/or subduction-
related slab melts/fluids (Fig. 12; Gruau et al. 1998). How-
ever, their low Th/Nb ratios (mostly 0.1–2) and negative 
Zr anomalies argue against significant crustal contamina-
tion (e.g., Yang and Zhou 2009). Thus, their high (La/Sm)N 
resulted from subduction-related slab melts/fluids influx dur-
ing the evolution of the mantle in a subduction zone setting. 
The low Ce/Pb (average 1.6) and high Ba/Nb (average 191) 
together with the negative Nb anomalies further support the 
input of subduction-related slab melts/fluids into their man-
tle source. The origin of the LREE-enriched Trinity ophi-
olite (Fig. 12) has also been attributed to contamination of 
their mantle source (mantle restite) with crustal components 
(Gruau et al. 1998). This contamination could occur during 
evolution of the mantle in SSZ setting or following ophiolite 
complex obduction on the continental crust (Gruau et al. 
1998; Delavari et al. 2009). The trend of increasing (La/
Sm)N indicates variable input of subduction-related slab 
melts/fluids into the mantle source of the ED ophiolites 
(Fig. 12).

Fig. 9   a Bulk-rock Al2O3 versus SiO2/MgO ratio diagram. Fields of 
ophiolitic peridotite, ophiolitic gabbro and MORB are from Bodinier 
and Godard (2003). ED field is ophiolitic peridotite compositions 
from both the Central and Southern Eastern Desert of Egypt (after 
Azer and Khalil 2005; Azer and Stern 2007; Azer et al. 2013; Abdel-
Karim et al. 2016); b MgO/SiO2 versus Al2O3/SiO2 diagram. Primi-
tive and depleted mantle values are from McDonough and Sun (1995) 
and Salters and Stracke (2004), respectively. The “terrestrial array” 
represents the bulk silicate Earth evolution (Jagoutz et al. 1979; Hart 
and Zindler 1986). Fields of abyssal and fore-arc peridotite are from 
Niu (2004), Pearce et al. (2000) and Parkinson and Pearce (1998). AS 
represents the field of Arabian Shield ophiolitic peridotite (Ahmed 
and Habtoor 2015)
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Fig. 10   a Primitive mantle-normalized trace element patterns; b 
chondrite-normalized REE patterns. Normalization values are after 
McDonough and Sun (1995). Data sources: fore-arc peridotites 

(Pearce et  al. 2000; Song et  al. 2009); SED ophiolitic ultramafics 
(Abdel-Karim et al. 2016)
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Protolith geochemical fingerprints

Several studies have shown insignificant mobility of major 
elements and protolith geochemical fingerprints were pre-
served during serpentinization process (e.g., O’Hanley 1996; 
Mével 2003; Niu 2004; Deschamps et al. 2013).

The low CaO contents in serpentinized peridotite and 
serpentinites are comparable to values noticed on ophiolitic 
peridotites (Bodinier and Godard 2003), whereas the two 
samples (H.21 and H.28) with high CaO contents are like 
serpentinized lherzolites (Deschamps et al. 2013). Moreover, 
the low Al2O3/SiO2 ratios (mostly < 0.03) of serpentinized 
peridotite and serpentinites akin to fore-arc mantle wedge 
serpentinites and indicate that their protoliths had under-
went partial melting before serpentinization process which 
has no influence on this ratio (e.g., Snow and Dick 1995; 
Paulick et al. 2006; Deschamps et al. 2013). Also, their low 
MgO/SiO2 ratios (< 1.1) resemble serpentinized lherzolite 
and harzburgite (Deschamps et al. 2013). They have low 
TiO2 contents (0.0–0.08 wt%) compared to depleted mantle 
composition but like subduction zone serpentinites (Salters 
and Stracke 2004; Deschamps et al. 2013).

Trace element compositions (principally REEs) of ser-
pentinized mantle rocks can be used to interpret the nature 
of the mantle protolith and the interactions with fluid/melt 
(Deschamps et al. 2013). The low HFSE content reveals high 
degrees of melt extraction (e.g., Parkinson and Pearce 1998). 
Positive Pb-anomaly present on spider-diagrams may reflect 
a protolith nature or fluid percolation during serpentiniza-
tion (Fig. 10a) (Godard et al. 2008; Deschamps et al. 2013).

Magma nature

The low Al2O3 content in the studied rocks is consistent 
with a depleted upper mantle source (Bonatti and Michael 
1989). They display higher Mg# numbers together with Cr 
and Ni enrichment reflecting development from a depleted 
mantle peridotite source (e.g., Khalil 2007; Abdel-Karim 
et al. 2016). Their high bulk-rock MgO and SiO2 and low 
Al2O3 and TiO2, together with clinopyroxenes data suggest 
boninitic and fore-arc affinity. They have Al–chromites with 
higher Cr# indicating that they represent highly depleted 
mantle residues after higher degrees of melting. The degrees 
of melting were estimated based on fresh chromite chemis-
try using the empirical equation of Hellebrand et al. (2001) 
[i.e. Melting degree (F %) = 10*ln (Cr#) + 24]. According 
to this equation, the degrees of melting vary between 19 
and 24% similar to that of Gebel Mudarjaj in the SED of 
Egypt (Ahmed et al. 2012) and are totally within the range 
(15–40%) of SSZ peridotites (Pearce et al. 2000; Mellini 
et al. 2005).

On the TiO2–Cr# diagram (Fig. 7b), the analyzed spi-
nels plot around the boninite–melt reaction trend which 
is completely different from the MORB–melt trend of 
the abyssal peridotites. Moreover, the Al–chromites have 
Cr# and TiO2 compositional features typical of primary 

Fig. 11   Spinel data from the studied rocks compared with Sack 
and Ghiorso spinel stability fields for chromite and magnetite (after 
Barnes 2000) Fig. 12   Sharma and Wasserburg (1996) diagram showing chon-

drite-normalized (La/Sm)N versus (1/Sm)N. MORB mid-ocean ridge 
basalts, UM upper mantle composition, UDM ultra-depleted melt 
composition, CC continental crust composition, HZ1, HZ2 and HZ3 
model harzburgite compositions. Fields of SED and Trinity ophiolite 
are shown for comparison (Gruau et  al. 1998; Abdel-Karim et  al. 
2016)
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spinels from fore-arc depleted mantle peridotites with 
boninitic characteristics (Dick and Bullen 1984; Arai 
1992) (Fig. 7b). The high Cr# (> 60) and Mg# (49–82) of 
Al–chromite cores are also comparable to those from man-
tle-derived peridotites which support the primary nature 
and boninitic affiliation (Fig. 7c) (Roeder 1994; Mondal 
et al. 2001). Furthermore, the clinopyroxene compositions 
correspond to that from boninites (Fig. 8b).

Tectonic implications

Serpentinized peridotite and serpentinites have low MgO/
SiO2 ratios (< 1.1) according with SSZ peridotites from 
fore-arc setting (Fig.  9b; Parkinson and Pearce 1998; 
Pearce et  al. 2000). Generally, the studied rocks are 
depleted in Al2O3 content indicating a SSZ setting (Bon-
atti and Michael 1989). The negative Nb-anomaly is con-
sistent with SSZ geochemical fingerprints and is typical 
of fore-arc peridotites (Fig. 10a) (Hawkins 2003; Song 
et al. 2009). Furthermore, the characteristic positive Pb-
anomaly displayed on spider-diagrams is similar to fore-
arc peridotites (Fig. 10a) (Hawkins 2003; Deschamps et al. 
2013).

Fresh chromite core composition is a good proxy to 
define the tectonic setting of ultramafic mantle rocks 
(Dick and Bullen 1984; Arai 1992). The low contents of 
Al2O3 and TiO2 in the analyzed Al–chromites are iden-
tical to peridotites from SSZ setting (Fig. 7d). There is 
some overlap with the spinels compositional range from 
the Izu–Mariana fore-arc and New Caledonia mantle peri-
dotites (Fig. 7d). Subduction-related mantle rocks includ-
ing mantle wedge and fore-arc rocks have spinels with 
elevated Cr# (> 0.40) (Dick and Bullen 1984; Ozawa 1994; 
Parkinson and Arculus 1999) which is the case of the stud-
ied rocks. The high Cr# (> 60) of the analyzed Al–chro-
mites is comparable to those of modern fore-arc peridotites 
but clearly higher than spinels from MOR and back-arc 
peridotites (Fig. 7c; Ahmed et al. 2001; Stern et al. 2004; 
Farahat et al. 2011; Abdel-Karim et al. 2016). Moreover, 
the high Cr# is also similar to that observed in the chro-
mitites of boninitic affinity existed in the deeper portion 
of the mantle section (Rollinson and Adetunji 2015). The 
Cr# and Mg# relationship shows that the studied rocks 
are similar to depleted fore-arc peridotites (Fig. 7c) (Ishii 
et al. 1992; Parkinson and Pearce 1998). Furthermore, they 
are similar to fore-arc serpentinites from Mariana in the 
western Pacific and Tso Morari in the NW Himalaya (Ishii 
et al. 1992; Guillot et al. 2001).
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