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Abstract The Alvand intrusive complex in the Hamedan
area in Iran is in the Sanandaj—Sirjan zone of the Zagros
orogen. It consists of a wide range of plutonic rocks,
mainly gabbro, diorite, granodiorite, granite, and leu-
cogranites that were intruded by aplitic and pegmatitic
dykes. At least three successive magmatic episodes gener-
ated an older gabbro—diorite—tonalite assemblage, followed
by a voluminous granodiorite—granite association, which
was then followed by minor leucocratic granitoids. Aplitic
and pegmatitic dykes and bodies have truncated both plu-
tonic rocks of the Alvand intrusive complex and its meta-
morphic aureole. Chemically they belong to peraluminous
LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Min-
eralogically, they resemble Muscovite (MS) and Musco-
vite Rare Element (MSREL) classes of pegmatites. High
amounts of some elements, such as Sn (up to 10,000 ppm),
Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to
404 ppm) indicate the highly fractionated nature of some
of these aplites and pegmatites. U-Pb dating of monazite,
zircon, and allanite by LA-ICPMS indicate the following
ages: monazite-bearing aplites of Heydareh-e-Poshteshahr
and Barfejin areas, southwest of Hamedan, give an age
range of 162-172 Ma; zircon in Heydareh-e-Poshteshar
gives an average age of ~165 Ma and for allanite-bearing
pegmatites of Artiman area, north of Tuyserkan, an age of
154.1 + 3.7 Ma was determined. These overlap with previ-
ously reported ages (ca. 167-153 Ma) for the plutonic rocks
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of the Alvand complex. Therefore, these data reveal that the
Jurassic was a period of magmatism in the Hamedan region
and adjacent areas in the Sanandaj—Sirjan zone, which was
situated at the southern edge of the central Iranian micro-
plate (southern Eurasian plate) at this time. Our results also
suggest that advective heating in a continental arc setting
has caused melting of fertile supracrustal lithologies, such
as meta-pelites. These partial melts were then emplaced at
much higher crustal levels, but within a thermally anoma-
lous environment, which, therefore, leads to formation of
evolved felsic rocks, such as the studied LCT aplite—peg-
matite suite and their parental granitic rocks. This is a new
result that indicates the role of syn-subduction crustal par-
tial melting in the region as part of Zagros orogeny.

Keywords Aplite - Pegmatite - Geochemistry -
Geochronology - Hamedan - Sanandaj—Sirjan - Iran

Introduction

In recent years many petrogenetic studies have been done
on pegmatites and aplites, with a diversity of petrogenetic
models suggested (e.g., Webber et al. 1999; Thomas et al.
2003, 2012; London 2008, 2014a, b; Simmons and Webber
2008; Nabelek et al. 2010; Cerny et al. 2012; London and
Morgan 2012; Thomas and Davidson 2015; Dill 2015). In
this paper, the complex petrogenetic problems surrounding
pegmatology (e.g. Simmons et al. 2003) are not discussed,
but petrography, whole rock geochemistry, mineral chem-
istry, and especially U-Pb dating of accessory minerals in
pegmatites/aplites of the Hamedan region, Sanandaj—Sirjan
zone, Zagros orogen, Iran, are presented.

Pegmatites usually have simple mineralogy com-
prised of quartz, feldspar, and mica as essential minerals,
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but they also contain minor amounts of minerals suitable
for U-Pb geochronology, such as monazite, zircon, and
allanite. Monazite [(LREE, Th) PO,] is a common acces-
sory mineral in many magmatic rocks and is widely used
for U-Pb geochronology. The high Th and relatively high
U contents together with negligible common Pb and high
closure temperature to Pb diffusion are the key features of
this mineral chronometer (e.g., Mezeme et al. 2006; Chen
et al. 2006; Paquette and Tiepolo 2007; Martin et al. 2007,
McFarlane and Luo 2012, and references therein). Zircon is
also ideally suited for U-Pb dating, because of its moder-
ate to high U concentration and high closure temperature
to diffusion of Pb. Both monazite and zircon exclude Pb
during crystallization such that their Pb-isotopic signatures
are highly radiogenic (Crowley et al. 2008 and references
therein; Liu et al. 2010 and references therein). Allanite is
the rare earth element (REE) rich epidote-group mineral
([Ca,REE,Th],[Fe,Al];S1;0,,[OH]). Allanite can provide
complementary, or unique, geochronological information
on many geological processes (McFarlane 2016). It occurs
in a wide range of rock types, especially in metaluminous
granites and pegmatites (Gregory et al. 2007 and references
therein).

Previous ages obtained by K-Ar and Rb-Sr record
Late Cretaceous dates for plutonic rocks of the Hamedan
region (e.g., Valizadeh and Cantagrel 1975; Braud 1987;
Baharifar et al. 2004; see also Sepahi et al. 2014 for a
time-event table of the Sanandaj—Sirjan zone). In recent
years, a few research studies have been published on zir-
con U-Pb geochronology for the Alvand intrusive complex
in the Hamedan region and other plutonic complexes in
adjacent areas in the Sanandaj—Sirjan zone of Iran. These
studies have been done on zircons from the main plutonic
rock samples. Ahmadi-Khalaji et al. (2007) reported U-Pb
zircon ages of 169—-172 Ma for the Boroujerd pluton (Bj
on Fig. 1); U-Pb zircon geochronology of the Alvand
Intrusive complex (Al on Fig. 1) indicated that this is a
multiphase complex that intruded over a period of 14 Ma
(153-167 Ma; Shahbazi et al. 2010), Mahmoudi et al.
(2011) determined a Late Jurassic emplacement age for
the Qorveh pluton (Qr on Fig. 1; 157-149 Ma), using the
U-Pb dating method; LAICP-MS zircon U-Pb ages of the
Suffiabad granite (near Qr on Fig. 1) have a range between
149 + 2 and 144 + 3 Ma (Azizi et al. 2011); U-Pb data
on the granites with LAICP-MS yield a crystallization
age of ~165 Ma for the Aligoudarz pluton (Ag on Fig. 1;
Esna-Ashari et al. 2012); Chiu et al. (2013) reported a
U-Pb age of 164.6 + 2.1 Ma for the Kolah Ghazi granite
(Kz on Fig. 1); for the Ghalaylan pluton near Qorveh (Qr
on Fig. 1), zircon U-Pb yielded ages from 157.9 + 1.6 to
155.6 + 5.6 Ma (Azizi et al. 2015); Yajam et al. (2015)
used SHRIMP U-Pb zircon dating to report 140-160 Ma
ages for plutons of Qorveh region (Qr on Fig. 1). Granitoid
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rocks with a possible Jurassic age are also reported from
several other areas in the SSZ, such as Jiroft (Ji on Fig. 1;
175.2 + 1.8 Ma; Chiu et al. 2013) and Chah-Dozdan (Ch
on Fig. 1; 173-164 Ma; Fazlnia et al. 2007).

Our work is the first attempt at monazite, zircon, and
allanite U-Pb dating on aplites and pegmatites of the
region. In this paper, the earlier (K—Ar and Rb—Sr data) to
recent (U-Pb) published studies on dating of plutonic rocks
of the Hamedan region and adjacent areas are compared
with our analyses to interpret the tectono-magmatic history
of the region. This new data fill gaps in the geochronologi-
cal dataset and tectono-magmatic history of the Hamedan
region and the Sanandaj—Sirjan zone, one of the important
tectono-stratigraphic units of Iran. Also, the geochrono-
logical and genetic links between the aplitic and pegma-
titic rocks of the Hamedan region and their host plutonic
and metamorphic rocks have not been considered in earlier
published research work; therefore, we have considered
interpreting the tectono-magmatic history of the Hamedan
region and the Sanandaj—Sirjan zone of Zagros orogen as a
part of Alpine-Himalayan orogenic system.

Regional geological setting

The Zagros Orogen is a part of the Alpine—Himalayan oro-
genic system. The Sanandaj—Sirjan zone (SSZ) or Zagros
imbricate zone of the Zagros orogeny is comprised of a
metamorphic belt of low- to high-grade regional and con-
tact metamorphic rocks that has been intruded by mafic,
intermediate, and felsic plutonic bodies (Alavi 1994, 2004)
(Fig. 1). The SSZ, as one of the tectono-stratigraphic units
of Zagros orogen, has a width of 150-250 km and length of
1500 km, extending from the northwest to southeast in Iran.
The SSZ occurs between the Zagros fold-thrust belt and the
southwestern boundary of the Urumieh—Dokhtar Magmatic
Arc. This zone can be divided into five sub-zones, i.e., the
Marginal sub-zone, Ophiolite sub-zone, Bisotun sub-zone,
Radiolarite sub-zone, and Complexly deformed sub-zone.
The Hamedan region is located in the northwestern part
of the SSZ in a complexly deformed sub-zone (Fig. 1;
Mohajjel et al. 2003). Major metamorphic and magmatic
events in the northwestern part of the SSZ occurred dur-
ing the Mesozoic era (e.g., Baharifar 1997; Sepahi 1999;
Rashidnejad-Omran et al. 2002; Sheikholeslami et al. 2003;
Sepahi et al. 2004; Baharifar 2004; Ahmadi-Khalaji et al.
2007; Aliani et al. 2012). The ages of the major granitic
plutons of this part of the SSZ are Mesozoic—Paleogene,
~200 to ~40 Ma (e.g., Valizadeh and Cantagrel 1975;
Braud 1987; Masoudi 1997; Baharifar 2004; Ahmadi-
Khalaji et al. 2007; Arvin et al. 2007; Shahbazi et al. 2010;
Mahmoudi et al. 2011; Ahadnejad et al. 2011; Azizi et al.
2011, 2015; Esna-Ashari et al. 2012; Chiu et al. 2013;
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Fig. 1 Simplified map showing major tectono-stratigraphic units of Iran and the Sanandaj—Sirjan zone, Zagros orogen, Iran. Plutons: Qr Qor-
veh, Al Alvand, Bj Boroujerd, Ag Aligoudarz, Kz Kolah-Ghazi, Ch Chahdozdan, Ji Jiroft (Modified after Mohajjel et al. 2003)
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Sepahi et al. 2014). Locations of major plutons within the
SSZ are shown in Fig. 1 (see the caption of Fig. 1). The
metamorphic-magmatic events are considered to be related
to the subduction of the Neo-Tethys oceanic crust beneath
the central Iranian micro-continent (as southern part of
Eurasia continent) and to the later collisional event of Afro-
Arabia and Furasia (e.g., Baharifar 1997, 2004; Sepahi
1999; Sepahi et al. 2004, 2014).

In the Hamedan region, various plutonic and meta-
morphic rocks crop out (Fig. 2). Plutonic rocks of the
Alvand intrusive complex in the Hamedan region have

been divided by Sepahi (2008) into three categories: gab-
bro—diorite—tonalite association, granite-granodiorite por-
phyroid (megacrystic), and hololeucocratic granitoids.
Aplitic and pegmatitic dykes crosscut plutonic rocks of the
complex. A middle Jurassic U-Pb age has been indicated
for these plutonic rocks (e.g., Shahbazi 2010; Shahbazi
et al. 2010; Mahmoudi et al. 2011; Chiu et al. 2013).
Metamorphic events in the Hamedan region predate
major plutonic events and possibly occurred in Jurassic
time. Multiple deformational phases have occurred in the
metamorphic rocks through the known geologic time of
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Fig. 2 Simplified geological map of the Hamedan region (modified
after 1/250,000 geological map, Geological Survey of Iran). Abbrevi-
ations of dyke locations; Kh Khaku, 7-D Tarikdarreh, H-P Heydareh-
e-Poshteshahr, Ba Barfejin, Mo Moeijin, Go Ghoshalan, C-G Chesh-

@ Springer

meh-Ghassaban, Ch Chayan, Vi Vehnan, Ar Artiman, Sim Simin,
Ma Mangavi, De Dehno, Ka Kamariand, Z-A Zaman-Abad. Samples
for geochronological studies were collected from the Ar, Ba and H-P
areas
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this region (Izadikian 2009). Low- to high-grade metamor-
phic rocks with different compositions occur in the region.
The main metamorphic rocks of the area are meta-pelites,
but some meta-psammites, quartzites, meta-basites, calc-
pelites, and calc-silicates also occur in the region. Meta-
pelites are the most abundant lithology and include slate,
phyllite, pelitic schist/migmatite, and hornfels (Fig. 2).
Also, thin interlayers of amphibolite and amphibole schist
occur in the metamorphic sequence. Various regional meta-
morphic zones including chlorite (+chloritoid), biotite,
garnet, andalusite (chiastolite), sillimanite, and sillimanite-
(zcordierite)-K-feldspar, and thermal (contact) metamor-
phic zones of cordierite (+andalusite, +fibrolite), cordier-
ite-K-feldspar, and sillimanite-K-feldspar are developed in
the area in response to polyphase metamorphism. Major
lithological units of the studied area are presented in the
next section of the paper.

Lithological units of the Hamedan area

A summary of lithologic units is shown in Fig. 2 with more
detailed explanations of metamorphic and plutonic rocks
following:

Regional metamorphic rocks

Regional metamorphic rocks from low- to high-grade occur
in the Hamedan region. The low P/high T (LP/HT) meta-
morphism of the region is characterized by the sequential
development of various minerals, such as chlorite/chlori-
toid, biotite, garnet, andalusite (chiastolite), staurolite, sil-
limanite, and K-feldspar. Major metamorphic rocks of the
region are as follows:

The low-grade rocks are very fine-grained slates and
phyllites, interlayered with carbonate rocks, and quartz-
ites. Slates contain quartz, sericite, chlorite, graphite,
iron oxides, and pyrite. Phyllites contain quartz, chlorite,
+chloritoid, muscovite, and graphite. Mica schists show
lepido-porphyroblastic texture. These rocks contain quartz,
biotite, garnet, muscovite, and chlorite. Andalusite-bear-
ing schists are medium to coarse grained, with porphyro-
blasts of garnet (up to 5 mm in diameter), and andalusite
(chiastolite) crystals (up to 20 cm in length). Common
minerals are quartz, biotite, andalusite (chiastolite), gar-
net, and muscovite. Staurolite schists are composed of
quartz, staurolite, garnet, biotite, muscovite, chlorite, pla-
gioclase, and graphite. Porphyroblasts of garnet are typi-
cally small (<5 mm), but staurolite crystals are as much as
10 cm long. Many quartzveins cut these metasedimentary
rocks that are not common within the other lithologies in
the region. Sillimanite-andalusite schists contain quartz,
biotite, muscovite, plagioclase, and small garnet crystals

(up to 1 mm) with large (5—10 cm long) porphyroblasts
of andalusite partially replaced by prismatic sillimanite
(xfibrolite). Kyanite schists/migmatites occur at scattered
localities within other zones. They contain biotite + pla-
gioclase + quartz + kyanite (+remnants of andalusite/sil-
limanite) + garnet. In these rocks retrograde muscovite and
chlorite occur as well. High-grade schists and migmatites
occur in the vicinity of plutons in some places. In this zone
sillimanite/andalusite schists/migmatites alternate with
interlayers of cordierite-bearing migmatites. The highest
grade schists in the regional metamorphic sequence contain
sillimanite/andalusite (+kyanite) + quartz + biotite + mus-
covite + garnet + plagioclase + K-feldspar (perthitic
orthoclase) + staurolite. These schists grade into migma-
titic rocks in which their mesosome mineralogy is similar
to the mineral assemblages in the schists. These schists are
cut by abundant granitic pegmatites, as well as silliman-
ite—quartz veins. Some inter-layers of cordierite migmatites
occur in this zone and contain quartz, cordierite, andalu-
site/sillimanite, perthitic orthoclase, minor biotite, plagio-
clase, spinel (hercynite), and opaque minerals. This zone is
associated with partial melting and development of granitic
leucosomes in migmatites. Plagioclase-bearing leucosomes
are predominant, but some contain K-feldspar. Mesosomes
of migmatites have porphyro-lepidoblastic texture and
contain quartz, biotite, garnet, and Al,SiOs polymorphs,
especially sillimanite (+andalusite/kyanite) =+ stauro-
lite + graphite. Garnet crystals of millimeter to centimeter
size (up to 2 cm) are common.

Contact metamorphic rocks

Protoliths of the contact metamorphic rocks are similar to
those in the regional metamorphic sequence and include
abundant metapelitic rocks. Spotted schists contain spots
of sericitized porphyroblasts of previous regional metamor-
phic rocks, such as staurolite and andalusite. Rocks with
hornfelsic texture, but showing primary regional metamor-
phic assemblages, are common.

Cordierite (+andalusite) hornfels, cordierite-K-feldspar
hornfels, sillimanite-K-feldspar hornfels, and sillimanite-
(andalusite, +kyanite)-garnet hornfels are major rock units
in contact metamorphic sequences. Two metamorphic
zones are widespread around plutonic bodies: cordier-
ite + andalusite and cordierite-K-feldspar zones. Also,
a narrow sillimanite-K-feldspar zone is common around
mafic bodies. The typical mineral assemblage of cordier-
ite zone is quartz 4 biotite + cordierite & garnet + andalu-
site + fibrolite + plagioclase + opaque minerals. Adja-
cent to the plutonic rocks (contact zone), there is a narrow
zone of cordierite—orthoclase. This metamorphic zone is
characterized by coexisting cordierite and perthitic ortho-
clase. The typical mineral assemblage of these rocks is
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similar to the cordierite zone, except for presence of per-
thitic orthoclase.

Plutonic rocks

Various plutonic rocks, ranging from gabbro to diorite
and granite crop out in the Hamedan region (Sepahi 1999,
2008). These were intruded by aplitic and pegmatitic dykes.
In some places, the biotite granites—granodiorites contain
feldspar phenocrysts and megacrysts. These rocks are com-
posed of quartz, K-feldspar, plagioclase, and biotite; mus-
covite and zircon are accessory minerals. Some megacrysts
of Al,SiOs-minerals, garnet, and cordierite occur in these
rocks. Mafic rocks include gabbro to diorite. Gabbro has
intergranular, ophitic, and sub-ophitic textures and is com-
posed of clinopyroxene and plagioclase as major phases
and olivine and hornblende as minor minerals. Diorites are
composed of plagioclase, hornblende, and biotite as com-
mon minerals and contain accessory apatite and titanite.
Small volumes of leucocratic granitoids crosscut other plu-
tonic rocks in some localities. They are comprised of quartz
and plagioclase as common minerals and accessory biotite,
titanite, rutile, and zircon also occur.

The Alvand pluton (Hamedan) is a composite mesozonal
pluton consisting of older mafic parts and younger felsic
parts with sharp contacts between mafic and felsic plutonic
facies. In some parts of pluton (in NW and SE) mafic rocks
are autochthonous, but in many other parts they have been
disrupted by younger plutonic phases producing enclaves
and blocks of allochthonous mafic rocks inside younger fel-
sic parts of the pluton. In the central parts of the pluton,
small volumes of leucogranites crosscut older mafic and
felsic rocks. Aplites and pegmatites crosscut different plu-
tonic facies and their metamorphic country rocks (Sepahi
1999). U-Pb ages obtained by Shahbazi et al. (2010) are
consistent with the intrusive order of various plutonic
facies observed in this multiphase pluton.

The Alvand pluton has been emplaced in a compres-
sional tectonic regime, because it shows preferred orienta-
tion of feldspar megacrysts and enclaves near the contact
zone parallel to the pluton margin. Also, preferred orien-
tation of porphyroblasts of minerals, such as cordierite in
hornfelsic rocks near contact with plutonic rocks, confirms
forceful intrusion of the pluton into country rocks. There is
no evidence of ring dykes and cone sheets related to pluton
emplacement (Sepahi 1999).

Aplites and pegmatites
Outcrops with exposures of pegmatitic, aplitic, and com-
posite aplitic and pegmatitic dykes intruding both plutonic

rocks of the Alvand complex and surrounding regional
and contact metamorphic rocks can be observed in the
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Hamedan region (Fig. 3). In this region, aplites and pegma-
tites are common in the interior and margin of the pluton
and also in the exterior of the plutonic rocks. They crosscut
various lithologies, such as granites, cordierite- and andalu-
site-hornfelses, and andalusite—sillimanite schists and mig-
matites (i.e., low pressure metamorphic environment). In
areas such as Khaku, Tarikdarreh, Heydareh-e-Poshteshahr,
Barfejin, Ghoshalan, Cheshmeh-Ghassaban, Chayan,
Vehnan, and Artiman, these dykes intruded plutonic bodies
and contact metamorphic rocks (hornfelses), but in some
other places, such as Simin, Kamari, Zaman-Abad, Dehno,
and Mangavi, they are exterior to the plutons and intrude
regional metamorphic rocks (meta-pelitic schists/migma-
tites) (Fig. 2). Aplitic and pegmatitic dykes, cutting through
the Alvand complex and its contact aureole, are thinner
and show simple mineralogy and textures, but dykes in
the exterior of the Alvand complex, which are hosted by
medium- to high-grade metamorphic rocks, are thick, more
complex in mineralogy and textures, and show well-defined
internal zoning. Common features of aplites and pegma-
tites from various areas of the region have been classified
in Table 1, and petrography of some aplitic and pegmatitic
dykes is explained below. Typical geological features of the
studied pegmatites are similar to Muscovite (MS) and Mus-
covite Rare Element (MSREL) classes in Cerny (1991) and
Cerny et al. (2012) schemes of classification of pegmatite.
Aplitic and pegmatitic dykes in the interior and mar-
gin of the Alvand pluton do not show regular orientations
and consist of network of veins that possibly filled syn-
emplacement fractures inside the intrusive body. Dykes
in Simin area appear to have resulted from migration of
magma parallel to lithological contacts and tectonic folia-
tion to accumulate in the shear zones (Fig. 3c). Most dykes
in Kamari, Zaman-Abad, Dehno, and Mangavi areas have
been intruded parallel to the foliation of their country rocks
(commonly andalusite—sillimanite schists) (Fig. 4f).

Aplitic-pegmatitic dykes emplaced into the interior
to plutonic rocks

Aplitic—pegmatitic dykes of the Barfejin and Artiman areas
crosscut granitic and dioritic rocks, and commonly are no
more than 50 cm in width. In Barfejin area, they are aplitic
and have typical hypidiomorphic granular texture, and
are composed of quartz, perthitic K-feldspar, plagioclase,
zoned tourmaline, zircon, and phosphate minerals, such
as monazite, xenotime, apatite, and accessory amounts of
U-silicate and U-oxide. Tourmalines show zoning with
brown to dark blue color across the crystals. Samples Barl
and Barl1 were collected from this area. In Artiman area,
pegmatites are typical coarse-grained, but also have aplitic
and graphic/granophyric textures in some parts. They
appear as dykes of a few centimeters to a few meters in
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Fig. 3 Outcrops of pegma-
titicand aplitic dykes in are:

a Tarikdarreh, southwest of
Hamedan, dykes are intruded
Alvandcomplex in this area. b
Goshalan, west of Hamedan,
dykes are intruded Alvand com-
plex in these area. ¢, d Simin,
southeast of Hamedan, dykes
have intruded sillimanite schist,
hornfels, and migmatite in this
area. Note the sigmoid shape
of andalusite porphroclasts

in schists that are shear zone
indicators (3c). e, f Mangavi,
southeast of Hamedan, dykes
have intruded sillimanite schist
in this area

width. They usually have a pinkish appearance in outcrops
in response to the high proportion of orthoclase. They com-
monly have a feldspar-rich wall zone and a quartz-rich
core zone. These pegmatites comprise quartz, K-feldspar
(orthoclase and microcline), plagioclase, muscovite, scarce
biotite, tourmaline, garnet, titanite, allanite, needle-shaped
apatite, and cassiterite. Biotite is very scarce in the studied
aplitic and pegmatitic dykes and its crystals are commonly
fine grained, except for pegmatites in this area where some
coarse-grained biotite crystals occur. Sample Art19 that has
been dated was collected from this area.

Aplite—pegmatite dykes emplaced marginal to plutonic
rocks (in contact metamorphic rocks)

In the Khaku area, southeast of Hamedan, aplitic and peg-
matitic dykes crosscut hornfelsic host rocks. In some aplitic
dykes tourmaline nodules with spherical and dendritic

shapes are present (Fig. 4a). Some nodules have a light-
colored halo that is a transitional zone between the core
of nodules and their host aplites. These nodules consist of
tourmaline, quartz, K-feldspar, plagioclase, and accessory
amounts of muscovite. Tourmaline-feldspar and tourma-
line-quartz intergrowths occur in outcrops of pegmatite
dykes in southwest of Khaku (Fig. 4b). Aplitic and pegma-
titic dykes from east of Khaku contain quartz, tourmaline,
perthitic K-feldspar, and sapphire (blue corundum). White
and colorless quartz and scarce rose quartz can be seen in
these rocks. Sapphires are mostly converted to sericite and
biotite along margins (Fig. 5a).

In the Heydareh-e-Poshteshahr area, aplites have anhe-
dral granular texture and consist of quartz, K-feldspar,
garnet, plagioclase, muscovite, scarce biotite, tourmaline,
zircon, monazite, apatite, and Th-silicate. Some monazite
crystals are coarse (up to 800 um in diameter) (Fig. 5b).
The quartz is typically white, but rose quartz also occurs

@ Springer
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Fig. 4 Selected sections of
pegmatitic and aplitic dykes

in various areas of the region;

a Tourmaline nodules with
light halo in Khaku area, south
of Hamedan. b Tourmaline-
feldspar and tourmaline-quartz
intergrowths in pegmatite of
Khaku area. Textures of Pegma-
tites in Dehnoareas, southeast of
Hamedan including the follow-
ing: ¢ layering in tourmaline-
bearing pegmatites. d Graphic
intergrowths. e Radial aggregate
of tourmalines. f Tourmalines
grown perpendicular to the peg-
matite margin and xenoliths of
schist in contact of pegmatites.
Diameter of coin is nearly 2 cm
and clip’s length is about 3 cm

L ‘}? :

[ Sole ST o

in some dykes. Garnet occurs as translucent dark red to
dark reddish brown crystals from a few millimeters to a
few centimeters in diameter and is anhedral to euhedral in
shape showing trapezohedron form. In some places they
have skeletal shape and are intergrown with quartz pos-
sibly in response to fast growth (Fig. 5c, d). Zoned tour-
malines with brown to green pleochroism are present and
insome places are intergrown with quartz. Samples SNM4,
SNM41, SNM42, and SNM422 were collected from this
area.

Aplite-pegmatite dykes emplaced in regional metamorphic
rocks (exterior to plutonic rocks)

Among aplitic and pegmatitic dykes in the exterior of the
Alvand complex those in Mangavi area have greater thick-
ness (Fig. 3e, f). Several pegmatitic dykes are also distrib-
uted in the Kamari, Zaman-Abad, Dehno, and Simin areas.

These dykes have complex mineralogy and textures. They
commonly contain two textural domains: (1) outer zones
with anisotropic textures, including fine-grained units, lay-
ering (Fig. 4c), graphic/granophyric intergrowths (Fig. 4d),
and plumose aggregation; (2) interior zones with coarse-
grained and blocky textures. The anisotropic textures in
pegmatites are dominated by the effects of liquidus under-
cooling and blocky textures result mostly from the accu-
mulation of fluxes (London 1999, 2005, 2009, 2014a, b).
In layered aplitic—pegmatitic dykes, tourmaline-rich layers
alternate with quartz-feldspar-rich layers across the dykes.
Tourmaline locally grows as radial aggregates (Fig. 4e) or
are perpendicular to the pegmatite margin (Fig. 4f) and are
typically zoned prismatic crystals (Fig. Se, f). Some tour-
maline crystals have quartz, monazite, and zircon inclu-
sions. Tourmalines have poikilitic texture (Fig. 5h) in
response to very fast growth of porphyroblasts. Tourmaline
crystals are color-zoned with normal (Fe-enriched cores

@ Springer
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Fig. 5 Thin section photo-
micrographs: a Existence

of sapphire in aplitic and
pegmatitic dykes east of Khaku
that are mostly converted

to sericite along margins. b
Coarse-grained monazite in an
aplitic dyke of the Heydareh-
e-poshteshar area, southwest
Hamedan. Skeletal shape
garnet, intergrown with quartzin
the same dyke, ¢ in PPL, d in
XPL. Zoned tourmaline from

a layered pegmatitic dyke of
the Dehno area, southeast of
Hamedan, e in PPL, f in XPL.
g Graphic texture in pegmatite
dyke of Dehno area. h Tour-
maline with poikilitic texture
in schists near pegmatites in
Dehno area. Grt Garnet, Tur
Tourmaline, Qtz quartz, Kfs
K-feldspar, Crn Corundum, Ms
Muscovite, Mnz Monazite, and
Zrn Zircon

relative to the rims), reverse, patchy, and oscillatory zon-
ing represented in the tourmaline population. Pleochroism
changes from light blue, pale green, yellow and light brown
in the core to dark blue and dark brown in margin. In the
pegmatites, graphic texture is composed of an intergrowth
of microcline and quartz (Figs. 4d, 5g). Plumose muscovite
clusters are seen in the wall zone of these pegmatites. Also,

@ Springer

in host schists high amounts of tourmaline and muscovite
have crystallized (exocontact metasomatism). Fine needle-
shaped muscovite is seen as inclusions in quartz and feld-
spar in border zone and yellowish large crystalline books of
muscovite are seen in wall and intermediate zones of some
pegmatites. Xenoliths of schist are common in these peg-
matites near the contact zone (Fig. 4f). Pegmatites in the
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Fig. 6 a TAS compositional discrimination diagram, based on clas- »

sification of Middlemost (1985), b Plot of chemical composition of
aplites and pegmatites of Hamedan region on Shand diagram, which
indicates peraluminous affinity of rocks, ¢ Plot of chemical compo-
sition of aplites and pegmatites of Hamedan region on diagram of
Chappell and White (1992)

Dehno area are comprised of quartz, K-feldspar, plagio-
clase, muscovite, tourmaline, garnet, and beryl. The hex-
agonal crystals of beryl are typically pale-green and blue
(aquamarine) and up to 20 cm long. Quartz is milky, white
or colorless.

K-feldspar and plagioclase occur in various aplitic and
pegmatitic dykes. In general K-feldspar is more abundant
than plagioclase in these rocks. K-feldspar commonly
occurs as fine- to coarse-grained perthitic microcline. Zir-
con, monazite, xenotime, and apatite inclusions can be
observed in them. It has graphic intergrowths with quartz
and tourmaline in some places. In some studied pegmatites
and aplites, K-feldspar is pinkish orthoclase.

Method of study

One of the main objectives of this study was to provide
constraints on the age of aplites and pegmatites in the
Hamedan region using monazite, zircon, and allanite U-Pb
geochronology. For this purpose, 250 samples were col-
lected from outcrops. Seventy thin sections and 31 polished
thin sections were prepared and examined with an optical
microscope. Eight samples with fresh and suitable mineral
assemblages were chosen for electron probe microanalysis
(EPMA). The EPMA analyses were done at IMPRC Co.,
Karaj, Iran, using a Cameca SX 100 instrument at 15 kV
voltage, 4 X 1077 Torr pressure, and 20 nA beam current,
with maximum 30 s counting times. Ultimately, seven
samples from polished thin sections were found to contain
sufficiently large crystals for monazite, zircon, and allan-
ite U-Pb laser ablation inductively coupled plasma-mass
spectrometry (LAICP-MS) geochronology. For whole rock
analyses, less altered and rather homogenous finer grained
samples of rocks were chosen. ICP-MS and ICP-AES anal-
yses on whole rocks were done at SGS Canada Inc., Miner-
als Services, Toronto, Canada.

U-Pb LA ICP-MS dating of 30 um thick polished thin
sections was done as follows: optical identification of
accessory minerals by polarizing microscope was done.
Then back-scattered electron (BSE) images and cathodo-
luminescence (CL) imaging onzircon and BSE imaging
of allanite and monazite were taken. The target grains
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Fig. 7 Variation diagrams of some LILE elements (see text)

were analyzed using an Australian Scientific Instru-
mentsM-50193 nm ArF excimer laser ablation system cou-
pled to Agilent 7700x quadrupole ICP-MS (see McFarlane
and Luo 2012). Crater diameter was 33 um for zircon and
allanite dating and 17 um for monazite (McFarlane and
McKeough 2013; McFarlane 2016). Data reduction was
done by using Iolite™ and Vizual Age™. Data output and
assessment of accuracy were done by using quality control
standards (e.g., Plesovice zircon; 44069 monazite; SISS3
allanite). Concordia diagrams were drawn by ISOPLOT/
EX 3.75 software (Ludwig 2003).
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LA-ICP-MS was done on monazite, zircon, and allan-
ite grains from five selected polished thin sections and is
described as follows:

Total analyzed spots on monazite grains are 89 on 31
grains including sample Barl; 14 spots on 11 grains, sam-
ple Barl1; 25 spots on 8 grains, sample SNM41; 17 spots
on 4 grains, sample SNM42; 17 spots on 4 grains and sam-
ple SNM422; 16 spots on 4 grains. For zircon grains total
analyzed spots on sample SNM4 are 9 spots on 8 grains.
For allanite total analyzed spots are 25 spots on multiple
grains sample Art19.
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Fig. 8 Rb-Ba-Sr ternary diagram illustrating the compositional vari-
ation of the studied aplites and pegmatites. a Strongly differentiated
granites; b Normal granites; ¢ Anomalous granite; d Quartz diorites
and granodiorites; e Diorites (El Bouseily and El Sokkary 1975)

Geochemistry
Whole rock geochemistry

Whole rock analysis by fusion ICP-MS and ICP-AES has
been done on 16 samples from the aplites and pegmatites of
the Hamedan region (Table 2). The compositions of sam-
ples plot in the field of granite on (Na,O + K,0) vs SiO,
diagram of Middlemost (1985) (Fig. 6a). High amounts of
Si0, (up to 76.9 wt%), Al,O5 (up to 16.0 wt%), K,O (up
to 7.54 wt%), and Na,O (up to 8.10 wt%) are indicative of
the importance of fractional crystallization in their petro-
genesis and low amounts of CaO (0.31-1.55 wt%), P,Os
(0.05-0.76 wt%), TiO, (0.010-0.019 wt%), with Fe,O5r
(0.09-1.65 wt%), and MgO (0.02-0.38 wt%) and high
FeOt/(FeOt + MgO) indicating a ferroan signature for

these rocks (Frost et al. 2001). The latter could be related
to crystallization of minerals, such as apatite, titanite, and
biotite from magma in early stages of its evolution. The
molar [Al,05/(CaO + Na,O + K,0)] ranges from 1.0 to 1.8
and diagrams of molar Al,0,/(CaO + K,O + Na,O) versus
molar Al,04/(K,O0 + Na,0) (A/CNK vs A/NK) and molar
A/CNK versus SiO, (wt%) (Shand 1943; Maniar and Pic-
coli 1989) reflect the peraluminous character of aplitic and
pegmatitic rocks (Fig. 6b). Most pegmatites with the LCT
signature have compositional affinity with S-type gran-
ites (Chappell and White 2001). On the basis of Alumina
Saturation Index (ASI), these pegmatites resemble Lith-
ium-Cesium-Tantalum (LCT) family of pegmatites (e.g.,
Cerny 1991; London 2008). Their A/NK values are in the
range of 1.05-2.41 and A/CNK values are in the range of
1.00-2.09. These types of pegmatites are usually related to
S-type granites of orogenic environments (i.e., subduction
zones or continental collision zones) (Cerny 1991, 1992;
Cerny and Ercit 2005; Martin and Vito 2005; Cerny et al.
2012). On the diagram from Chappell and White (1992)
studied aplites and pegmatites plot in S-type granites field
(Fig. 6¢). A comparison of the geochemical characteris-
tics of the studied pegmatites and aplites with geochem-
istry of three plutonic rock associations, which exist in
the Alvand intrusive complex (see petrography section),
indicates that the geochemical affinity of these rocks has
similarity with the granite—granodiorite porphyry S-type
assemblage (according to Sepahi 1999, 2008). Therefore,
aplites and pegmatites cutting through this rock unit could
be an evolved variety of granitic rocks that originated from
the same magma, although those crosscutting high-grade
schists and migmatites of the region may have an anatec-
tic origin, because these pegmatites are surrounded only by
sillimanite-bearing schists and migmatites in the region.
Trace element compositions of the studied rocks are pre-
sented, briefly. An increase in the amounts of Rb can be
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Fig. 9 a Chondrite-normalized REE patterns (values from Boynton 1984) and b Chondrite-normalized patterns (values from Thompson 1982)

in samples of aplites and pegmatites of Hamedan region
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Table 3 EPMA analyses of garnets of the Hamedan region

Sample SNM4-1 SNM4-2 SNM4-3 Kh2A72 Kh2A73 Mirz1 Mirz2 Mirz4 SepP

oxides

Major elements (wt%)
Sio, 41.37 40.67 39.59 44.00 42.54 43.00 41.60 40.68 35.84
TiO, 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.18 0.16
AlLO, 19.05 19.32 18.28 19.50 19.54 18.9 18.8 10.48 20.63
FeO 33.12 32.77 35.06 26.40 30.46 28.00 31.5 36.45 35.88
MgO 0.76 1.98 1.86 1.44 1.24 1.35 0.57 0.29 0.81
MnO 3.86 3.63 3.83 6.98 5.01 8.13 8.33 10.01 5.13
CaO 1.18 1.42 1.32 1.70 1.06 1.07 0.78 0.94 0.37
Total 99.34 99.79 99.94 100.0 99.85 101.0 102.0 99.03 98.82

Number of cations on the basis of 12 oxygens
Si 3.31 3.24 3.20 3.42 3.35 3.38 3.29 3.45 2.98
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Al 1.79 1.81 1.74 1.78 1.81 1.75 1.75 1.04 2.02
Fe 222 2.18 2.37 1.71 2.00 1.84 2.08 2.58 2.49
Mn 0.26 0.24 0.26 0.46 0.33 0.54 0.56 0.72 0.361
Mg 0.09 0.23 0.22 0.17 0.14 0.16 0.07 0.04 0.10
Ca 0.10 0.12 0.11 0.14 0.08 0.09 0.07 0.15 0.03
Total 7.78 7.84 7.92 7.69 7.74 7.79 7.82 8.01 7.99
Fe/(Mn + Fe + Mg) 0.86 0.82 0.83 0.73 0.80 0.72 0.76 0.77 0.84
Alm (%) 83.01 78.44 82.98 69.1 77.91 70.00 75.10 73.93 83.46
Sps (%) 9.80 8.79 9.19 18.5 12.96 20.60 20.10 20.57 12.08
Grs (%) 3.80 4.34 3.98 5.72 3.45 342 2.38 4.43 1.10
Prp (%) 3.39 8.43 3.85 6.74 5.68 6.03 4.80 1.07 3.36

correlated with late stage crystallization of K-feldspar and
biotite, and decrease in Sr contents can be due to fractional
crystallization of plagioclase. Barium content is com-
monly used as indicator of the evolution in granites and
pegmatites, which decreases with increasing crystal frac-
tionation (Cerny et al. 1985; Alfonso et al. 2003), and the
decrease in content of Ba is marked. High amount of Ba
(<10-706 ppm) is due to the presence of minerals, such as
K-feldspar and biotite. Rubidium contents in the pegmatites
and aplites vary from 48 to 936 ppm and Sr contents from
14 to 265 ppm. With increasing concentrations of K, the Rb
contents of the rocks increase, as well. This positive corre-
lation also occurs in Ba versus Sr values, CaO versus Sr
values, and Cs versus Rb values, due to their similar geo-
chemical behavior (Fig. 7). These chemical characteristics
indicate that the studied aplites and pegmatites are highly
evolved varieties of granitoids of the region. As a rare alkali
metal Rb is enriched in K-bearing minerals during progress
of pegmatite crystallization (Cerny et al. 1985), the ratio of
K/Rb is indicative of the general fractionation.

A few samples contain progressively less Sr and Ba
and more Rb as a result of fractionation. High amounts of
Rb (48-936 ppm) in the studied aplites and pegmatites,
especially in samples: Ar-14 (936 ppm), Ar-4 (590 ppm),

@ Springer

MBG?7 (158 ppm), T-5 (257 ppm), and HMt6 (526 ppm)
indicate that these samples are placed in the category of
strongly differentiated granites in the ternary Rb—Ba-Sr
plot (El Bouseily and El Sokkary 1975). Other samples are
moderately evolved chemically (Fig. 8).

On a chondrite-normalized spider diagram (Boynton
1984), the La/Lu ratio increases with increasing ) REE
content and profiles are virtually flat at very low con-
centrations of REE (Fig. 9a). )’ REE in the studied sam-
ples vary from 4.05 to 432 ppm and Eu/Eu* 0.04 to 0.37.
LREE show enrichment against HREE. The enrichment of
amounts of LREE (2.74-403.9 ppm) compared with HREE
(0.08-14.38 ppm) correlates with monazite and allanite,
which host the LREE in these rocks (Deer et al. 1982).
Europium negative anomalies typically indicate residual
plagioclase in the source region or fractional crystallization
of plagioclase from magma (Henderson 1984). This anom-
aly is concordant with Ba and Sr anomalies in Fig. 9b.

On chondrite-normalized multi-element diagrams
(Thompson 1982), high field strength elements (HFSE),
such as Zr, Nb, and Ti show negative anomalies (Fig. 9b).
These anomalies may result from the preservation of such
elements in residual phases when magmas have been gen-
erated in a subduction zone by partial melting of source
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Table 5 EPMA analyses of K-feldspars of the Hamedan region

Sample 1.Kh  2.Kh 1.Sep 2.Sep 3.Sep 4.Sep 1.Ar4 2.Ard 3. Ard 4. Ar4 5 A4 6.Ar4 1.T5 2.T5
Sio, 6434 6447 6435 6505 6508 6505 6424 6401 6433 6421 6406 6414 6516 652
TiO, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.01 0.00 0.00
Al,O4 18.39 1851 19.07 1859 1822 1892 1834 1843 1831 1844 1839 1848 1823 1825
FeO 0.07 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
MnO 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01
CaO 0.00 0.00 0.02 0.03 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00
Na,O 0.84 0.39 1.24 1.02 0.99 0.00 0.30 0.49 0.81 0.62 0.87 0.63 0.91 0.91
K,O 17.21 17.11 16.09 16.15 1650 16.61 17.80 17.48 1730 17.64 17.14 1749 1640 17.09
Total 100.85 100.61 100.77 100.85 100.79 100.61 100.70 100.44 100.75 100.92 100.52 100.80 100.80 101.46
Number of cations on the basis of 8 oxygens
Si 2974 298 2.96 2986 2995 2988 2978 2972 2977 2971 2971 2971 2996 299
Ti 0 0 0 0 0 0 0.001 0 0 0.001 0 0 0
Al 1.002 1.009 1.034 1.006 0988 1.024 1.002 1.009 0999 1.006 1.005 1.009 0.988 0.986
Fe 0.003 0.005 O 0 0 0 0 0 0 0 0 0.004 0
Mn 0 0 0 0 0 0 0 0 0 0 0 0 0
Mg 0 0 0 0 0 0 0.001 0.001 O 0 0.001 0 0 0.001
Ca 0 0 0.001 0.001 0 0.001 0 0 0 0 0 0 0
Na 0.075 0.035 0.111 0.091 0.088 0 0.027 0.044 0.073 0.056 0.078 0.057 0.081 0.081
K 1.015  1.009 0944 0964 0969 0973 1.053 1.035 1.021  1.041 1.014 1.033 0962 1
Sum 5.07 5.038  5.05 5.03 5.04 4987 5.061 5.062 5.07 5074 5071 5.07 5.032  5.057

rocks, which is then recorded to some extent in all deriva-
tive crustal and supracrustal rocks (see Wedepohl 1995).
Titanium negative anomalies may be related to fractional
crystallization of titanite and ilmenite and other Ti-bearing
phases like magnetite, clinopyroxene, hornblende, bio-
tite, and even muscovite from evolving magmas. Positive
anomalies of K and Rb in multi-elements spider diagram
(Fig. 9b) may have resulted from late stage crystallization
of muscovite and K-feldspar from magma. Barium, and
Sr negative anomalies can be due to their co-substitution
in plagioclase, which crystallizes at early stages (Fig. 9b).
Positive P anomalies may be related to the presence of
apatite in the rocks although P can remain incompatible
in melts with high A/CNK and substitute into feldspar,
although this has not been ascertained. On the whole,
enrichment in some LILE, such as K, Rb, and Th and
depletion in some HFSE, such as Nb, Ti, Zr, and Y, and
HREE can be related to melting and fractionation processes
in the region (Foley and Wheller 1990; Wilson 2007).
According to Linnen et al. (2012), the LCT (Li- Cs- Ta)
family of pegmatites contains high concentrations of Rb,
Cs, Be, Ta, Nb, and Sn, as well as elevated levels of flux-
ing components (Li, P, F, and B). Accordingly the studied
aplite and pegmatites have high concentration of Rb (up to
936 ppm), Cs (up to 152 ppm), Ta (up to 67.2 ppm), Nb (up
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to 151 ppm), and Sn (>10,000 ppm). High amounts of Sn
(to greater than 10,000 ppm/1%) are consistent with crys-
tallization of cassiterite as accessory phase in some of these
rocks. High amounts of HFSE elements, such as Th (up to
78.8 ppm), U (up to 23.7 ppm), and Zr (up to 208 ppm)
(Table 2), are consistent with occurrence of some miner-
als, such as Th-silicate, U-silicate, U-oxides, and zircon in
these rocks. High amounts of some REE and HFSE ele-
ments, such as Ce (up to 103.5 ppm), La (up to 125), Nb
(up to 135), Ta (up to 67.2), and LILE elements, such as Cs
(up to 152 ppm) (Table 2), K/Rb (19.3-193.1), and Rb/Sr
(0.58-23.4) ratios and occurrence of some accessory min-
erals, such as Th-silicate, U-silicate, U-oxides, Nb-oxide,
zircon, allanite, phosphate minerals (monazite, Xenotime
and apatite), beryl, and cassiterite emphasize the highly
fractionated nature of some of these studied aplites and
pegmatites.

Mineral chemistry

In this section, mineral chemistry of common minerals of
the pegmatites and aplites of the region, such as garnet,
tourmaline, K-feldspar, plagioclase, muscovite, and biotite
are presented to interpret crystallization and fractionation
history of these rocks (Tables 3, 4, 5, 6, 7, 8).
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Table 6 EPMA analyses of plagioclases of the Hamedan region
Sample 1.Kh 2.Kh 1.Sep 2.Sep 3.Sep 4.Sep L. Mt5 2.Mt5 3.Mt5 4.Mt5 S5 Mt5 1.Ard 2. Ard 3.Ar4
Si0, 67.12  67.19 66.94 66.27 6744 6758 6793  67.82 66.26  66.65 6572 6720 67.7 67.43
TiO, 0.00 0.00  0.00 0.00 0.00  0.00 0.01 0.00 0.01 0.00 0.03  0.03 0.02 0.00
ALO;  20.06 2021 20.66 21.28  20.69 2026 20.29  20.30 21.13  21.16  22.09 20.13 20.08 19.93
FeO 0.20 0.27  0.03 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.06  0.02 0.02 0.00
MnO 0.00 0.02  0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01  0.00 0.02 0.02
MgO 0.00 0.00  0.03 0.00 0.01  0.02 0.00 0.00 0.01 0.00 0.01  0.00 0.00 0.01
CaO 0.41 012  0.19 0.17 055  0.19 0.40 0.27 1.61 1.56 0.70  0.06 0.04 0.06
Na,O 12.02  13.08 12.01 12.21 1193 1143 11.17 11.03 11.36 1120 10.02 1149 11.09 11.77
K,O 0.13 0.09 0.11 0.10 0.09 0.07 0.15 0.12 0.27 0.25 1.85 0.16 0.09 0.12
Total 99.94 101.20 99.98 100.00 100.70 99.56 99.96  99.54  100.70 100.80 100.50 99.09  99.06  99.34
Number of cations on the basis of 8 oxygens
Si 2.95 2934 2936 2909 2937 2965 2968 2971 2899 2907 2885 2964 2979 2.969
Ti 0 0 0 0 0 0 0 0 0 0 0.001 0.001 0.001 O
Al 1.039 1.04  1.068 1.101 1.062 1.048 1.045 1.048 1.09 1.088 1.143  1.047 1.041 1.034
Fe 0.007 001  0.001 0 0 0 0 0 0 0 0.002 0.001 0.001 O
Mn 0 0.001 0 0 0 0 0 0 0 0001 O 0 0.001  0.001
Mg 0 0 0.002 0 0.001 0.001 0 0 0.001 0 0.001 0 0 0.001
Na 1.024 1.107  1.021 1.039  1.007 0972 0.946 0.937 0964 0947 0853 0983 0946 1.005
K 0.006  0.005 0.006 0.006  0.005 0.004 0.008 0.007 0.015 0.014 0.104 0.009 0.005 0.007
Ca 0.019  0.006 0.009 0.008  0.026 0.009 0.019 0013 0.075  0.073  0.033 0.003 0.002 0.003
Sum 5.045 5102 5.044 5063  5.038 4.999 4987 4976 5.045  5.03 5.021 5.007 4975 5.019
Ab%  97.61  99.01 98.55 98.67 97.01 98.68 9722 9791 9146  91.58  86.16 9879 99.26  99.01
Or% 0.57 044 057 0.56 0.48  0.40 0.82 0.73 1.42 1.35 10.5 0.90 0.52 0.68
An% 1.82 055 0.88 0.77 251 092 1.96 1.36 7.12 7.07 334 031 0.22 0.31
Garnet diagram most studied tourmalines plot in the alkali field

The chemical analyses of garnet crystals from aplitic rocks
of the Hamedan region show that they are almandine-rich
garnets (X,;,, = 69.1-83.5), but contain notable amounts of
spessartine, as well (XSps = 8.79-20.60) (Table 3; Fig. 10)
that illustrate accumulation of Mn at late stages of crystal-
lization (Cerny et al. 1985). Fe/(Fe + Mn + Mg) values
(0.72-0.86) of these garnets also illustrate their almandine-
rich nature. The mole fractions of Ca and Ti are negligible.

Tourmaline

The chemical analyses of tourmaline crystals are shown in
Table 4. These tourmalines have FeO (9.93-17.56 wt%),
MgO (0.01-2.56 wt%), MnO (0.02-0.89 wt%), CaO
(0.01-0.31 wt%), Na,O (<0.01-2.91 wt%), and K,O
(0.04-0.28 wt%). The chemistry of tourmaline is con-
sistent with its zoned texture in photomicrographs. In all
studied samples, Na is dominant over Ca and K, at the X
site. The Ca contents are low with the range from 0.001 to
0.05 apfu; accordingly on Ca-(X site vacancy)-(Na + K)

(Hawthorne and Henry 1999) (Fig. 11a). In all cases,
FeO contents are greater than MgO and on Na/(Na + Ca)
versus Fe/(Fe + Mg) diagram, tourmaline composition
plots in the schorl field (Fig. 11b). On the Mg versus
Fe diagram of London and Manning (1995), tourmaline
shows composition below to the line X(Fe + Mg) = 3
that corresponds to the dravite—schorl exchange vector
FeMg_, and there is, also, a systematic departure toward
alkali-deficient tourmaline and oxy-tourmaline, which is
due to Al substitution in the Y-site (R2) (Fig. 11c). On
the diagram of Manning (1982), our compositional data
are plotted in terms of the cation groups, i.e., R3 ver-
sus R1 + R2 where R1 = (Na + Ca), R2 = (Fe + Mg),
and R3 = (Al + 1.33Ti). R1, R2, and R3 correspond
to X, Y, and Z sites of the tourmaline formula, respec-
tively. As can be seen in Fig. 11d, all tourmalines fall
between the exchange vectors labeled proton deficient
(AIOMg_;(OH)_,), and alkali deficient (OAINa Mg_,),
substitution, implying that both alkali-deficient and
proton-deficient substitutions have been effective on
the composition of the studied tourmalines. Manning
(1982) found that the extent of such coupled substitutions
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Table 7 EPMA analyses of muscovites of the Hamedan region

Sample 1. MT6 2. MT6 3. MT6 4. MT6 1. Ar4 2. Ar4 3. Ar4
Sio, 46.30 46.00 46.10 45.50 45.60 45.90 46.30
TiO, 0.43 0.43 0.32 0.32 0.06 0.07 0.06
Al O, 35.10 36.30 36.20 37.10 36.60 36.50 36.70
FeO 0.70 0.69 0.61 1.03 1.97 1.87 1.79
MnO 0.01 0.00 0.00 0.00 0.01 0.06 0.02
MgO 0.66 0.70 0.65 0.57 0.06 0.12 0.09
CaO 0.01 0.04 0.01 0.03 0.01 0.04 0.04
Na,O 0.82 0.94 0.90 1.04 0.56 0.54 0.63
K,0 10.90 10.90 11.00 10.10 11.50 11.50 11.20
Total 95.00 96.00 95.80 95.70 96.40 96.60 96.80
Number of cations on the basis of 22 oxygens
Si 6.19 6.09 6.11 6.02 6.06 6.08 6.1
Ti 0.04 0.04 0.03 0.03 0.01 0.01 0.01
Al 5.52 5.66 5.65 5.78 5.73 5.69 5.7
Fe 0.08 0.08 0.07 0.11 0.22 0.21 0.2
Mn 0 0 0 0 0 0.01 0
Mg 0.13 0.14 0.13 0.11 0.01 0.02 0.02
Ca 0 0.01 0 0 0 0.01 0.01
Na 0.21 0.24 0.23 0.27 0.14 0.14 0.16
K 1.87 1.84 1.86 1.7 1.94 1.95 1.88
Sum 14.1 14.1 14.1 14 14.1 14.1 14.1

Table 8 EPMA analyses of biotites of the Hamedan region

Sample 1. Mso4 2. Mso4 3. Mso4 4. Mso4 5. Mso4 1. Ar10 2. Ar10 3. Ar10 4. Ar10
Sio, 35.43 36.02 36.34 35.75 36.85 35.53 34.32 34.13 34.95
TiO, 4.82 4.77 4.76 4.75 4.81 297 291 3.03 2.94
Al,O4 13.96 13.83 13.84 14.49 14.13 15.14 14.44 13.85 14.02
FeO 21.84 22.13 21.48 21.97 18.91 24.34 24.01 24.04 23.85
MnO 0.16 0.16 0.13 0.14 0.11 0.35 0.36 0.32 0.33
MgO 9.14 9.33 9.00 9.08 10.68 8.47 8.13 7.65 7.86
CaO 0.10 0.02 0.05 0.05 0.00 0.11 0.10 0.26 0.07
Na,O 0.12 0.10 0.18 0.09 0.08 0.22 0.24 0.19 0.12
K,O 10.17 10.23 10.12 10.03 10.44 9.63 9.64 9.61 9.68
Total 95.74 96.59 95.90 96.35 96.01 96.76 94.15 93.08 93.82
Number of cations on the basis of 22 oxygens
Si 5.51 5.55 5.61 5.51 5.61 55 5.49 5.53 5.6
Ti 0.56 0.55 0.55 0.55 0.55 0.35 0.35 0.37 0.35
Al 2.56 2.51 2.52 2.63 2.54 2.76 2.72 2.65 2.65
Fe 2.84 2.85 2.77 2.83 241 3.15 3.21 3.26 3.19
Mn 0.02 0.02 0.02 0.02 0.01 0.05 0.05 0.04 0.04
Mg 2.12 2.14 2.07 2.08 2.42 1.96 1.94 1.85 1.88
Ca 0.02 0 0.01 0.01 0 0.02 0.02 0.05 0.01
Na 0.04 0.03 0.05 0.03 0.02 0.07 0.07 0.06 0.04
K 2.02 2.01 1.99 1.97 2.03 1.9 1.97 1.99 1.98
Sum 15.68 15.66 15.6 15.63 15.59 15.75 15.82 15.8 15.73
Mg/Fe + Mg 0.43 0.43 0.43 0.42 0.5 0.38 0.38 0.36 0.37
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Fig. 10 Plot of chemical compositions of garnets in almandine-
pyrope-grossular-spessartine diagram. Garnet compositions are
almandine-rich

become greater with decreasing temperature, i.e., with an
increase in the degree of fractionation. On the Al-Fe-Mg
and Ca—Fe-Mg diagrams of Henry and Guidotti (1985)
that show the relationship between tourmaline compo-
sition and the host rock type, tourmaline compositions
exclusively plot in field 2, corresponding to tourmaline
from Li-poor granitic rocks and associated pegmatites
and aplites (Fig. 12).

Feldspars

The Na,O contents (0.00-1.24 wt%) and also CaO con-
tents are very low (0.00-0.03 wt%) in K-feldspars. The
chemical analyses of K-feldspars (Table 5) plotted on
Or—Ab-An diagram indicate that orthoclase component
of the bulk K-feldspar is higher than 90, which means
that this mineral is nearly Na-poor alkali feldspar. The
CaO contents (anorthite components) of analyzed plagio-
clase crystals are very low (near zero) (Table 6), which
indicates an evolved affinity of these pegmatites.

Muscovite

Muscovite compositions show low amounts of FeO
(0.61-1.97 wt%), MgO (0.06-0.7 wt%), and TiO,
(0.06-0.43 wt%). The chemical analyses of white micas
(Table 7; Fig. 13a) are near the muscovite end-member
in Si0,-Al,05-(FeO + MgO) triangular plot (Vidal et al.
1999). As indicated in the plot muscovites are low par-
agonite end-member in their compositions (Fig. 13a).
Muscovite compositions in the diagram of Al (apfu) vs.
Si (apfu) have plots in the muscovite area (Si <3.1 apfu)
(Fig. 13b) that indicate the Si:Al ratio in the muscovite

composition is not greater than 3:1, so these white micas
are nearly pure muscovite.

Biotite

The EPMA of biotites are shown in Table 8. The ranges in
wt% are TiO, 2.91 to 4.82, FeO 18.91 to 24.34, MgO 7.65
to 10.68, Al,05 13.83 to 15.14, and K,O 9.62 to 10.44.
Biotites contain moderate to high contents of Ti and
their XMg are between 38 and 50. Biotite compositions
plot near the siderophyllite field in eastonite—siderophyl-
lite—phlogopite—annite rectangular diagram (Deer et al.
1982) (Fig. 14a). Also, in SiO,-Al,0;—(FeO + MgO) ter-
nary diagram (Vidal et al. 1999), the compositions of bio-
tites plot near the siderophyllite-eastonite field (Fig. 13a).
Abdel-Rahman (1994) defined discrimination diagrams
on the basis of major elements (FeO, MgO, Al,0;) of
biotites in igneous rocks crystallized from A (Anorogenic
alkaline suites), P (Peraluminous suites), and C (Calc-
alkaline orogenic suites) magma types. Based on his clas-
sification, the studied biotites belong to peraluminous
granite (P) suites (S-type) (Fig. 14b—d) that are consist-
ent with the peraluminous whole rock composition of the
studied pegmatites and aplites (Fig. 6b).

Nachit et al. (1985) used mica composition in granitoids
to relate magma types in which biotite crystallized. On
the basis of the Al (tot) vs. Mg classification diagram, the
nature of granitoid magmas from biotite compositions from
the Hamedan region pegmatites and aplites plots in the per-
aluminous field (Fig. 14e).

U-Pb geochronology

Cathodoluminescence (CL) and SEM-BSE images of
selected analyzed zircon, monazite, and allanite are shown
in Fig. 15. Monazites are anhedral to subhedral prismatic
grains. Sizes of analyzed monazite grains were 50-800 um.
Zircon grains are anhedral to euhedral prismatic. Sizes of
analyzed zircon grains were 10—150 um. Allanite occurs as
large subhedral crystals up to 1.5 cm in size (easily visible
even in field outcrops and hand specimens).

For sample SNM41, the monazite has a Concordia age
(weighted mean of overlapping concordant analyses) of
172.2 + 0.9 Ma (MSWD of concordance = 0.019; probabil-
ity of concordance = 0.89; Fig. 16a). For sample SNM42,
monazite has a Concordia age of 169.2 + 0.9 Ma (MSWD of
concordance = 0.0012; probability of concordance = 0.97,;
Fig. 16b). For sample SNM422, monazite has a Concordia
age of 169.8 + 0.8 Ma (MSWD of concordance = 4.43; prob-
ability of concordance = 0.037; Fig. 16¢). For sample Barl,
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Fig. 11 a Plot of tourmaline compositions of Hamedan region on
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which indicate that most studied tourmalines plot in the alkali field. b
Plot of tourmaline compositions on Na/(Na + Ca)-Fe/(Fe + Mg) dia-
gram. Tourmaline compositions are plotted in schorl field. ¢ Plot of
concentration of Fe versus that of Mg in study tourmalines (London
and Manning 1995). Values are expressed in atoms per formula unit.

monazite has a Concordia age of 166.2 + 1.1 Ma (MSWD
of concordance = 0.64; probability of concordance = 0.42;
Fig. 16d). For sample Barl1, the monazite has a Concordia
of 162.6 + 0.8 Ma (MSWD of concordance = 0.42; prob-
ability of concordance = 0.52; Fig. 16e). Th/U ratios of
monazite are quite variable with monazites of the Heydareh-
e-Poshteshahr area having values ranging from7.92 to 39.59
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d Compositional variations in study tourmalines are shown in relation
to common substitution mechanisms in tourmalines (Manning 1982).
The R1 variable is Ca 4+ Na, the R2 variable is Fe + Mg + Mn, and
the R3 variable is Al + 1.33Ti. The variations can be related to alkali
defect and proton-loss substitutions in tourmaline. The vectors repre-
sent the possible exchange operator that could have operated in these
tourmalines

(ave. 23.32), whereas monazites from the Barfejin area have
a wider range of 0.08 to 81.82 (ave. 15.85).

For sample SNM4 near-concordant zircon analyses
range between between ~158 and ~172 Ma with average
206ph/2381 age near ~165 Ma (Fig. 16f). Th/U ratios for
zircon of Heydareh-e-Poshteshahr area are 0.02 to 1.23
(ave. 0.31).
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Fig. 13 a Chemical analyses of white micas and biotites on SiO,-Al,05-(FeO + MgO) triangular plot (Vidal et al. 1999). b Composition of

study muscovites on the Al (apfu) vs. Si (apfu) diagram

For sample Art19, allanite produced an inverse isoch-
ron (Fig. 17) with a lower intercept at 154.1 + 3.7 Ma
(MSWD = 2.4) and Th/U ratios for allanite of Artiman
area 7.05 to 46.96 (ave. 17.80).

Details of determined values, isotopic ratios, and
age calculations for the studied samples are reported in
Tables 9, 10, 11 and 12.

Discussion

The concentration of incompatible elements of the stud-
ied pegmatites and aplites is not as much as Tanco pegma-
tites in Canada as extremely fractionated LCT pegmatites,
but it can be compared with LCT pegmatites of Moose II,
Canada (Anderson et al. 2013), for lithophile elements and
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Fig. 15 a SEM-BSE images of analyzed zircons of the Heydare-e- images of analyzed monazites from Barfejin area, west of Hamedan.
Poshteshahr area, west of Hamedan. b CL images of analyzed mona- d SEM-BSE images of analyzed allanites from Artiman area, north of
zites from Heydareh-e-Poshteshahr area, west of Hamedan. ¢ CL Tueyserkan, south of Hamedan
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REE. The concentration of LILE in the studied aplites and
pegmatites are commonly higher than the fine-grained wall
zone of the Moose II pegmatites. Also, according to the
classification scheme of Cerny and Ercit (2005), their geo-
chemical (aluminum saturation index (peraluminous affin-
ity) and concentration of essential rare elements) and geo-
logical properties resemble the LCT family of pegmatites.
As shown in Fig. 6c¢, the studied aplites and pegma-
tites are geochemically similar to S-type granites accord-
ing to Chappell and White (1992) scheme of classification

@ Springer

of granitic rocks. Also, Sepahi (1999, 2008) has referred
to the existence of a genetic link between S-type granites
and, aplites and pegmatites in the Hamedan region by using
geochemical properties of these rocks. Mineralogically, the
studied aplites and pegmatites resemble Muscovite (MS)
and Muscovite Rare Element (MSREL) classes of pegma-
tites (cf. Cerny and Ercit 2005).

The aplitic—pegmatitic dykes have intruded various host
lithologies including plutonic, contact metamorphic, and
regional metamorphic rocks. Those dykes located inside
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pluton (mostly intruding biotite monzogranite-granodior-
ite) and its contact aureole appear to be spatially and genet-
ically related to each other (see also Sepahi 1999, 2008).
Regional metamorphic host of dykes located outside of the
pluton are commonly medium- to high-grade schists and
migmatites (i.e., commonly garnet—andalusite—sillimanite
schists and low-pressure migmatites). These aplites—peg-
matites can be considered as partial melts resulting from
anatexis of their metasedimentary hosts. All aplitic—-pegma-
titic dykes (i.e., those located at the interior, margin, and
exterior to pluton) have peraluminous affinity and could
be considered as S-type orogenic group pegmatites. This
S-type suite of granites and aplites-pegmatites has been
produced by intense partial melting (diatexis) of continen-
tal crustin an intra-continental arc setting by intrusion of
large amounts of mafic magmas (e.g., Sepahi 1999, 2008).
Therefore, they are considered to be synchronous with
subduction rather than small syn-collisional leucogranitic
S-type granitoids. Mineralogical and geochemical charac-
teristics of these aplite—pegmatite dykes indicate that they
likely were injected from highly fractionated granitic melts
at depth (see Sects. 3 and 5) within a thermally anomalous
gradient that may enhance further fractionation during
emplacement.

Field observations, mineral assemblages, and chemical
compositions of the studied rocks are consistent with each
other. According to Christiansen and Keith (1996), the
trace element signatures of granitic rocks can be closely
related to their melting and crystallization histories. For
example, they have emphasized that Be concentrations are
high enough to saturate beryl just in highly evolved granites
and pegmatites. In the studied pegmatites, concentrations
of Be were not determined, although high concentrations
of Be could be inferred by field observations for occurrence

of coarse-grained beryl crystals inthe pegmatites in some
localities, such as the Dehno area. According to Baker
(1998), more-evolved pegmatitic dykes usually occur far
from their host pluton than less-evolved ones and that peg-
matites should not be associated with small plutons. This is
in accordance with our observation that pegmatitic dykes
near Alvand pluton have no beryl mineral, but in dykes
far from pluton large crystals of beryl with a fractionated
assemblage have been found. Also, the Alvand pluton is
large enough (nearly 400 km? in area) to produce associ-
ated pegmatitic dykes at its interior, margin, and exterior.

Tourmaline occurs as a common accessory phase in
nearly all the aplites and pegmatites. Boron activity has
been high in the source melts according to ubiquitous tour-
maline crystallization in many pegmatitic and aplitic dykes
of the region. High concentrations of B and the presence
of tourmaline can be good indicators of anatectic origin
for S-type silicic magmas. Boron is highly concentrated in
sediments (nearly up to 100 ppm) compared to the man-
tle (0.1 ppm). This characteristic may become intrinsic to
metasedimentary rocks and to magmas derived from these
rocks. On the basis of the observation that tourmaline
modal percent reached up to 25 in some studied pegmatitic/
aplitic dykes, metasedimentary pelitic rocks can be consid-
ered as one of the source rocks for silicic magmas in the
region.

S-type granites occur both as isolated small plutons
and in batholithic associations. Although S-type gran-
ites are commonly considered as syn-collisional granites
(e.g., Pearce et al. 1984), these rocks may be abundant in
other convergent environments in association with I-type
(including M-type) granites. The S-type granites are usu-
ally formed in regions underlain by thick sequences of
metasedimentary rocks, such as metamorphosed shales,
greywackes, and sandstones. The composition of source
rocks is the most important factor in determining the com-
positions of partial melts and granites produced by this
process (e.g., Gao et al. 2016). The cause of the melting of
metasedimentary rocks to produce S-type silicic magmas
varies from one tectonic setting to another.

Mantle-derived mafic magmas can be a source of heat
and fluid necessary for partial melting of crustal rocks (Gao
et al. 2016). These magmas may provide the heat necessary
for crustal melting and producing S-type granites, espe-
cially in arc settings (Brown 2013 and references therein).
The formation of upper crustal plutons (especially S-type
granitic plutons) requires that melt be generated and sepa-
rated from solid residue within lower crustal sources and
then become focused into high-permeability ascent conduits
to feed the roots of plutons (Brown 2010, 2013). According
to a general model for emplacement of plutons (Fig. 14 in
Brown 2013), the Alvand pluton is similar to blobby and
composite plutons formed in a ductile compressive regime.
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- In active continental margins, the cause of melting could be
S| 7 g g mafic mantle-derived magmas, partly mixed with produced
= (=] (=} (=] (=}

o S-type magmas. The produced S-type silicic magmas
g g g g slightly post-date mafic magmas in a subduction zone (e.g.,
gl = = 2 Christiansen and Keith 1996). Our obtained U-Pb ages
& for aplites and pegmatites (162—-172 Ma) reveal that ages
§ of plutonic rocks of the region (~165 Ma; Shahbazi et al.
Bl O ¥ 2 . .
sl S s 3 2010; Mahmoudi et al. 2011; Chiu et al. 2013) are nearly
N
- - o o similar to the studied aplitic—pegmatitic rocks. Therefore,
ele & ¢ < . . .
Sl < SH= aplites and pegmatites can be related chronologically to
£ plutonic rocks, namely S-type granitoids. On the other
o
IS hand, mafic plutons have nearly the same age as S-type
28 8 8 8 s
2ls = s 9 granitoids and, therefore, mafic plutons may have acted
o v o as heat source for melting of meta-sedimentary rocks to
[} . . .
a form S-type plutons and associated aplites and pegmatites.
§ Also, from other adjacent areas, such as Boroujerd and
§ Aligoudarz areas (e.g., Ahmadi-Khalaji et al. 2007; Esna-
o < o ] . . .
gl= = 5 = Asbhari et al. 2012), similar ages have been reported. They
o ©  » are mostly related to Middle Jurassic magmatism. On the
5 other hand, some late Jurassic ages were obtained by previ-
§ ous researchers (e.g., Shahbazi et al. 2010; Mahmoudi et al.
§ = B g g 2011; Azizi et al. 2011, 2015; Yajam et al. 2015) for the
o Hamedan region and adjacent areas, such as Qorveh. This
g % ’é g means that Midclile to Late Jur.assic magma'tism (§specially
&l S == granitic magmatism and associated pegmatite-aplite dykes)
& constitutes an important magmatic episode in the region.
§ s o« o @ It is most likely that repetitive injections. of precur-
S § § ?é ?é sor mafic magmas (ca.167 Ma) have been so important to
N . . . . .
cause melting of fertile supracrustal lithologies (i.e., meta-
5 0 & s = pelites) to form migmatitfzs, diatexitf:s, S-type. granites ('ca.
glg =z g & 165 Ma), and related aplite—pegmatite dykes in the region
v e e = (e.g., Sepahi 1999, 2008). The signatures of these hot mafic
o E &8 g & magmas are a spectrum of mafic plutonic rocks, such as
Q S oS S S .. .
olivine-gabbros, gabbros, and diorites that are near gran-
=) . . . . iy
z ites and partly intruded by later intrusion of granitic and
é é S % § aplitic-pegmatitic dykes. Therefore, advective heating in
Sls s s S a continental arc setting can explain the formation of fel-
. 2 g 5 8 sic rocks, such as the studied aplite-pegmatite dykes and
afs S = S their parental evolved granitic rocks. Models by Annen and
2 Sparks (2002) could be helpful for proving of melting of
@ . . . . .
Sle < o fertile rocks in a continental crust by intrusions of mafic
& . . .
g = 3 5 3 (basaltic/gabbroic) magmas. According to Karakas et al.
Slg ¢ =2 g (2017), when basaltic magma is emplaced in the lower
gle 5 € @ crust, a significant increase of temperature occurs within
the whole crust after a few million years to generate upper
18 8 8 8 . .
Elz = =2 = crustal felsic magmas. The total duration of lower and
== = & 2 upper crustal magmatism can be between 1.5 and 7 million

T~ years which is consistent with our geochronological data.

s|El8 & § § s . .

E|lglg & & § Hybridism of newly formed felsic magmas with con-

§ ] tinuing injections of mafic magmas may have occurred in

> 2| g o 8T AT AT this el?v1ronment. Signs of this hybridism are reported by

% =2 g I 5 3 5 3 5 .Sepah.l (1999) and Ghalamghash et al. (2009) in the Alvand

elSla” & &7 & intrusive complex.
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Table 11 U-Pb LA-ICPMS data of analyzed zircon grains from the Heydareh-e-Poshteshar area, west of Hamedan

Err. corr.

207Pb/206Pb 26 207Pb/235U 26 206Pb/238U 26 238U/206Pb 20 207Pb/206Pb 20

207Pb/206Pb 20

Err. corr.

206Pb/238U 26

U (ppm) Th(ppm) Th/U 207Pb/235U 20

Comments

0.18

0.003

1.49 0.051

6 38.65

165

13

167

78

215

0.0509 0.0026

0.001 0.207

0.02 0.179 0.015 0.026

43.6

1981

SNM4-1-

13-zr-1

SNM4-1Zr-1

0.32
0.16

0.002

1.49 0.055
1.72 0.057

7 38.62
6 41.49

165

12
10

81

1

45

395
474

0.0017
0.0013

0.0550
0.0566

0.180

0.001

0.014 0.026
0.012 0.024

0.196
0.187

0.04
0.09

82

1922

0.001

154

174

36

0.001 0.321

3540 304

SNM4-1-

11-zr-1

SNM4-2-

0.02

0.003

1.67 0.074

6 41.98

152

15

76 224

1046

0.0034

0.0740

0.364

0.020 0.024 0.001

0.246

0.14

2835 388

87Zr-1

SNM4-2-

0.08

0.003

1.63 0.053

7 38.52

165

16

180

98

368

0.0533 0.0034

0.001 0.294

0.03 0.194 0.020 0.026

50.5

1602

13ZrMz-1
SNM4-9Zr-1

0.59
-0.14

0.007

2.34 0.090
2.12 0.133

6 50.99
17 27.55

125

23

1435 77 227
110 518

0.0070

0.0899
0.1334

0.001 0.216

0.034 0.020
0.069 0.036

0.250

0.37
0.5

1627
1550

4369
3040

0.008

44 229

0.0078 2120

0.003 0.716

0.671

1

SNM4-1-15-

Zr-1_x

SNM4-1-

0.75

0.023

19.74 0.079

45 50.30

127

100

199

190

1160

0.0230

0.360 0.020 0.008 0.328 0.0794

0.217

0.28

1080

3840

T-zr-1

SNM4-5Zr-

0.39

0.057

0.36 0.599

260 2.51

140 2110

110 3510

0.0570 4530

0.5990

0.058 0.470

1.29  29.800 4.000 0.399

13,000

10,100

X

Data obtained by K-Ar and Rb-Sr dating (both
for pegmatites and related plutonic rocks by previous
researchers, e.g., Valizadeh and Cantagrel 1975; Braud
1987; Masoudi 1997; Baharifar et al. 2004), are relatively
close to each other, but they are younger than U-Pb ages
estimated in previous research and those measured in this
study. These younger ages may be the resultof re-heating
of the region by later tectono-magmatic activity, and they
do not show ages consistent with primary crystallization
of those rocks. On the basis of these old data, previous
researchers (e.g., Sepahi 2008) postulated a Cretaceous
magmatic—-metamorphic event in the region. However,
recent data have indicated more possible Jurassic mag-
matic and metamorphic activities in the region. Meta-
morphic ages of zircon also give nearly similar ages as
plutonic rocks (unpublished data).

On the basis of these geochronologic results and com-
paring them with previous published data, the geody-
namic-magmatic evolution of the Sanandaj—Sirjan zone
can be summarized as follows: Agard et al. (2011) have
reviewed this subject, but they have not considered any
important role for middle Jurassic magmatism (pluto-
nism) in the region in their conclusions. They considered
the time interval of subduction/obduction processes from
~150 Ma to present time (especially from ~115 Ma).
Recent studies and our results revealed that this zone
has been an active continental margin during the Juras-
sic (from nearly ~170 Ma ago) and eventually evolved
to a continent—continent collision setting (Afro-Arabian
to Eurasia collision) later. On the basis of data obtained
in recent work and this research, the volume of Jurassic
magmatism (plutonism) has been enormous, especially
in the middle Jurassic within this zone. Various plutonic
rocks, from mafic to intermediate and felsic, resulted
from successive magmatic activity in the region. There-
fore, subduction of Neo-Tethys oceanic crust beneath
central Iran must have started sooner than those consid-
ered previously and took place over a wider time range
(starting from middle Jurassic time, i.e., from ~170 Ma or
slightly older). Tectono-magmatic events related to open-
ing and closure of Neo-Tethys ocean in the region can be
summarized as follows (Fig. 18): (a) break-off of Gond-
wana that resulted in the opening of Neo-Tethys ocean
took place at Permian time by granitic magmatism [i.e.,
Hasanrobat pluton (Alirezaei and Hassanzadeh 2012)],
(b) spreading of the oceanic crust was continued dur-
ing Triassic to lower Jurassic, (c) beginning of subduc-
tion and onset of continental arc magmatism were started
from middle Jurassic time by intense plutonism in the
region and continued by late Jurassic and younger times,
and (d) collision of Afro-Arabia and Iranian microplate
(Eurasian southern margin) possibly in Oligo-Miocene
time.
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Fig. 18 Schematic cross-section along the Zagros orogen, showing the tectonic evolution in Late Permian to Middle Jurassic and Miocene
(Modified from Ahmadi-Khalaji et al. 2007)
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Concluding remarks

Pegmatitic and aplitic dykes intrude both plutonic rocks
of the Alvand complex and surrounding regional and
contact metamorphic rocks. Mineral-chemical studies of
aplitic—pegmatitic rocks indicate that tourmaline compo-
sition is commonly schorl, garnet is Fe-rich (almandine),
biotite is near siderophyllite, white mica is nearly pure mus-
covite, K-feldspar is Na- and Ca-poor feldspar, and plagio-
clase is albitic (Na-rich and Ca-poor) in composition. The
geochemical and mineralogical characteristics of the stud-
ied aplites and pegmatites reveal high silica contents, low
lime contents, high ASI index, and high amounts of alkali
elements. The enrichment of LREE against HREE, high
concentration of some REE and HFSE elements, such as Ce
(up to 103 ppm), La (up to 125 ppm), Nb (up to 134 ppm),
and LILE elements, such as Cs (up to 152 ppm), Ta (up
to 67), Sn (>10,000 ppm), and K/Rb (19-193) reflects
extreme fractionation. The occurrence of some accessory
minerals, such as Th-silicate, U-silicate, U-oxides, Nb-
oxide, zircon, allanite, phosphate minerals (monazite, xeno-
time, and apatite), beryl, and cassiterite, also emphasizes
the highly fractionated nature of these peraluminous aplites
and pegmatites; therefore, a highly evolved silicic magma
led to formation of these dykes (see geochemistry section).
On the basis of the pegmatite classification of Cerny and
Ercit (2005), the studied pegmatites resemble LCT family
of pegmatites, with mineralogical characteristics of Musco-
vite (MS) and Muscovite Rare Element (MS-REL) classes
of pegmatites.

Our geochronological data indicate a middle Jurassic
(~150 to ~170 Ma) age for the aplite and pegmatites of the
Hamedan region, Sanandaj—Sirjan zone, which is consist-
ent with ages obtained by previous researchers for plutonic
rocks of the region. Therefore, our data reveal the impor-
tance of onset of magmatism within a continental arc set-
ting from Middle Jurassic time in the region. The advective
heat of largeamounts of mafic magmas (~167 Ma) into the
continental crust associated with the magmatic arc has cre-
ated diatexites and pluton-scale (batholithic) S-type gran-
ites (~165 Ma) of the region. Accordingly, fractionation
of the S-type granitic magma at depth has produced some
aplite—pegmatite dykes in the interior and margin of pluton,
although some dykes appear exterior to the pluton, as well
that are extensively fractionated locally to have beryl and
cassiterite crystallization from these evolved melts; high B
was significant to allowing extremely low T fractionation to
occur in addition to the anomalous thermal gradient in the
region.

Subduction of Neo-Tethys oceanic crust beneath central
Iran (southern Eurasia), which started from about ~170 Ma
or slightly older time in the region, has been the major
cause of the magmatism in the region and adjacent areas

@ Springer

in the Sanandaj-Sirjan zone of the Zagros orogen. Dur-
ing subduction, the heat advection associated with repeti-
tive intrusion of mafic magmas has produced felsic mag-
mas (S-type granites and associated aplites-pegmatites).
This explains why mantle-derived mafic rocks and crus-
tal-derived felsic rocks are nearly contemporaneous in the
Hamedan region.
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