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22 stations identified as the phyllite and quartzite boundary. 
The proposed equation describing frequency–depth rela-
tionship between granite and overlaying regolith matches 
with those already published in the literature. The mor-
phology of granite pluton highlights the rootless charac-
ter of Champaner Group showing sharp discordance with 
granitic pluton. The findings of manifestation of pluton at 
a shallower depth imply a steep easterly plunge within the 
Champaner metasediments, whereas signature of pluton at 
a deeper level implies a gentle westerly plunge. The present 
method enables to assess how granite emplacement influ-
ences the surface structure.

Keywords Microtremor · H/V spectral analysis · Granite 
pluton · Champaner group · Aravalli

Abstract We report, using the microtremor method, a sub-
surface granitic pluton underneath the Narukot Dome and 
in its western extension along a WNW profile, in proxim-
ity of eastern fringe of Cambay Rift, India. The dome and 
its extension is a part of the Champaner Group of rocks 
belonging to the Mesoproterozoic Aravalli Supergroup. 
The present finding elucidates development of an asym-
metric double plunge along Narukot Dome. Microtremor 
measurements at 32 sites were carried out along the axial 
trace (N95°) of the dome. Fourier amplitude spectral stud-
ies were applied to obtain the ratio between the horizon-
tal and vertical components of persisting Rayleigh waves 
as local ambient noise. Fundamental resonant frequencies 
with amplitude ≥1-sigma for each site are considered to 
distinguish rheological boundary. Two distinct rheological 
boundaries are identified based on frequency ranges deter-
mined in the terrain: (1) 0.2219–10.364 Hz recorded at 31 
stations identified as the Champaner metasediment and 
granite boundary, and (2) 10.902–27.1119 Hz recorded at 
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Introduction

Neoproterozoic granites in this study popularly referred 
to as Godhra granite, constitute a part of major syn- to  
post-orogenic granitic phase of southeastern Aravalli  
domain, western India. The Godhra granite have 
emplaced regionally along NW–SE trend, which splayed 
further SE-producing sporadic plutons (Mamtani et al. 
2001; Mamtani and Greiling 2005). Emplacements  
of these plutons have locally deformed as well as  
generated contact metamorphism within Mesoproterozoic 
Champaner metasediments (Mamtani et al. 2001; Das 
et al. 2009; Limaye and Joshi 2016). The role of sporadic 
plutonic activity, however, induced structural complexity  
(Jambusaria and Merh 1967; Srikarni and Das 1996; 
Karanth and Das 2000). Doubly plunging Narukot  
dome, a part of Champaner Group forming southern 
extension of Aravallis in Gujarat, is one such feature that 
gives an opportunity to study the relationship of pluton 
and associated deformation. Deciphering subsurface  
morphology of pluton becomes vital.

Globally, the plutons are understood emplacing coun-
try rock with several geometric shapes, viz. circular, thick 
disk, sheet-like, hockey puck, flat-floored, wedge-shaped 
and many other discrete forms (McSween and Harvey 
1997; Benn et al. 1998; Vigneresse et al. 1999) that in turn 
depend on the heterogeneity of magmatic activity, depth, 
and their degree of isolation as well as volume, strength 
and density difference between the plutonic melt and the 
country rocks (Bott 1955; Pitcher 1979; Vigneresse 1995; 
Benn et al. 1998; Stevenson et al. 2006; Cruden 2008). 
Several geophysical methods are deployed to study plu-
tons, viz. gravity (Bott 1955; Vigneresse 1990; Singh 
et al. 2004; Rao et al. 2006; Cruden 2008; Singh et al. 
2014), magnetic (Mamtani and Greiling 2005); aeromag-
netic (Sahu 2012) magnetotelluric (Sastry et al. 2008); 
deep resistivity soundings (Singh et al. 2008); and deep 
seismic methods (Kaila et al. 1981; Dixit et al. 2010).

We apply a cost-effective microtremor technique to map 
subsurface pluton covering a large area at a prerequisite 
terrain-specific resolution from 250 m to 1 km interval. 
The assessment was quicker than the conventional indirect 
methods. The microtremor method has been used success-
fully to map subsurface rheological boundaries based on 
strong acoustic impedance along contrasting density at sed-
iment/rock interphases at shallow depths and across fault 
zones (Kanai 1957; Yamanaka et al. 1994; Ibs-Vonseht and 
Wohlenberg 1999; Delgado et al. 2000a, b; Parolai et al. 
2002; Garcia-Jerez et al. 2006; Guéguen et al. 2006; Zhao 
et al. 2007; Dinesh et al. 2010; Rošer and Gosar 2010; 
Sukumaran et al. 2011; Paudyal et al. 2013).

The present maiden attempt is to record a shallow 
seismic profile along doubly plunging Narukot dome and 

its western extension incorporating both microtremor 
method and field evidences. This enabled us (1) to deline-
ate morphology of an independent granite pluton under-
neath the Narukot dome, (2) to determine the thickness of 
the Mn-bearing rocks of the Champaner Group, and (3) 
to infer implication towards syntectonic deformation of 
the Champaner Group.

Geology and structures

The vast area E and SE of Narukot dome has a rolling 
topography with isolated highs that exposes Jambug-
hoda Granite (1050 ± 50 Ma: Sm–Nd method, Shivku-
mar et al. 1993); Chhota Udepur Granite (1168 ± 30 Ma: 
Rb–Sr method, Srimal and Das 1998) and Godhra Gran-
ite (950 Ma, Rb–Sr method assuming an initial Sr ratio 
of 0.700, Crawford 1975; Rb–Sr method 955 ± 20 Ma, 
Gopalan et al. 1979; Rb–Sr method 938.8 ± 20 Ma, Sri-
mal and Das 1998; Rb–Sr method 965 ± 40 Ma, Goyal 
et al. 2001) (Fig. 1a). Negative Bouguer gravity anomaly 
(−40 to −20 mgal) substantiates granites in the region 
(Fig. 1b; Sandwell et al. 2014). However, the structure 
and tectonic regime under which the granite emplaced 
remain indeterminate. The sporadic granite pluton under 
present study emplaces within Champaner metasediments 
comprising intercalated sequence of quartzites and phyl-
lites (Narukot Formation) exposed in the eastern portion 
of the dome. This is followed by polymict conglomerate 
with lithicwacke (Jaban Formation) and Mn-bearing phyl-
lites and quartzites (Shivrajpur Formation) in the central 
part, whereas thin phyllite–quartzite bands with dolomitic 
limestone (Rajgarh Formation) characterize the western 
extension (Fig. 1c; Table 1; Gupta et al. 1992, 1997). These 
sequences are regionally metamorphosed up to greenschist 
facies (Jambusaria and Merh 1967) and preserve relic pri-
mary sedimentary structures (Srikarni and Das 1996). Fur-
ther, isolated development of hornfelses and skarn zones 
are observed close to the granitic body (Das et al. 2009). 
The extreme WNW portion of the Narukot profile under 
present study exposes Mesozoic sedimentaries and the 
Deccan basalts.

The deformation pattern of southern Aravalli domain 
comprising Lunawada and Champaner Group are not 
comparable to the main Aravalli domain. The main 
Aravalli domain shows two deformation phases  (AD1 
and  AD2).  AD1 exhibits W trending rootless reclined, 
inclined, and rarely upright isoclinal folds. On the  
other hand,  AD2 are coaxial isoclinal folds with widely 
dispersed axial planes (Naha et al. 1966, 1969). Further 
south, the Lunawada Group displays  AD3 deformation 
comprising  LF1 and  LF2 coaxial folds (L: Lunawada) 
with NE-trending axial planes.  LF3 folds are open with 
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E- and NW-trending axial planes (Mamtani et al. 2001). 
Additionally, the Champaner Group demonstrates  AD4 
deformation developing upright folds with E-trending 
axial traces  (CF1) followed by open upright cross folds 
with N–S axial traces  (CF2) emerging as large domal 
structures in Narukot and Poyali areas (Jambusaria and 
Merh 1967; Gopinath et al. 1977; Srikarni and Das 1996; 
Gupta et al. 1997; Karanth and Das 2000).

The domal character at Narukot is well preserved by 
quartzites that skirt the dome (Fig. 2a, b). Quartzite rim-
ming N, E and S portion of dome shows discordant rela-
tion, steep dip, steep/vertical foliation and strong anneal-
ing. On the other hand, quartzites and phyllites in core 
region and towards the western margin show concordant 
relations, gentle westerly dip and regional metamorphism. 
Phyllites exposed adjacent to Narukot dome preserve S–C 

Fig. 1  a Regional geologi-
cal map showing extension of 
Aravalli Supergroup in Gujarat 
(after Mamtani et al. 2001). 
NW-trending batholith (Godhra 
Granite) constitutes the most 
conspicuous feature that demar-
cates the Lunawada Group at 
ENE and the Champaner Group 
at WSW. b Regional Bouguer 
gravity map showing exten-
sion of Aravalli Supergroup in 
Gujarat (Sandwell et al. 2014). 
c Geological map of study area 
(modified after Gupta et al. 
1997). Oval structure along the 
E margin represents the Narukot 
dome with N95° axial trace. 
Dotted line across the dome and 
further W shows location of 
stations (1–32) for microtremor 
measurements
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fabric (Passchier and Trouw 2005; Mukherjee 2011a, 
2012, 2013a, b, 2014, 2015; Mukherjee and Kovi 2010a,b). 
Fieldwork did not reveal any visual effect of shear heating 
(Mukherjee and Mulchrone 2013; Mulchrone and Mukher-
jee 2015, 2016) The S- and C-planes meet at ~24°. The dip 
direction of both S–C fabrics is parallel to the plunge of 
open folds that characterizes western portion of the Naru-
kot dome (Fig. 2c–e). Stereonet of lower hemisphere equal 
area projection containing n = 67 foliations have been plot-
ted. Beta intersection diagram represents superimposition 
of N–S axial plane over the E–W trends. Beta-1 and Beta-2 
are respective fold axes of  CF1 and  CF2 producing dome 
and basin geometry (Fig. 2f).

Microtremor studies

Studies reveal that microtremors are activated by ambient 
noise that encapsulates the fundamental resonant frequency 
of near surface sediment horizons (Ohta et al. 1978; Celebi 
et al. 1987; Lermo et al. 1988; Nakamura 1989; Field et al. 
1990; Hough et al. 1991; Yamanaka et al. 1994; Konno and 
Ohmachi 1998; Ibs-Vonseht and Wohlenberg 1999; Delgado 
et al. 2000a, b; Aki and Richards 2002). These resonating 
frequencies derived from microtremors strongly correlate 
with the velocity of seismic wave as well as the sediment 
thickness (Ibs-Vonseht and Wohlenberg 1999; Parolai et al. 

2002). To characterize amplification of seismic wave for a 
given site, Nogoshi and Igarashi (1971) proposed a tech-
nique to normalize the source effect by taking the ratio of 
the horizontal (NS + EW component) and vertical compo-
nent (H/V) of the noise spectrum. Nakamura (1989) further 
popularized the method and its applications. The merits 
and demerits of this method are discussed by several work-
ers and has been used extensively as a low cost tool for site 
characterization in estimating the resonant frequency and 
thickness of sedimentary layers, viz. Field and Jacob (1993), 
Parolai and Galiana-Merino (2006), Bonnefoy-Claudet et al. 
(2006), Garcia-Jerez et al. (2006), Zhao et al. (2007), Naka-
mura (2008), Bard (2008), Pilz et al. (2009), Lunedei and 
Albarello (2010), and Sánchez-Sesma et al. (2011).

We deployed a Lennartz seismometer (5 s period) and 
a City Shark-II data acquisition system to acquire ambi-
ent noise in forms of three components, viz. NS, EW, 
and vertical directions. The recording was carried out 
for 40 min at the rate of 100 samples/s per site (Suku-
maran et al. 2011, fig. 3). All the 32 geophysical stations 
(Fig. 1c) arrayed for measurement run almost parallel 
to the axial trace (N95°) of the Narukot Dome (Fig. 1c). 
The station interval was decided considering topography 
along the profile line. The region with rolling topography 
from station 1–13 (Fig. 1c) was surveyed at 1 km interval, 
whereas the rugged terrain, stations 13–32 (Fig. 1c), was 
surveyed at 500 m interval.

The ratio between the Fourier amplitude spectra of the 
horizontal to the vertical (H/V) components of persisting 
Rayleigh waves were calculated from the ambient noise 
vibrations acquired from 32 stations using the GEOPSY 
(SESAME European Project 2004). The H/V spectral 
ratios were plotted between 0.2 and 25 Hz encompassing 
the complete range of resonating frequencies recorded 
within the study area (Fig. 3). These H/V ratios were 
further processed individually to identify statistically 
significant spectral peaks using custom-written Matlab 
code. The statistically significant peaks were taken to 
be those peaks that were at least one standard deviation 
greater than the baseline activity. These peaks then corre-
spond to significant fundamental resonating frequencies 
for each station. The significant fundamental resonating 
frequencies f0, f1 and f2 were singled out for individual 
stations quantifying their amplitudes (Fig. 3; Table 2). 
Figure 3 illustrates a series of H/V spectral frequency 
plots recorded from the study area. Station 22, 30 and 31 
show the peaks at fundamental frequency (f0). Station 2, 
3 and 4 show dual frequency (f0, and f1) with representing 
the boundary at both deeper and shallower levels. Station 
15 and 29 too display dual frequency (f0, and f1) but at 
different frequencies that correspond to the boundary at 
moderate to shallower depth level. However, station 32 

Table 1  Lithostratigraphy of southern Aravalli, Gujarat, W India 
after Gupta et al. (1992)

Supergroup Group Formation

Post Delhi
Igneous  

Intrusive

Idar Granite  
(Malani Igneous suite)

Erinpura Granite
Godhra Granite
Sendra–Ambaji Granite

Delhi Sirohi
Kumbhalgarh
Gogunda

Phulad Ophiolites

Aravalli Champaner Rajgarh

Shivrajpur

Jaban

Narukot

Khandia

Lambia

Lunawada Kadana

Bhukia

Chandanwara

Bhawanpura

Wagidora

Kalinjara
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represent three frequencies (f0, f1, f2) incorporating three 
boundaries at shallow, moderate and deeper levels.

The thickness (h) of soil/sediment layer over the  
bedrock can be related theoretically with the fundamental 
resonant frequency (fr) of H/V spectral ratio (Ibs-Vonseht 
and Wohlenberg 1999)

(1)h = af br ,

where a and b are obtained by nonlinear regression between 
the thickness and the fundamental resonant frequency. For 
a given fundamental resonant frequency, if the velocity of 
seismic waves (Vs) for a given interphase is known, the 
depth of the interphases is given by Parolai et al. (2002):

(2)h =
Vs

4fr
.

Fig. 2  a Structural map of the 
study area (modified after Gupta 
et al. 1997). b Geo-eye image 
of Narukot Dome. N–S axial 
trace overlay over WNW–ESE 
trend; discontinuous lines: shear 
in the region; P1, P2 and P3: 
locations for field photographs. 
c–e Top-to-E ductile shear along 
vertical section. S schistosity 
fabric dipping steeper than the 
C-plane. f Foliation surfaces as 
great circles (n = 67,  S0,  S1). 
g Beta intersection diagram 
representing superimposi-
tion of N–S axial plane over 
E–W (2211 intersections of 67 
planes). Beta 1 and Beta 2 are 
the respective fold axes of  CF1 
and  CF2 producing dome and 
basin geometry. h Pie diagram 
(n = 67,  S0 and  S1) showing 
similar fold axes of  CF1 (i.e., 
N275°). i Contoured pie dia-
gram; 2, 4, 8 and 16% contours 
per 1% area
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On the other hand, if the depth of the interphase in 
known based on available core record, the velocity of seis-
mic waves (Vs) can be determined using Eq. (2).

In the present study, we used a record of a private bore-
hole 300 ft (91.4 m) closer to station 29, in Hirapur Vil-
lage, east of Narukot dome. The records suggest 7-ft (2.13-
m) thick soil unit, followed by 15-ft (4.57-m) thick white 
fine-grained sand (alteration product of in situ granite); and 
278 ft (84.7 m) of massive granite. In the present case, we 
categorized both the soil unit and altered granite unit under 
the regolith. Using the observed depth of regolith–granite 
boundary (6.70 m), we computed Vs (227 m/s) for the rego-
lith unit at station 29 using Eq. (2). The depth of regolith–
granite boundary for stations 28, 30, 31 and 32 has been 
estimated using the above computed value of Vs. In addi-
tion, substituting the value of Vs in Eq. 2,

(3)h = (56.8)f−1
r .

Equation (3) derived from the study area is comparable 
to the equation derived for a granitic terrain around Banga-
lore (state Karnataka, India) decoding interphase of soil–
regolith from that of granites (Dinesh et al. 2010), viz.

In this context, we preferred the equation established by 
Dinesh et al. (2010) in this study to derive theoretical depths 
of interphases as they had established the relationship using 
a larger number of observed borehole logs.

Further, grouping fundamental resonating frequency, 
geology and structural data from the study area, we identify 
two distinct rheological boundaries, viz. 0.2219–10.364 Hz 
that is inferred to record boundary between Champaner 
metasediment and granites (C–Gr boundary) and 10.902–
27.1119 Hz that differentiates phyllites from quartzites (P–
Qr boundary) (Figs. 4, 5). The other boundaries identified 
along the W margin of the profile, viz. 0.7088–12.6896 Hz 

(4)h = (58.3± 8.8)f−0.95± 0.1
r .

Fig. 3  H/V spectral frequency plot recorded for the representative 
stations from the study area. Station 22, 30 and 31 show the peaks at 
fundamental frequency (f0); station 2, 3 and 4 show dual frequency 
(f0, and f1) with representing the interphases at both deeper and shal-
lower levels; station 15 and 29 also show dual frequency (f0, and f1) 

but at different frequencies that correspond to the interphases at mod-
erate to shallower depth level. However, station 32 represent three 
frequencies (f0, f1, f2) incorporating three interphases at shallow, mod-
erate and deeper levels
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frequencies distinguish the boundary between the Cham-
paner metasediments and the Mesozoic sediments. On the 
other hand, at stations 2 and 3, 18.0848 Hz frequency dis-
tinguishes thin Deccan traps from Mesozoic sediments.

Champaner–granite boundary

The Champaner–granite boundary (C–Gr boundary) occurs 
at a shallower depth towards E than at the W margin of the 
profile showing an arched-up geometry (Fig. 5). The gran-
ite pluton attains shallowest depth calculated from surface 
underneath station 20 (35.69 m) and station 23 (32.42 m) 

followed by a significant depth, or a ‘low’, beneath station 
6 (243.64 m) and station 1 (232.82 m) towards W. C–Gr 
boundary follows a steep slope between stations 7 (45.40 m) 
and 6 (243.64 m). The low along profile between stations 1 
and 6 marks an extension of the younger Champaner rocks 
exposed around stations 7 and 8 (Rajgarh Formation) and is 
confirmed based on aeromagnetic data (Sahu 2012).

Phyllite–quartzite boundary

The phyllite–quartzite (P–Qr boundary) sequence 
of Champaner Group is well exposed in the western 

Table 2  Fundamental resonant frequency f0, f1 and f2 for station 1–32 across Narukot Dome and in its western extension along a WNW profile

The depths of rheological boundaries are calculated using Eq. 3 (h = 56.8 fr 
−1: derived from borehole data from station 29 whereas Eq. 4 

(h = 58.3 ± 8.8fr 
−0.95 ± 0.1; Dinesh et al. 2010)

Stations fo Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

f1 Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

f2 Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

1 0.2328 243.814 232.828 0.913 62.169 63.565

2 0.913 62.169 63.565 18.0848 3.139 3.726

3 0.7088 80.079 80.848 18.0848 3.139 3.726

4 1.1759 48.269 49.982 0.2328 243.814 232.828

5 0.2328 243.814 232.828

7 12.6896 4.473 5.217 1.3011 43.625 45.402

8 1.3011 43.625 45.402 25.7738 2.202 2.661

9 1.18284 47.986 49.704 12.3244 4.605 5.363

10 0.7456 76.127 77.053 25.7738 2.202 2.661

11 27.1119 2.094 2.536 1.1759 48.269 49.982

12 12.6896 4.473 5.217

13 18.0848 3.139 3.726

14 10.902 5.206 6.026

15 9.3662 6.060 6.961 1.3687 41.470 43.269

16 8.904 6.375 7.304 18.0848 3.139 3.726 1.2369 45.889 47.638

17 14.7704 3.843 4.516

18 1.8543 30.610 32.426 25.7738 2.202 2.661 4.3838 12.948 14.319

19 1.5145 37.478 39.302 20.0113 2.836 3.384

20 10.364 5.477 6.323 1.6758 33.870 35.699

21 27.1119 2.094 2.536 19.0237 2.984 3.551

22 6.572 8.637 9.747

23 1.8543 30.610 32.426

24 1.4397 39.425 41.239

25 18.0848 3.139 3.726

26 18.0848 3.139 3.726

27 19.0237 2.984 3.551

28 5.3676 10.575 11.813

29 8.4645 6.706 7.664 1.4397 39.425 41.239

30 10.902 5.206 6.026

31 10.364 5.477 6.323

32 1.3687 41.470 43.269 6.9132 8.210 9.289 25.7738 2.202 2.661
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extension of Narukot dome. During the field studies, 
boundary of different lithology and their trends were 
recorded and mapped (Figs. 1, 2). Lithology and structural 
trends were plotted along the topographic profile, extrapo-
lating their contact up to the C–Gr boundary (Fig. 5).

Other rheological boundaries

In the western portion of the profile, the C–Gr bound-
ary is ~240 m deep. The Rajgarh Formation in this part 
directly overlies granites deduced from aeromagnetic 

Fig. 4  Fundamental resonant 
frequency of 1–32 stations 
along WNW trending profile. 
The diameter of bubbles cap-
tures amplitude of fundamental 
resonant frequency. The blue 
color represent frequency for 
C–Gr boundary  (L1) that ranges 
between 0.2219 and 10.364 Hz, 
whereas red color represents 
frequency for P–Qr boundary 
 (L2) that ranges between 10.902 
and 27.1119 Hz

Fig. 5  Layered model for the profile along Narukot dome and to 
its W. Subsurface interphases of C–Gr and P–Qr plotted with refer-
ence to the surface elevation. C–Gr boundary shows the granite plu-
ton hump (from station 16 to 29) towards eastern part of the profile. 
The C–Gr interphase in W distinguishes a steep wall of the pluton 
(between stations 6 and 7) taking pluton further deeper to 243.64 m 
(station 6) and 232.82 m (station 1). The P–Qr boundary shows 

a steep plunge E of the granite pluton hump and 15° gentle plunge 
due W. The profile highlights subsurface extension of the Champaner 
Group further W overlain by Mesozoic sedimentaries and thin cover 
of Deccan basalt between stations 1 and 7. Numbers in the figure 
indicate (i) granite, (ii) quartzites, (iii) phyllites, (iv) conglomerate, 
(v) Mesozoic sedimentaries, and (vi) Deccan basalt
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data (Sahu 2012). The boundary between the Rajgarh 
Formation and Mesozoic sediments is ~70 m deep. The 
boundary between the Mesozoic sediments and Deccan 
basalt is ~1–2 m deep (Fig. 5).

Discussions

The microtremor study reveals Champaner–granite boundary 
as the most conspicuous rheological boundary that empha-
sizes the morphology of subsurface granite pluton (Fig. 5). 
The granitic pluton forms a hump between stations 29 and 16 
followed by gentle westerly dip up to station 7. The profile 
between stations 6 and 7 highlights a steep wall of the granite 
pluton, with 230-m deep C–Gr boundary, thereafter follows a 
rolling topography till station 1. On the other hand, the Cham-
paner metasediment terminates abruptly above granite plutons 
imparting a discordant relation. The sporadic granitic plutons 
emplaced in the terrain presumably uprooted the Champaner 
metasediments giving “rootless” characteristic especially at 
Narukot dome and to its West (Fig. 5). Further northeast of 
the Narukot dome, at Gol Dungari such rootless character can 
be deciphered (Limaye and Joshi 2016). The estimated verti-
cal thickness of Champaner metasediments varies as: 30 m 
(station 20), 100 m (station 21) and goes to a maximum of 
136 m (station 12) at the Shivrajpur Manganese Mine. In the 
W extension of Narukot dome, the estimated thickness of Raj-
garh Formation is ~108 m followed by 70-m thick Mesozoic 
sediment capped by 1–1.5-m thick Deccan basalt.

To present the relation between the pluton and associated 
deformation, we draw a geological cross-section across Naru-
kot Dome and its extension towards W, by applying standard 
method adopted in geological studies, extrapolating surface 
geology and structural trends up to regolith–granite rheologi-
cal boundaries delineated by microtremor studies (Figs. 2, 5). 
The sporadic emplacement of plutonic bodies produced asym-
metric plunge along the dome. The Champaner metasedi-
ments between stations 23 and 29, E of the pluton hump, are 
tightly folded and plunge steeply towards E (Fig. 2), whereas 
to the W of pluton hump (station 20) metasediments show 
open folds and plunge 15° due W (Fig. 2). However, the fold 
axis of both tight (towards E) and open folds (towards W) 
across the Narukot dome trends N95° signifying the same 
deformation phase (Fig. 2). The accompanied deformation in 
form of open folds with N and NW trends has further resulted 
into dome and basin geometry. A more detail mechanism of 
doming (such as Mukherjee 2011b; Mukherjee et al. 2010; 
Mukherjee and Mulchrone 2012) remains a subject of future 
research. Finally, pluton morphology, selective metamorphism 
and related deformations favor syntectonic granite emplace-
ment. Similar observations have been made in the Lunawada 
region—further NE of the study area (Mamtani et al. 2001).

Conclusions

(a) Microtremor method is a handy tool for geoscientists 
to infer morphology of subsurface plutons underneath 
meta-sedimentary sequence.

(b) Microtremor method would update the results along 
with field records to estimate thickness and to further 
project subsurface attitudes of the country rock.

(c) Country rock and pluton boundary, contact 
metamorphism and associated deformation connote 
syntectonic pluton emplacement.
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