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Abstract Zircon is probably the most important mineral
used in the dating formation of high-pressure (HP) and
ultrahigh-pressure (UHP) metamorphic rocks. The origin
of zircon, i.e., magmatic or metamorphic, is commonly
assessed by its external morphology, internal structure,
mineral inclusions, Th/U ratios and trace element compo-
sition. In this study, we present an unusual case of meta-
morphic zircon from the Qiangtang eclogite, north-central
Tibet. The zircon grains contain numerous eclogite-facies
mineral inclusions, including omphacite, phengite, garnet
and rutile; hence, they are clearly of metamorphic origin.
However, they display features similar to common mag-
matic zircon, including euhedral crystal habit, high Th/U
ratios and enriched heavy rare earth elements pattern. We
suggest that these zircon grains formed from a different
reservoir from that for garnet where no trace elements was
present and trace element equilibrium between zircon and
garnet was achieved. U-Pb dating of zircon gave an age of
232-237 Ma for the eclogite, and that of rutile yielded a
slightly younger age of ca. 217 Ma. These ages are consist-
ent with the reported Lu—Hf mineral isochron and phengite
Ar—Ar ages. The zircon U-Pb and mineral Lu—Hf isochron
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ages are interpreted as the time of the peak eclogite-facies
metamorphism, whereas the rutile U-Pb and phengite Ar—
Ar ages represent the time of exhumation to the middle
crust. Thus, the distinction between metamorphic and mag-
matic zircons cannot be made using only Th/U ratios and
heavy REE compositions for HP-UHP metamorphic rocks
of oceanic derivation.
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Introduction

With the development of the SIMS (Secondary Ion Mass
Spectrometry) U-Th—Pb analytical techniques, zircon has
become probably the most important mineral used to con-
strain the metamorphic history of the HP-UHP metamor-
phic rocks (e.g., Gebauer 1996; Hoskin and Schaltegger
2003; Rubatto and Hermann 2007; Zheng et al. 2009; Liu
and Liou 2011). In general, the identification of zircon as
magmatic or metamorphic is commonly made by its exter-
nal morphology, internal structure, Th/U ratios, trace ele-
ment composition and mineral inclusions (e.g., Hoskin
and Black 2000; Rubatto 2002; Corfu et al. 2003; Hoskin
and Schaltegger 2003). Magmatic zircon grains are usu-
ally euhedral; they show internal oscillatory zoning, have
Th/U ratios generally higher than 0.1 and exhibit enriched
heavy REE. By contrast, metamorphic zircon grains are
commonly anhedral, have lower Th/U ratios (<0.1) and rel-
atively flat heavy REE, especially in garnet-bearing rocks
(e.g., Hoskin and Black 2000; Rubatto 2002; Hoskin and
Schaltegger 2003). However, these rules of identification
have been debated, because the shape and contents of Th,
U and REE of metamorphic zircon may be controlled by
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many factors, such as the chemical composition of the met-
amorphic fluids, concurrent growth of minerals and growth
velocity of zircon (Rowley et al. 1997; Vavra et al. 1999;
Rubatto and Hermann 2003; Wu and Zheng 2004).

In this study, we present details of unusual metamor-
phic zircon grains from the Qiangtang eclogite from north-
central Tibet to exposure such a problem in the genetic
identification. These zircon grains are euhedral, have high
Th/U ratios and enriched heavy REE compositions. There-
fore, they fall in the category of magmatic zircon. In this
work, we used two analytical methods, SIMS and LA-
ICPMS (Laser Ablation Inductively Coupled Plasma Mass
Spectrometry) techniques, to obtain the age, trace element
abundances and oxygen isotopic compositions of the zircon
grains. The data, together with the rutile U-Pb age, will
be used to discuss the genesis of the zircon grains and the
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Fig. 1 Tectonic framework of the Tibetan plateau, showing the loca-
tion of the Gemu eclogite

geodynamic implications for the formation of the Qiang-
tang HP metamorphic belt.

Geologic background of the Qiangtang eclogite

The Qiangtang terrane lies in the north-central Tibetan
plateau, bounded by the Jinsha suture to the north and the
Bangong—Nujiang suture to the south (Fig. 1; e.g., BGMR
1993; Yin and Harrison 2000; Zhu et al. 2013). A >500 km
HP metamorphic belt occurs in the middle of the Qiangtang
terrane, and it is composed of a tectonic mélange of blue-
schist, eclogite, ophiolitic mélange and metasedimentary
rocks (Li et al. 1995, 2006a, b; Kapp et al. 2003; Pullen
et al. 2008; Zhai et al. 2011a, b, 2013a, b, c; Liang et al.
2012). The Qiangtang terrane is further subdivided into the
South and North Qiangtang sub-terranes (Fig. 1). The Pale-
ozoic rocks (Ordovician to Permian) in the South Qiang-
tang sub-terrane comprise metapelite, marble, sandstone,
limestone and glaciomarine deposits. The glaciomarine
deposits and cold-water biota suggest that the South Qiang-
tang sub-terrane has a Gondwana affinity (BGMR 1993;
Li and Zheng 1993; Li et al. 1995; Jin 2002; Zhang et al.
2009). On the other hand, the Paleozoic rocks in the North
Qiangtang sub-terrane are composed of Devonian, Car-
boniferous and Permian strata. They are mainly sandstone,
mudstone and limestone, associated with fusulinid, coral
and gigantopterid fossils of a Cathaysian affinity (BGMR
1993; Li and Zheng 1993; Li et al. 1995; Jin 2002; Zhang
et al. 2009).

The Gemu eclogite is located in the middle of the
Qiangtang HP metamorphic belt (Fig. 1). It occurs as
blocks and/or lenses in marble and garnet—phengite schist,
with mineral assemblages of garnet, omphacite, rutile,
phengite, and minor quartz, epidote and titanite (Fig. 2a,

_.200pm

Fig. 2 Photograph (a) and Photomicrograph (b) of the Qiangtang eclogite (E0901). Mineral abbreviations are after Kretz (1983), except Phn for

phengite and Bar for barroisite
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b). Thermobarometric studies showed that the peak eclog-
ite metamorphic condition was ~500 °C and ~2.2 GPa (Li
et al. 2006b; Zhai et al. 2011a, b). This kind of low-tem-
perature eclogite is consistent with its oceanic origin (Zhai
et al. 2011a). Published zircon U-Pb ages of 230-237 Ma
(Zhai et al. 2011b) and Lu—Hf mineral isochron ages of
233-244 Ma (Pullen et al. 2008) have been interpreted
as the time of the peak eclogite-facies metamorphism,
whereas phengite Ar—Ar ages of 214-219 Ma were consid-
ered to date time of the exhumation (Li et al. 2006a; Zhai
et al. 2011b).

In this study, four eclogite samples (E0814, E0901,
E0902 and E0903) were collected from the Gemu area in
the central Qiangtang terrane (Fig. 1). They are from four
massive eclogite blocks (>10 m), and their GPS localities
are present in Table 1. The country rock of sample E0814 is
marble, and those of samples E0901, E0902 and E0903 are
garnet—phengite schists. These blocks are isolated, and they
have sharp contact with the country rocks. Four eclogite
samples have similar porphyroblastic texture, and they are
composed of garnet (~40 vol.%), omphacite (~35 vol.%),
phengite (<5 vol.%), rutile (~5 vol.%), and retrograded bar-
roisite and actinolite (~10 vol.%), with or without quartz
and albite.

Analytical methods
Mineral chemistry

The mineral compositions for inclusions in zircon from
the eclogite were analyzed using an electron probe micro-
analyzer (EPMA) JEOL JXA-8230 at the Institute of Min-
eral Resources, Chinese Academy of Geological Sciences.
The operating conditions were 20 kV and 20 nA beam cur-
rent with a 5-iwm probe diameter. Ferric iron in garnet and
clinopyroxene was determined using the method of Droop
(1987) and assuming Fe*™ = Na—AIl-Cr of Cawthorn and
Collerson (1974). Fe*™ in amphibole was estimated on
the basis of structural formulae of 23 oxygens following
the charge balance method of Robinson et al. (1982). The
results are listed in Supplementary Material 1.

SIMS zircon U-Pb analysis

Zircons were separated from four ca. 20 kg samples using
conventional heavy liquid and magnetic separation tech-
niques at the Special Laboratory of the Geological Team
of Hebei Province, China. Zircon grains were further puri-
fied by handpicking under a binocular microscope. Zircon
grains, together with zircon standard TEMORA and 91500
(Wiedenbeck et al. 1995; Black et al. 2004), were mounted

in epoxy mounts that were then polished to section the
crystals in half for analysis. All zircons were documented
in transmitted and reflected light, as well as by cathodo-
luminescence (CL) imaging to reveal their internal struc-
tures. CL images of zircons were obtained using a HITACH
S-3000N scanning microscope fitted with a Gatan Chroma
at Institute of Geology, Chinese Academy of Geological
Sciences.

The mount was vacuum-coated with high-purity gold
prior to SIMS analysis. Measurements of U, Th and Pb
were conducted using a Cameca IMS-1280 SIMS at the
Institute of Geology and Geophysics, Chinese Academy
of Sciences in Beijing. The U-Th-Pb ratios and absolute
abundances were determined relative to the standard zircon
91500 (Wiedenbeck et al. 1995), following operating and
data processing procedures described by Li et al. (2009).
The O, primary ion beam was accelerated at 13 kV, with
an intensity of ca. 8 nA. The ellipsoidal spot was about
20 x 30 wm in size. Positive secondary ions were extracted
with a 10 kV potential. Oxygen flooding was used to
increase the O, pressure to ca. 5 x 107® Torr in the sam-
ple chamber, enhancing the secondary Pb™ sensitivity to a
value of ca. 25 cps/nA/ppm for zircon.

In the secondary ion beam optics, a 60-eV energy win-
dow was used, together with a mass resolution of ca. 5400,
to separate Pb™ peaks from isobaric interferences. The field
aperture was set to 7000 wm, and the transfer optic mag-
nification was adjusted to 200. Rectangular lenses were
activated in the secondary ion optics to increase the trans-
mission at high mass resolution. A single electron multi-
plier was used in ion-counting mode to measure secondary
ion beam intensities by peak jumping. Each measurement
consists of 7 cycles, and the total analytical time was ca.
12 min.

Analyses of the standard zircon 91500 were interspersed
with unknown grains. A long-term uncertainty of 1.5% (1
RSD) for 2°Pb/>*3U measurements of the standard zircons
was propagated to the unknowns (Li et al. 2010a, b, c),
although the measured *°Pb/?*8U error in a specific ses-
sion was generally around 1% (1 RSD) or less. Measured
compositions were corrected for common Pb using meas-
ured non-radiogenic 2%*Pb. Corrections are sufficiently
small to be insensitive to the choice of common Pb com-
position, and an average of present-day crustal composition
(Stacey and Kramers 1975) was used for the common Pb
assuming that the common Pb is largely surface contami-
nation introduced during sample preparation. Uncertainties
on individual analyses in data tables are reported at the 1o
level; mean ages for pooled U/Pb analyses are quoted at the
95% confidence interval. Data reduction was carried out
using the ISOPLOT program (Ludwig 2001) and is listed
in Table 1.
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Table 1 continued
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The value of 2%°Pb/***Pb,, is the measured value. f is the percentage of common 2°°Pb in total 2%Pb

SIMS rutile U-Pb analysis

Measurements of U, Th and Pb were conducted using
the Cameca IMS-1280 SIMS at the Institute of Geol-
ogy and Geophysics, Chinese Academy of Sciences in
Beijing. The analytical procedures were similar to those
reported by Li et al. (2011). Rutile crystals were mounted
in epoxy together with the R10 rutile standard (concordia
age = 1090 £ 5 Ma; Luvizotto et al. 2009), 99JHQ-1 rutile
(*%Pb/*8U age = 218 4 1.2 Ma; Li et al. 2003) and an
in-house rutile megacrystal standard (JDX) (*"Pb/?%pPp
age = 521 Ma, 2%Pb/**8U age = 500-520 Ma; unpublished
TIMS data). The mount was polished to expose the inte-
rior of the crystals. After thorough cleaning, the mount was
vacuum-coated with high-purity gold prior to ion probe
analysis.

The O, primary ion beam was accelerated at 13 kV,
with an intensity of ca. 15 nA. The aperture illumination
mode (Kohler illumination) was used with a ca. 200-pum
aperture to produce even sputtering over the entire ana-
lyzed area. The ellipsoidal spot was about 20 x 30 pwm in
size. Positive secondary ions were extracted with a 10-kV
potential. A mass resolution of ~6000 was used and the
magnet was cyclically peak-stepped though a sequence
including 2%°Pb*, 27Pb*, 28pb™, UT, UOT, ThO™, UO,"
and 49TiO4+ to produce one set of data. A single ion-count-
ing electron multiplier (EM) was used as the detection
device. The “TiO, " signal was used as the reference peak
for centering secondary ion beams because this peak has
a strong enough intensity and is free of interference from
ZrO. Each measurement consisted of 10 cycles, and the
total analytical time was ~15 min, including 2-min raster-
ing prior to the actual analysis in order to reduce the contri-
bution of surface contaminant Pb. The mass fractionations
of Pb isotopes and Pb hydrides (requiring a mass resolution
>30,000) were not considered because a number of studies
have shown that these two effects are negligible and there
appears to be a mutual cancelation (e.g., Williams 1998;
Ireland and Williams 2003; Li et al. 2011).

In this study, R10 rutile was used as the primary stand-
ard. The calibration curve was constructed with a power
law relationship between Pb/U and UO,/U relative to the
R10 rutile standard dated at 1090 4+ 5 Ma (Luvizotto et al.
2009). The exponential E, shown as the slope in linear rela-
tionship between In(Pb/U) vs. In(UO,/U), was finely tuned
to correct the results of 99JHQ-1 rutile, which is dated at
218 £ 1.2 Ma by ID-TIMS (Li et al. 2003). The external
reproducibility (3.4%, 1o) obtained from the R10 standard
rutile during the analytical session was propagated together
with the precision of the unknowns to give an overall error
for the 2°Pb/**8U ratio of individual analysis (Li et al.
2010a, b). As a quality-evidence, with the calibration curve,
the in-house JDX rutile standard yielded an average U-Pb
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age of 510 = 8 Ma, which is consistent with the TIMS
result (500-520 Ma). In addition, a rutile sample from a
deposit located in the Hengshan Mountains, Shanxi Prov-
ince, China, 2’Pb/?%Pb age = 1780 £ 10 Ma, 2’Pb/>*3U
age = 1779 % 14 Ma and 2*Pb/***Pb age = 1777 + 10 Ma
(Shi et al. 2012). Because the 2°’Pb/*’Pb age is independ-
ent of calibration from inter-element fractionation, the con-
cordance of U-Pb ages indicates a well-established calibra-
tion curve.

Though U, Th and Pb concentrations are not essential
for rutile U-Pb dating, they are useful additional pieces of
information for characterization and are always measured
during ion microprobe analysis. In general, the U concen-
trations were calculated based on a ratio of TUO,, _ ¢ . 2)
and the intensity of matrix ions, such as **Zr,0" for zircon
and CaTi,O," for perovskite (Li et al. 2010b). However, we
observed that the intensity of **TiO, " in rutile varied by up
to 400% among different samples under the same analyti-
cal conditions. The cause of this phenomenon is unclear,
but may be related to the crystal structure. Nevertheless,
the method used for zircon or perovskite is unsuitable for
rutile. In this study, we estimated the U concentrations by
U™ ion yield based on the R10 standard with 30 ppm U
(Luvizotto et al. 2009). This method is proven to be effec-
tive to within 50% uncertainty by monitoring the JDX
rutile megacrystal.

Rutile usually contains very low concentrations of Th
making it favorable in U/Pb dating using the 2°*Pb-based
common Pb correction (Clark et al. 2000; Luvizotto et al.
2009). We observed that the ThO™/UO™ ratios (correspond-
ing to Th/U with a factor of around 1; Williams 1998) in
rutile standards are lower than 0.01, mostly <1E — 4. This
feature of rutile is quite useful not only in U-Pb dating, but
also in judging if it is rutile or another mineral. However,
most of the dated rutile grains in eclogite contain so low
U contents that the small Th content could not be ignored.
So, the common Pb proportion was calculated by 2’Pb-
based correction (Williams 1998). As for the age calcula-
tion, assuming that the rutiles are concordant in the U-Pb
system, an alternative to the common-lead correction is to
use the lower and upper intercepts of a regression line of
the data points on a Tera—Wasserburg plot to calculate the
U-Pb age and the common-lead composition, respectively
(Williams 1998). The 2*’Pb-based correction results using
the terrestrial Pb isotope composition (Stacey and Kramers
1975) are listed for reference only due to the large uncer-
tainties. Rutile U-Pb data are listed in Table 2.

Zircon trace element analysis
Trace elements in zircon were analyzed by LA-ICPMS at

the Geologic Lab Center, China University of Geosciences
(Beijing). The instrument couples a quadrupole ICPMS

(Agilient 7500a) and an UP-193 Solid-State laser (193 nm,
New Wave Research Inc.) with the automatic position-
ing system. In this study, the laser spot size was set to
36 wm, the laser energy density at 8.5 J/cm? and repetition
rate at 10 Hz. The procedure of laser sampling is 5-s pre-
ablation, 20-s sample-chamber flushing and 40-s sampling
ablation. The ablated material is carried into the ICP-MS
by the high-purity helium gas stream with a flux of 0.8 L/
min. The whole laser path was fluxed with N, (15 L/min)
and Ar (1.15 L/min) in order to increase energy stability.
The counting time was 15 ms for all elements. Calibrations
for zircon analyses were carried out using NIST 610 glass
as an external standard and Si as internal standard. Trace
element concentrations of zircons were calculated using
GLITTER 4.0. Analyses of standards (GJ-1 and NIST 610)
indicate that the precision (RSD%) is better than 10% (20).
The results are listed in Supplementary Material 2.

SIMS O isotopic analysis

Zircon oxygen isotopes were measured using the same
Cameca IMS 1280 SIMS at the Institute of Geology and
Geophysics, Chinese Academy of Sciences in Beijing, with
analytical procedures similar to those reported by Li et al.
(2010a, b, ¢). The Cs™ primary ion beam was accelerated at
10 kV, with an intensity of ca. 2 nA (Gaussian mode with
a primary beam aperture of 200 pm to reduce aberrations)
and rastered over a 10-pm area. The spot was about 20 pm
in diameter (10 wm beam diameter +10 pwm raster).

The normal-incidence electron flood gun was used
to compensate for sample charging during analysis with
homogeneous electron density over a 100-um oval area.
Negative secondary ions were extracted with a —10 kV
potential. The field aperture was set to 5000 pwm, and the
transfer-optics magnification was adjusted to give a field of
view of 125 pm (FA = 8000). The energy slit width was
30 eV, and the mechanical position of the slit was con-
trolled before starting the analysis (5 eV gap, —500 digits
with respect to the maximum). The entrance slit width was
~120 wm and the exit slit width for multicollector Faraday
cups (FCs) for °0 and 80 was 500 pm (MRP = 2500).
The intensity of '°0 was typically 1 x 10° cps. Oxygen
isotopes were measured in multicollector mode using two
off-axis Faraday cups. The NMR (Nuclear Magnetic Res-
onance) probe was used for magnetic field control with
stability better than 2.5 ppm over 16 h on mass 17. One
analysis took ~4 min, consisting of pre-sputtering (~120 s),
automatic beam centering (~60 s) and integration of oxy-
gen isotopes (10 cycles x 4 s, total 40 s). Uncertainties
on individual analyses are reported at the 1o level. With
low noise on the two FC amplifiers, the internal precision
of a single analysis is generally better than 0.2%o for the
130/1°0 ratio. Values of 5'%0 were standardized to Vienna

@ Springer
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Standard Mean Ocean Water (VSMOW) and reported in
standard per mil notation.

The instrumental mass fractionation factor (IMF)
was corrected using 91500 zircon standard with
(8"80)ysmow = 9.9%0 (Wiedenbeck et al. 2004). Measured
30/1%0 ratios were normalized using VSMOW composi-
tions ("*04°0 = 0.0020052) and then corrected for the
instrumental mass fractionation factor (IMF) as follows:

(s0) = [(™0/*0), /00020052 ~ 1] x 1000(%)

IMF = (5180) - (5180)
M(standard) VSMOW

(5180) = (5180) + IMF
Sample M

Thirty-four measurements of the TEMORA zircon stand-
ard yielded a weighed mean for 5'%0 of 8.20 + 0.26%0
(20), which is consistent with the reported value of 8.20%o
(Black et al. 2004). Zircon oxygen isotopic data are listed
in Table 1.

Zircon description and mineral inclusions

Zircon grains from the Qiangtang eclogite are euhedral
or subhedral and colorless, with sizes ranging from 50 to
100 um. All grains show similar crystal forms with elon-
gated and/or short prisms (Fig. 3). Most zircon grains have
homogeneous CL images (Fig. 3a—d) and exhibit similar
crystal forms with no inherited cores or resorption. Fur-
thermore, some grains show high luminescent bright stripes
(Fig. 3a—d).

The zircons grains contain many mineral inclusions of
the eclogite-facies paragenesis, including omphacite, phen-
gite, garnet and rutile (Fig. 3e—p). Most inclusions lie in the
interior of zircon crystals, and they are not connected to the
matrix through fractures (Fig. 3). This occurrence indicates
that the inclusions are primary, not secondary inclusions of
the zircon grains. The inclusions occur in various shapes
and sizes (1-15 pm; Fig. 3e—p). Small mineral inclusions
(<5 pm) were identified using laser Raman spectroscopy.
We also determined the chemical compositions of larger
inclusions (>5 pm) using EPMA. A total of 31 mineral
inclusions were analyzed, and their chemical compositions
are listed in Supplementary Material 1. Garnet is rich in
almandine and grossular, but poor in pyrope and spessar-
tine (Almsg 7 577PrPys 61590618255 259SPS1 41 5)- The jade-
ite component of omphacite ranges from 32 to 39 mol%.

@ Springer

Phengite inclusions are numerous within the zircons, and
they are characterized by high Si-values (3.30-3.52 pfu)
when normalized to 11 oxygen. Thus, the geochemical fea-
tures of mineral inclusions are consistent with those of the
matrix minerals in the Qiangtang eclogite (Garnet: Alms,_
78Prpy_oGrsg_33Sps, g, Omphacite: 30-42 mol% jadeite,
Phengite: 3.35-3.48 Si-content) (Zhai et al. 2011a, b).

U-Pb geochronology

In order to clarify the issue of the peak metamorphic age or
exhumation time of the Qiangtang eclogite, we dated four
eclogite samples (E0814, E0901, E0902 and E0903) using
the SIMS U-Pb technique (Table 1). Furthermore, we also
dated rutile selected from two samples (E0814 and E0901)
(Table 2) by the same technique.

The analytical results for four samples show that
the zircon grains have highly variable uranium (142—
1894 ppm) and thorium (129-3750 ppm) concentrations,
as well as rather high Th/U ratios (0.84-2.26, Table 1).
Four samples gave 2%°Pb/>*¥U weighted mean ages of
237 £ 2,236 + 3,236 &+ 3 and 232 £ 3 Ma (Fig. 4). The
analyzed 46 rutile grains from two samples (E0814 and
E0901) are about 150 pwm in size (diameter). They have
low U contents ranging from 0.18 to 0.92 ppm, and high
and variable proportions of common lead (f,os = 4-93 %
(Table 2). In the Tera—Wasserburg plot (Fig. 5), the lin-
ear regression of the data points gave two lower intercept
ages of 218 £ 10 Ma and 217 &£ 12 Ma for sample E0814
and E0901, respectively. The weighted mean 2°°Pb/>*3U
ages are identical within the error limits, at 216 = 9 Ma
and 215 + 11 Ma, using the 207ph_pased common-lead
correction.

Trace element and oxygen isotopic compositions

Zircon trace element and oxygen analyses were performed
on the same spots as those for U-Pb dating. Eighty-three
trace element analyses of zircon grains from four dated
eclogite samples show a rather uniform composition (Sup-
plementary Material 2). The chondrite-normalized REE
patterns (Fig. 6) are characterized by moderate enrichment
in heavy REE (Luy/Smy = 14-41), significantly negative
Eu anomalies (Eu/Eu* = 0.14-0.43) and positive Ce anom-
alies. The 89 zircon grains from four samples give 8'%0
value of 43.89 %o to +5.80 %o (Table 1; Fig. 7). This result
is outside the normal mantle 3'30 value of +5.3 + 0.3%0
(Valley 2003).
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Table 2 SIMS U-Pb data for
rutiles from the Qiangtang
eclogite

Sample spot

U (ppm)  fro6 (%)

Z8U/%Ph  +o (%)

207pp2%Ph  +0 (%)

toezs (Ma)  +o (Ma)

E0814, eclogite

E0814-1 0.5

E0814-2 0.29
E0814-3 0.32
E0814-4 0.49
E0814-5 0.31
E0814-6 0.24
E0814-7 0.40
E0814-8 0.36
E0814-9 0.56
E0814-10  0.59
E0814-11  0.55
E0814-12  0.37
E0814-13  0.25
E0814-14  0.46
E0814-15 0.42
E0814-16 0.5

E0814-17  0.26
E0814-18  0.92
E0814-19  0.36

E0901, eclogite

E0901-1 0.39
E0901-2 0.57
E0901-3 0.4

E0901-4 0.32
E0901-5 0.3

E0901-6 0.55
E0901-7 0.22
E0901-8 0.23
E0901-9 0.25
E0901-10  0.33
E0901-11  0.21
E0901-12  0.22
E0901-13  0.28
E0901-14  0.25
E0901-15  0.41
E0901-16 0.3

E0901-17  0.33
E0901-18  0.55
E0901-19  0.18
E0901-20  0.57
E0901-21  0.26
E0901-22  0.52
E0901-23  0.37
E0901-24  0.27
E0901-25  0.69
E0901-26  0.44
E0901-27  0.37

74

11
12
31
15

18

56
88

19
21
74

77
84
10
84
89
14
90
90
85
82
85
92
80
93
89
31
92
16
88
10
89

73

10
11

29.3
25.3

8.7
30.4
25.5
25.5
22.1
26.3
26.3
25.8
28.5
13.9

5.7
253
249
26.1
244
233

59

5.03
4.04
28
4.8
321
25.7
3.03
243
3.93
5.93
5.49
3.79
6.75
2.51
3.17
20.5
4.01
28.6
3.37
24.6
2.82
28.9
8.75
25.5
26
27.6
24

8.1
7.9
8.5
7.1
8.8
9.0
11.7
8.0
6.7
6.3
73
7.9
12.6
8.0
8.0
7.2
10.6
8.4
6.2

12.1
153
9.3
7.1
12.7
7.7
11.9
8.1
11.0
9.3
10.5
7.4
9.2
16.7
12.8
9.7
13.7
11.6
8.5
6.1
74
73
9.4
11.4
8.0
9.0
10.0

0.077
0.103
0.625
0.096
0.133
0.140
0.294
0.163
0.080
0.187
0.090
0.486
0.738
0.096
0.119
0.118
0.196
0.210
0.631

0.650
0.709
0.127
0.703
0.741
0.156
0.751
0.753
0.712
0.686
0.712
0.768
0.672
0.772
0.747
0.294
0.771
0.172
0.735
0.131
0.744
0.104
0.617
0.114
0.106
0.129
0.137

16
15

14

19
11
14
14
9.3
14
73
6.4
17
15
15
22
9.4

4.7
33
16
4.5
4.9
11
39

5.1
4.8
6.5
4.5
5.5
3.7
53
14
4.2
12
4.7
11
35
15
5.5
20
13
18
16

209
234
200
197
223
221
199
207
232
203
211
206
146
236
232
222
212
217
284

292
247
204
243
229
213
216
263
247
199
177
138
192
195
217
213
124
188
233
231
253
204
200
228
227
207
234

17
19
38
14
20
21
26
18
16
14
16
28
78
19
19
17
26
19
54

61
61
20
64
97
17
86
130
81
50
71
78
48
101
106
26
70
22
87
15
80
15
37
27
18
20
24
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Discussion
The timing of HP metamorphism

Mineral inclusions are the most powerful and direct way to
discriminate the genesis of zircon from the HP metamor-
phic rocks (e.g., Hermann et al. 2001; Hoskin and Schalteg-
ger 2003; Rubatto and Hermann 2007; Liu and Liou 2011).
The zircon grains from the Qiangtang eclogite contain typi-
cal eclogite-facies assemblages. Furthermore, the inclusion
relationships indicate that they are primary inclusions, and
they should be trapped during the growth of zircon. That
is, zircons from the Qiangtang eclogite were formed under
the eclogite-facies conditions. In this study, we obtained
zircon U-Pb ages of 232-237 Ma, which are identical with
the Lu-Hf mineral isochron ages of 233-244 Ma (Pullen
et al. 2008). Furthermore, these ages are indistinguishable
from the zircon ages reported by Zhai et al. (2013b; 230-
237 Ma). These ages should represent the time of the peak
eclogite-facies metamorphism of the Qiangtang eclogite.

Rutile is a common accessory phase in eclogite, and it
also records the time of high-pressure metamorphism. The
closure temperature (7,) for the rutile U-Pb system is lower
than that of zircon. Field studies indicated that T, of rutile
was 400-500 °C at a grain radius of 90-210 pum (Mezger
et al. 1989), similar to that of 7, of the phengite Ar—Ar
age (ca. 400 °C; Hames and Bowring 1994; Harrison et al.
2009). Therefore, the rutile U-Pb age probably represents
the time when the Qiangtang eclogite cooled down to
400-500 °C. In this study, a pooled analysis of all 46 meas-
urements from two samples gave a lower intercept age of
217 £ 7 Ma MSWD = 0.52) in the Tera—Wasserburg dia-
gram (Fig. 5); this is considered as the best estimate for the
rutile U-Pb age. This age agrees with the phengite Ar—Ar
age of 214-219 Ma (Li et al. 2006a; Zhai et al. 2011b), and
they date the cooling (exhumation) of the Qiangtang eclog-
ite below ~500 °C.

Broadly, there is an interval between the peak eclogite-
facies metamorphism and exhumation time, which is com-
parable with that of the HP-UHP rocks from the Dabie—
Sulu orogen of eastern China (Liou et al. 2009; Liu and
Liou 2011; Zheng 2012).

Unusual metamorphic zircons

In general, metamorphic zircon can usually be distin-
guished from magmatic zircon. Metamorphic zircon
grains typically contain metamorphic mineral inclu-
sions; they show irregular shape and internal structure,
low Th/U ratios, and relatively flat heavy REE pattern for
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garnet-bearing eclogite or amphibolite (e.g., Hoskin and
Black 2000; Rubatto 2002; Corfu et al. 2003; Hoskin and
Schaltegger 2003). The inclusion assemblage of omphacite,
phengite, garnet and rutile indicates that the zircon of the
Qiangtang eclogite was undoubtedly at the eclogite-facies
conditions. Furthermore, the similarity in composition
between the inclusions and matrix minerals (omphacite,
phengite and garnet) suggests crystallization of zircon dur-
ing prograde eclogite-facies metamorphism. However, the
Qiangtang zircon grains show some unusual features for
metamorphic zircon, that is, their euhedral habit, high Th/U
ratios and enriched heavy REE patterns (Fig. 6).

Similar cases have been observed for metamorphic zir-
con from veins associated with eclogite in the Western
Alps (Rubatto et al. 1999; Rubatto and Hermann 2003) and
Dabie orogens (Zheng et al. 2007; Wu et al. 2009). Indeed,
the high Th/U ratios of the zircon grains (0.84-2.26,
Table 1) are unusual, but several similar cases have been
reported from high-grade metamorphic rocks (granulite
and eclogite) in the Alps and Himalaya orogenic belt (e.g.,
Vavra et al. 1999; Zhai et al. 2011b; Zhang et al. 2014).
These rocks are mostly formed in subduction zones, where
the metamorphic fluids would be enriched in some trace
elements during subduction of the oceanic crust, and the
zircon could be formed during the formation of eclogite
and blueschist.

The negative Eu anomalies in zircon could either be
inherited from the host rock or be the product of concurrent
crystallization from the fluid when precipitating plagioclase
(Rubatto 2002). The whole-rock geochemical data of the
Qiangtang eclogite do not display any Eu anomaly (Zhai
et al. 2011a), so that the negative Eu anomaly in the zircon
could be attributed to the latter cause. That is, these zircon
grains were most likely crystallized in the presence of pla-
gioclase. The inclusion relationships argue for the coeval
formation of zircon, omphacite, phengite, garnet and rutile,
whereas the zircons show a steep HREE pattern, suggesting
that the heavy REE abundances were not affected by the
formation of garnet. Therefore, the zircon and garnet should
be formed in where no trace element equilibrium between
zircon and garnet was achieved. This prevented any change
in zircon composition due to the crystallization of garnet
or other minerals. Note that the Qiangtang eclogite was
derived from oceanic crust of the Paleo-Tethys Ocean (Zhai
et al. 2011a, b), and thus the metamorphic fluid would pro-
vide trace elements that could enter to the HP eclogites.
Finally, the zircon §'®0 values of 3.89 to 5.80%o for the zir-
con grains also argue for seawater-hydrothermal alteration
for eclogite protolith, consistent with the oceanic origin of
the Qiangtang eclogites (Zhai et al. 2011a, b).
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Tectonic evolution of the Qiangtang HP metamorphic
belt

The Qiangtang HP metamorphic belt and associated ophi-
olitic mélanges marked a Paleo-Tethyan suture zone in
the middle of the Qiangtang terrane, and it was recently

documented and hotly studied (Kapp et al. 2003; Li et al.
20064, b; Pullen et al. 2008, 2011; Pullen and Kapp 2014,
Zhai et al. 2011a, b, 2013a, b, c, 2016; Liang et al. 2012;
Metcalfe 2013; Zhang et al. 2016). According to the newly
published data, the ages of ophiolitic mélanges from this
suture zone range from Middle Cambrian to Permian (Zhai
et al. 2013a, 2016), and thus the Paleo-Tethys Ocean could
open in the Middle Cambrian (Zhai et al. 2016). However,
the close of this ocean is still unclear.

In generally, low-temperature/HP metamorphic rocks
were formed by the oceanic subduction (e.g., Maruyama
et al. 1996; Ernst 2001; Agard et al. 2009), and the Qiang-
tang eclogite and blueschist recorded the processes of the
subduction and closure of the Paleo-Tethys Ocean. Table 3
and Fig. 8 are a summary for the ages of the HP metamor-
phic rocks in the Qiangtang area. We suggest that the time
of the peak eclogite-facies metamorphism focused on a var-
iation of 230-237 Ma inferred from the zircon U-Pb ages
(Zhai et al. 2011b; this study). The Lu—Hf mineral isoch-
ron ages (233 £ 13 Ma and 244 £ 11 Ma) are similar to
these ages (Pullen et al. 2008). Furthermore, there are only
three ages for the blueschist-facies metamorphism, that is,
two glaucophane Ar—Ar ages (Li 1997; Zhai et al. 2009)
and one Lu—Hf mineral isochron age (Pullen et al. 2008)
(Table 3). These ages are similar and display a narrow
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Table 3 Summary of age data

: Location Lithology Dating methods Age (Ma) References

for the HP metamorphic rocks

in the Qiangtang area Gemu Eclogite Lu—Hf isochron 244+ 11Ma  Pullen et al. (2008)
Gemu Eclogite Lu—Hf isochron 233 + 13 Ma  Pullen et al. (2008)
Gemu Eclogite Zircon LA-ICPMS U-Pb 230 +4 Ma Zhai et al. (2011b)
Gemu Eclogite Zircon SHRIMP U-Pb 237 £ 4 Ma Zhai et al. (2011b)
Gemu Eclogite Zircon SIMS U-Pb 237 +2Ma  This study
Gemu Eclogite Zircon SIMS U-Pb 236 =3 Ma  This study
Gemu Eclogite Zircon SIMS U-Pb 236 =3 Ma  This study
Gemu Eclogite Zircon SIMS U-Pb 232 £3Ma  This study
Gemu Eclogite Phengite Ar—Ar 214 £2 Ma Zhai et al. (2011b)
Gemu Eclogite Phengite Ar—Ar 219 £2 Ma Li et al. (2006a)
Gemu Eclogite Phengite Ar—Ar 217 £2Ma Li et al. (2006a)
Gemu Eclogite Rutile SIMS U-Pb 218 £ 10 Ma  This study
Gemu Eclogite Rutile SIMS U-Pb 219 £ 12Ma  This study
Gemu Phengite schist Phengite Ar—Ar 219+ 2Ma Dong et al. (2009)
Gemu Garnet—phengite schist  Phengite Ar—Ar 223 +2 Ma Zhai et al. (2011b)
Gangma Co  Eclogite Phengite Ar—Ar 220 +2 Ma Zhai et al. (2011b)
Rongma Blueschist Lu-Hf isochron 223 + 5 Ma Pullen et al. (2008)
Rongma Blueschist Glaucophane Ar—Ar 227 £ 4 Ma Zhai et al. (2009)
Rongma Blueschist Phengite Ar—Ar 215+ 2Ma Zhai et al. (2009)
Rongma Blueschist Phengite Ar—Ar 221 £0.3 Ma Kapp et al. (2003)
Rongma Blueschist Phengite Ar—Ar 222 +0.1 Ma  Kapp et al. (2003)
Shuanghu Blueschist Glaucophane Ar-Ar 223 £ 4 Ma Li (1997)
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[J Cooling

“x
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1
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|
I "
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%%

200 210 220 230 240 250 260
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Fig. 8 Age data for the HP metamorphic rocks in the Qiangtang
area. Data sources: Li (1997); Kapp et al. (2003); Li et al. (2006a);
Pullen et al. (2008); Dong et al. (2009); Zhai et al. (2009, 2011b);
This study. See Table 3 for details

range (223-227 Ma), and they are interpreted as the timing
of the decompression blueschist stage (Zhai et al. 2011Db).
The cooling time of the HP metamorphic rocks was con-
strained by phengite and rutile from eclogite and gar-
net—phengite schist. Their ages mainly range from 214 to
223 Ma (Table 3), and they represent the cooling time of
these HP metamorphic rocks.

In conclusion, the peak eclogite-facies stage (223—
227 Ma) represented the oceanic subduction of the
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Paleo-Tethys Ocean in the middle of the Qiangtang area,
whereas the cooling stage (greenschist-facies; 214—
223 Ma) recorded the final exhumation of the HP meta-
morphic rocks. Furthermore, the blueschist-facies stage
(223-227 Ma) is the result of the decompression of the
HP metamorphic rocks during their exhumation. There-
fore, the ages of these HP metamorphic rocks display a
tectonic evolution of the Qiangtang HP metamorphic belt
from oceanic subduction to exhumation in the Middle-Late
Triassic.

Conclusions

Our new data suggest that: (1) the timing of the peak eclog-
ite-facies and exhumation stages of the Qiangtang eclogite
was 232-237 Ma and ca. 217 Ma, respectively; (2) zircon
from the Qiangtang eclogite was metamorphic origin, even
though it has high Th/U ratios and enriched heavy REE com-
positions. The apparent paradox could be explained whereby
the zircon grains crystallized from a different reservoir from
that for garnet where no trace element was present and
trace element equilibrium between zircon and garnet was
achieved. (3) We caution that zircon grains of metamorphic
and magmatic origins cannot be always distinguished by the
criteria of Th/U ratio and heavy REE patterns for the HP-
UHP metamorphic rocks of oceanic derivation. (4) The ages
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of the HP metamorphic rocks display a tectonic evolution of
the Qiangtang HP metamorphic belt from oceanic subduc-
tion to exhumation in the Middle-Late Triassic.
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