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Introduction

The Tarim Basin is located in the Uygur Autono-
mous Region of Xinjiang, northwest China (Fig. 1a). 
It is the largest basin in Central Asia, with an area of 
56 × 104 km2. The Central Tarim, a secondary tectonic 
unit of the Tarim Basin, is an important oil- and gas-rich 
area. Some oil–gas fields have already been found here, 
such as the Tazhong 4 oil field and the Ordovician car-
bonate condensate gas reservoirs in the No. 1 Fault zone 
(Fig. 1c). Previous studies indicated that the Tarim Basin 
experienced multiple uplift and burial episodes since the 
Late Neo-Proterozoic (Jia 1997; He et al. 2005), which 
caused difficulty in the understanding of hydrocarbon 
generation timing in the Central Tarim. Temperature plays 
an important role in hydrocarbon generation and accumu-
lation; therefore, it is important to reconstruct the tectono-
thermal evolution of a region. For the Central Tarim, Xie 
and Zhou (2002) calculated maximum paleo-temperatures 
of 119–168 °C for the Cambrian–Ordovician strata using 
pyrolysis kinetics simulation experiments on samples 
from the TC1 well (Fig. 1c). Zhang et al. (2011a) obtained 
Silurian paleo-temperatures for the Central Tarim based 
on the homogenization temperatures of fluid inclusions. 
On the basis of vitrinite reflectance (Ro) data, Pan et al. 
(1996) studied the Central Tarim paleo-geothermal gra-
dient evolution, which gradually decreased from 32 to 
29 °C/km in the Paleozoic to 26–20 °C/km in the Ceno-
zoic. This research result was very similar to that of Li 
et al. (2005), who used apatite fission track (AFT) analy-
sis. Qiu et al. (1997) and Xiang et al. (2013) also reported 
AFT data to discuss tectonic uplift events in the Central 
Tarim.

Bray et al. (1992) and Green et al. (2002) considered 
that Ro values provide discrete estimates of the maximum 
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post-depositional paleo-temperature, whereas AFT may 
provide lower or upper limits or a range of values for the 
maximum paleo-temperature in one, two, or rarely three 
separate episodes. The combination of AFT and Ro data 
could provide an independent check on the magnitude of 
the maximum paleo-temperatures and increase confidence 
in the paleo-geothermal gradient estimation (Green et al. 
2002). A new Paleozoic thermal history of the Tarim Basin 
was recently reconstructed by integrating AFT and Ro (Qiu 
et al. 2012). However, only AFT dating was used to study 
the Meso–Cenozoic history of the northern margin of the 
Tarim Basin (Sobel et al. 2006; Wang et al. 2009; Zhang 

et al. 2009), and there is little research on the Meso–
Cenozoic history of the interior of the Tarim Basin based 
on the integration of AFT and Ro. Although AFT and Ro 
have been separately applied to the tectono-thermal evo-
lution history of the Central Tarim (Pan et al. 1996; Qiu 
et al. 1997; Li et al. 2005; Xiang et al. 2013), until now 
no study has integrated these two methods to study the 
cooling events and erosion amounts in the Central Tarim. 
This paper integrates AFT and Ro data to investigate paleo-
geothermal gradients, cooling episodes, and exhumation 
magnitudes in the Central Tarim. Mesozoic paleo-geother-
mal gradients of approximately 24.8 °C/km were obtained 

Fig. 1  a Schematic map of central Asia showing the location of the 
Tarim Basin; b sketch map of tectonic units in the Tarim Basin, and 
the rectangle box in its middle means the studied area shown in (c); 

c the tectonic units, faults and well locations of the Central Tarim 
(Modified from Li et al. 2010), and the oil and gas reservoir mapping 
in the Central Tarim referred to Cai (2007)
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from Ro data from the Z1 and Z11 wells, and two cool-
ing events at 190–140 Ma and 80–45 Ma were revealed 
by AFT data from well Z2. This study provides a robust 
and comprehensive analysis of the tectono-thermal evolu-
tion of the Central Tarim, which is significant for future 
hydrocarbon maturation evolution research and oil and gas 
exploration.

Geologic setting

The Tarim Basin, one of the most petroliferous basins in 
China, is bounded by Tian Shan to the north, Kuluket-
age Mountain to the northeast, Kunlun Mountain to 
the southwest, and Altun Mountain to the southeast 
(Fig. 1a). The Tarim Basin is divided into eight struc-
tural belts according to basement relief and geophysi-
cal features: Kuqa Depression, Tabei Uplift, Northern 
Depression, Central Uplift, Southeast Uplift, Southeast 
Depression, Tangguzibasi Depression, and Southwest 
Depression (Fig. 1b; Jia 1997). The Central Uplift con-
tains three secondary tectonic units: Bachu Uplift, Cen-
tral Tarim (sometimes known as the Tazhong Uplift), and 

Guchengxu Uplift. The crystalline basement of the Tarim 
Basin formed in the Late Proterozoic (Zhang 2000; He 
et al. 2005; Wu et al. 2012; Zhang et al. 2013a; Ge et al. 
2014). The basement was covered by Early Paleozoic 
marine carbonate sediments, Late Paleozoic alternating 
marine and continental sediments, and Meso–Cenozoic 
terrestrial sediments. The tectonic evolution of the basin 
was divided into six stages (Jia et al. 1995): (1) cratonic 
peripheral aulacogen from Late Proterozoic to Ordovi-
cian; (2) intracratonic depression from Silurian to Early 
Carboniferous; (3) intracratonic rift from Middle Car-
boniferous to Permian; (4) foreland basin stage in the 
Triassic; (5) intracontinental depression from Jurassic to 
Paleogene; and (6) recombined foreland basin since the 
Neogene. As a result of the complex tectonic evolution, 
five important regional unconformities can be found in 
the seismic profile (Figs. 2a, 3): (1) Silurian and Ordovi-
cian or older strata during the Late Caledonian movement 
stage II, (2) Carboniferous and Devonian or older strata 
during the Hercynian movement stage I, (3) Upper Per-
mian–Triassic and underlying strata during the Hercyn-
ian movement stage II, (4) Jurassic and Triassic or older 
strata during the Indosinian movement, and (5) Tertiary 

Fig. 2  Typical cross sections of the Tarim Basin (a) and the Central Tarim (b), which locations were plotted in Fig. 1
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Fig. 3  General stratigraphic column of the Central Tarim (Modified from Li et al. 2010)
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and Cretaceous or older strata during the Yanshan and 
Himalayan movements. 

The Central Tarim is an inherited paleo-uplift, which 
formed during the Late Caledonian–Early Hercynian and 
has an area of approximately 30,000 km2 (Fig. 1c; He et al. 
2006; Li et al. 2010), which is bounded by the Bachu Uplift 
to the west, the Guchengxu Uplift to the east, the Northern 
Depression to the northeast and north, and the Tangguzibasi 
Depression to the south. The Central Tarim is divided into 
five structural units according to the distribution of fault 
systems: No. 1 Fault Zone, North Slope, Central Faulted 
Horst Belt, South Slope, and East Burial Hill (Fig. 1c). 
During the Phanerozoic, the Central Tarim evolved from an 
Early Paleozoic marine carbonate platform to Late Paleo-
zoic alternating marine and continental deposits, and then 
Meso–Cenozoic continental fluvial sedimentary environ-
ments, with average thicknesses of 3500–5000, 1500–2000, 
and 1500–2500 m, respectively (He et al. 2005; Xiang 
et al. 2013). According to three-dimensional, high-reso-
lution seismic reflection data, Li et al. (2013) recognized 
four Paleozoic fault systems in the Central Tarim: (1) 
Cambrian–Early Ordovician extensional faulting; (2) Late 
Ordovician NWW trending thrust faulting; (3) Silurian–
Devonian NNE strike-slip faulting, and (4) faulting associ-
ated with Permian plume. Several obvious unconformities 
developed in the Central Tarim because of multiple tectonic 
movements in the Tarim Basin (Fig. 2b). The general strati-
graphic column of the Central Tarim is shown in Fig. 3.

The Central Tarim developed in a graben-rift basin with 
some normal faults from the Late Proterozoic to the Ordo-
vician. Its strata are dominated by carbonate, mudstone, 
and siltstone rocks (Fig. 3; Lü and Hu 1997; Li et al. 2009, 
2013). As a result of the collision between the Kunlun 
Mountain terrane and the Tarim plate in the Late Ordovi-
cian, the Central Tarim experienced tectonic inversion from 
extension to transpression and began folding and uplifting 
(Lü and Hu 1997; Wang et al. 1998; Lin et al. 2012). Lin 
et al. (2012) suggested the Central Tarim and adjacent areas 
formed an arc-shaped thrust uplift denudation belt during 
the Late Ordovician. During the Silurian and Devonian, 
the Central Tarim experienced serious erosion and formed 
several unconformities as a result of the southward subduc-
tion of the South Tian Shan Ocean (Fig. 2b; Wang et al. 
1998; Lin et al. 2012). The Central Tarim evolved into a 
large-scale, westward-plunging-nose uplift during the Car-
boniferous and Permian (Li et al. 2010), which probably 
resulted from the closure of the South Tian Shan Ocean in 
the northern margin of the Tarim Basin. In addition, dra-
matic magmatic activity during the Early Permian formed 
a large igneous province in the northwestern Tarim Basin 
(Yang et al. 2005; Li et al. 2011, 2012); basalt and tuff with 
U–Pb ages of 290–274 Ma have been found in the Permian 
formations of many drilling cores in the Central Tarim (Li 

et al. 2011, 2012; Zhang et al. 2013b). The Central Tarim 
experienced further serious erosion during the Meso–Ceno-
zoic; the missing Jurassic and Upper Cretaceous strata are 
considered as evidence of this (Figs. 2, 3; Wang et al. 1998; 
Li et al. 2008).

Vitrinite reflectance (Ro) method and data

Vitrinite is a primary component of coals and other organic 
matter found in sedimentary rocks and often used for 
reflectance measurements owing to its relatively progres-
sive change in optical properties with increasing tempera-
ture (Tissot and Welte 1978). The normal increase in vit-
rinite reflectance observed in borehole profiles is caused 
by temperature rising with depth (Stach et al. 1982). Thus, 
vitrinite reflectance is a reliable parameter for thermal his-
tory simulation and can be used to calibrate the amount of 
erosion in a sedimentary basin. Because vitrinite does not 
exist in pre-Silurian rocks (Bertrand and Herous 1987), the 
reflectance of vitrinite-like macerals and bitumen in Cam-
brian–Ordovician sediments is used to evaluate thermal 
maturation (Buchardt and Lewan 1990). In this article, all 
values for vitrinite-like maceral reflectance (Rv) and bitu-
men reflectance (Rb) were converted into equivalent vitrin-
ite reflectance values (Requ) using the formulae proposed by 
Wang et al. (1996) and Jacob (1989). The Ro or Requ values 
collected from wells Z1, Z2, and Z11 in the Central Tarim 
are listed in Table 1. The corresponding paleo-temperature 
for each Ro or Requ value was calculated based on the Easy 
%Ro model (Table 1; Sweeney and Burnham 1990).

Generally, if heating and cooling are caused by a combi-
nation of sedimentation and uplift, the reduced amount of 
uplift and erosion, ΔZ, required to explain the cooling is 
given by:

where ΔZ is the erosion upon the unconformity in meters, 
Ti is the paleo-temperature intercept at the unconformity, 
To is the paleo-surface temperature (20 °C), and dT/dZ is 
the paleo-geothermal gradient, which is equal to the slope 
of a paleo-temperature versus depth linear fitting (Fig. 4a; 
Bray et al. 1992; Green et al. 2002). The paleo-tempera-
ture-depth profile for studied wells should be linear through 
the preserved section to accurately calculate the geothermal 
gradient and amount of erosion (Green et al. 2002).

The systematic paleo-temperature data derived from 
Ro or Requ values of Ordovician–Triassic strata in the Z1 
and Z11 wells under the unconformity between the Tri-
assic and Cretaceous showed a nice linear relationship 
with depth. Moreover, the paleo-temperature values were 
higher than the present-day temperature for the same 
depth in these wells (Fig. 4), and therefore it is possible 

(1)�Z = (Ti − To)/(dT/dZ),
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to calculate the paleo-geothermal gradient and amounts 
of erosion for these wells based on the method of cal-
culating the erosion amount mentioned above. By fitting 
the linear correlation between the paleo-temperatures 
and corresponding depths of the Z1 and Z11 wells, we 
obtained paleo-geothermal gradients (the slopes of the 
linear fitting correlation) for these two wells of 23.5 and 
26.0 °C/km, respectively, after the Triassic (Fig. 4). The 
corresponding amounts of erosion were calculated based 
on formula (1) as approximately 3900 and 2750 m for 
wells Z1 and Z11, respectively. Furthermore, the mean 
of the paleo-geothermal gradients in wells Z1 and Z11, 
approximately 24.8 °C/km, is simply regarded as the 

Mesozoic geothermal gradient in the Central Tarim based 
on this work.

Apatite fission track (AFT) method and data

Apatite fission track thermochronology is based on the 
accumulation of radiation damage in an apatite crystal 
owing to the fission decay of 238U atoms. Fission tracks 
form continuously through geologic time and anneal over 
geologic timescales at temperatures above 110 ± 10 °C 
for most apatite samples (Gleadow et al. 1983; Green et al. 
1989). AFT analysis is particularly important to basin 

Table 1  Ro or equivalent vitrinite reflectance data (Requ) for the wells Z1, Z2 and Z11 in the Central Tarim

a Some vitrinite reflectance (Ro) data in the upper Paleozoic and Mesozoic strata are all referred to as Requ (equivalent Ro) in our study for 
consistency. The Requ values with asterisks (*) were calculated from vitrinite-like maceral (Rv), and Requ values with club (♣) were calculated 
from bitumen reflectance (Rb) using the following formulae: Requ = 0.533 Rv +0.667 (Wang et al. 1996); Requ = 0.618 Rb + 0.40 (Jacob 1989). 
The Ro or Requ data of the well Z1 were modified from Wang et al. (2010), and of which the wells Z2 and Z11 were provided by the Northwest 
Bureau of Petroleum of SINOPEC

Well ID Depth (m) Strat. Requ (%)a Paleo-temperature (°C) Well ID Depth (m) Strat. Requ (%)a Paleo-temperature (°C)

Z1 2670 T 0.71 118 Z2 5439 O 1.55♣ 180

Z1 2780 T 0.77 128 Z2 5761 O 1.59♣ 182

Z1 2810 T 0.80 131 Z2 5838 O 1.62♣ 183

Z1 2890 T 0.82 133 Z2 6150 O 1.68♣ 186

Z1 3800 P 0.98 147 Z11 2860 T 0.67 112

Z1 3915 P 1.07 152 Z11 3356 P 0.71 118

Z1 3885 P 0.96 146 Z11 3694 P 0.72 120

Z1 4030 C 1.09 154 Z11 3728 P 0.74 122

Z1 4080 C 1.12 156 Z11 3816 C 0.70 116

Z1 4140 C 1.17 159 Z11 3854 C 0.83 134

Z1 4210 C 1.17 159 Z11 3870 C 0.85 136

Z1 4265 C 1.13 157 Z11 3907 C 0.80 131

Z1 4375 C 1.28 166 Z11 3912 C 0.84 135

Z1 4410 C 1.13 157 Z11 4264 C 0.91 142

Z1 4460 D 1.14 157 Z11 4264 C 0.93 144

Z1 4520 D 1.27 165 Z11 4266 C 0.95 145

Z1 4630 D 1.28 166 Z11 5121 S 1.24♣ 164

Z1 4715 D 1.32 168 Z11 5128 O3 1.13♣ 157

Z1 4785 S 1.32* 168 Z11 5134 O3 1.19♣ 161

Z1 4815 S 1.35* 170 Z11 5148 O3 1.26♣ 165

Z1 4885 S 1.36* 170 Z11 5151 O3 1.27♣ 165

Z1 5010 S 1.36* 170 Z11 5155 O3 1.25♣ 164

Z1 5090 S 1.37* 171 Z11 5332 O3 1.31♣ 167

Z1 5205 O 1.50* 178 Z11 5334 O3 1.36♣ 170

Z1 5215 O 1.63* 184 Z11 5335 O3 1.30♣ 167

Z1 5350 O 1.60* 183 Z11 5336 O3 1.31♣ 167

Z1 5430 O 1.70* 187 Z11 5337 O3 1.32♣ 168

Z1 5520 O 1.69* 187 Z11 5420 O3 1.54♣ 180

Z1 5560 O 1.75* 189 Z11 5458 O3 1.45♣ 175

Z2 5287 O 1.43♣ 173
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analysis and hydrocarbon exploration because of its range 
of annealing temperatures, which is generally considered to 
be from 60 °C to 110 ± 10 °C, and which approximately 
corresponds with liquid hydrocarbon generation tempera-
tures over geologic time scales (e.g., Green et al. 1989; 
Logan and Duddy 1998). Apatite fission track ages, in com-
bination with track length distributions, can provide impor-
tant constraints for thermal history assessments in sedimen-
tary basins.

Seven samples were collected from sedimentary rocks 
(sandstone) in well Z2 for studying the Mesozoic cooling 
history of the Central Tarim (Fig. 1c). Apatite grains were 
separated from the collected samples using conventional 
heavy liquid and magnetic separation techniques. The 
AFT ages and lengths were examined at the China Uni-
versity of Geosciences, Beijing, using the external detector 
method described by Yuan et al. (2007). The apatite grains 
were mounted in epoxy resin on glass slides, ground, and 
polished to an optical finish to expose internal grain sur-
faces. Mounts were etched in 5.5 Mol HNO3 for 20 s at 
21 °C to reveal the tracks. Neutron irradiation was carried 
out in the reactor of China Institute of Atomic Energy at 
Beijing. Neutron fluence was monitored using the CN5 

standard glass. As an external detector, low–U muscovite 
was etched in 48 % HF for 20 min at 25 °C after irradia-
tion to reveal induced tracks. Track counting and horizon-
tal confined track length measurements were processed on 
a Zeiss Axiotron microscope under reflected or transmitted 
light at 1000× magnification. Only those crystals with pris-
matic sections parallel to the c-crystallographic axis were 
accepted for analysis. Meanwhile, some measured crystal 
grains with small cracks or dirty polishing surfaces were 
excluded for each sample. Durango samples were used for 
determining the zeta calibration. Fission track ages were 
calculated by the IUGS-recommended zeta calibration 
approach (Hurford and Green 1982; Hurford 1990) using a 
zeta value of 389.4 ± 19.2 for the samples. Sample infor-
mation and the results of the analyses are listed in Table 2.

Single-grain AFT ages and central or pooled ages for 
all the samples were much younger than the respective 
stratigraphic ages (Figs. 5, 6a; Table 2). According to the 
amounts of erosion from Ro data (3900 and 2750 m) and 
residual amounts of the overlying strata (Fig. 6), it is prob-
able that all the samples from the well Z2 experienced 
higher temperature than 110 ± 10 °C. Therefore, we con-
sidered that these samples experienced total annealing after 

Fig. 4  Paleo-temperatures derived from Ro or Requ in the wells Z1 (a) 
and Z11 (b) plotted against sample depth. The method of calculating 
the paleo-geothermal gradient and the amount of erosion from the 
paleo-temperatures were shown in left figure (Bray et al. 1992; Green 

et al. 2002). The empty circles represent the testing temperatures, and 
the dark circles were paleo-temperatures calculated from the measure 
Ro or Requ data
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deposition in the Central Tarim. AFT ages of 159 ± 10 
and 152 ± 9 Ma were recorded by the Triassic samples 
Z2-2 and Z2-3 and revealed the Jurassic cooling event, 
while other samples had AFT ages of 41–59 Ma, probably 
related to Paleogene cooling events (Fig. 6a). The mean 
track lengths of these samples became shorter with elevated 
temperature and depth (Fig. 6b), indicating that the deeper 
samples experienced stronger annealing compared with the 
shallow samples.

We plotted the AFT ages against mean track lengths 
by combining the AFT ages in this study with previously 
published AFT data (Fig. 7; Qiu et al. 1997; Li et al. 2004; 
Xiang et al. 2013). In total, AFT ages range from 25 to 
159 Ma and mean track lengths range from 7.8 to 12.9 μm 
for the samples in the Central Tarim. A typical boomerang 
trend phenomenon, as reported by Green (1986), is seen 
in Fig. 7 and indicates that the Central Tarim experienced 
multiple cooling events in its geologic history.

Thermal modeling and burial history construction

The timing and magnitude of cooling events in the Cen-
tral Tarim can be readily revealed by thermal modeling of 
AFT data. In this paper, the HeFTy software developed by 
Ketcham (2005) was used to model the thermal history of 
the Central Tarim with the multi-kinetic annealing model 
proposed by Ketcham et al. (2007), for which the mean 
Dpar was a kinetic parameter. Rahn and Seward (2000) 
suggested that 100 or more measured track lengths are 
necessary to obtain high-reliability modeling results for 
one sample, therefore only samples Z2-2 and Z2-3 were 
used to model the Central Tarim thermal history in this 
study. The initial modeling time was the time when each 
sample was deposited in the Central Tarim. The present-
day temperature for the model was calculated from the 
surface temperature (approximately 12 °C) and the bot-
tom hole temperature (BHT) (Fig. 6a). We assumed that 
the initial surface temperature was 20 °C (Meijun et al. 
2010). The program requires some constrained time–
temperature intervals. On the basis of the Lower Trias-
sic–Lower Cretaceous and Lower Cretaceous–Paleocene 
unconformities (Fig. 2b) and measured AFT ages, con-
straints were chosen around the Early Jurassic and Late 
Cretaceous. In our modeling, 100,000 thermal paths were 
developed using a Monte Carlo inverse modeling method, 
with the best temperature path indicating the thermal his-
tory of the sample. Ideally, additional attempted path 
simulations will give a better thermal interpretation, but 
100,000 simulations are sufficient to have a reasonably 
well-constrained interpretation. Sedimentation, uplift, or 
erosion would have produced changes in the paleo-tem-
perature of the strata.Ta
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Thermal modeling results for samples Z2-2 and Z2-3 
reveal two rapid cooling events, in the Early Jurassic–
Early Cretaceous (190–140 Ma) and the Late Creta-
ceous–Early Paleocene (80–45 Ma) (Fig. 8). The subsid-
ence (heating) following each of these two cooling events 
corresponded to the residual Lower Cretaceous and 
Upper Paleozoic–Quaternary strata in well Z2 (Figs. 2b, 
6a). The Early Jurassic–Early Cretaceous cooling event 

was also revealed by zircon fission track (ZFT) ages in 
the Bachu Uplift, along the northern margin of the Cen-
tral Tarim (Fig. 1c; Chang et al. 2014). Meanwhile, Xiao 
et al. (2011) reported some AFT ages of 134.5–164 Ma 
from the Kongquehe Slope in the Eastern Tarim Basin. 
These studies implied that the Early Jurassic–Early Cre-
taceous cooling event probably influenced the whole 
Tarim Basin. The Late Cretaceous–Early Paleocene 

Fig. 5  Radial plots and age spectra of the samples from the well Z2 in the Central Tarim. The dash line in each age spectra represents the depo-
sitional age of the sample, indicating that the single-grain AFT ages of all the samples were younger than the corresponding depositional ages
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cooling event revealed by thermal modeling of samples 
Z2-2 and Z2-3 was confirmed by the measured AFT ages 
of samples Z2-7, Z2-10, Z2-11, TZ12-4, TZ6-1, TZ401-
1, TZ401-3, and TZ401-4, and the unconformity between 
Lower Cretaceous and Paleocene in the Central Tarim 
(Table 2; Fig. 2b; Li et al. 2004; Xiang et al. 2013). On 
the basis of decreased temperatures and paleo-geother-
mal gradients, we calculated the amounts of erosion for 
these two cooling events as 3000 m in the Early Jurassic–
Early Cretaceous and 1600 m in the Late Cretaceous–
Early Paleocene (Table 3).

Finally, we reconstructed the burial and thermal his-
tory of well Z2 with drilling data and amounts of erosion 
for these two cooling events, using the Basin Mod 1-D 

software (Fig. 9). In the modeling, mechanical compaction, 
coupled with the Falvey and Middleton reciprocal poros-
ity–depth relationship, was used. Figure 9 shows that the 
modeling results were very consistent with the measured 
Ro, which illustrates the reliability of our AFT modeling.

Discussion

Tectonic implications for cooling events in the Central 
Tarim

During the Late Triassic–Early Cretaceous, continuous 
compressive stress associated with collisions between the 
Qiangtang–Lhasa Terranes and the southern margin of the 
Eurasian continent resulted in the formation of several 
depressions on the margins of the Tarim Basin, such as the 
Southeast Depression and Southwest Depression. During 
the Late Triassic–Early Jurassic, the Southwest Depression 
developed as a foreland basin and accommodated several 
kilometers of fluvial and lacustrine sediments (Sobel 1999). 
The Bachu Uplift, close to the northern margin of the Cen-
tral Tarim, evolved into the forebulge part of this foreland 
and began to erode seriously from the Early Jurassic to the 
Early Cretaceous (He et al. 2005; Ding et al. 2008), which 
was revealed by ZFT ages (Chang et al. 2014). On the basis 
of AFT data analysis, Zhang et al. (2011a, b) suggested 
that the Late Jurassic–Early Cretaceous uplift history of the 
northeastern Tarim Basin was also related to the collision 
of the Lhasa Terrane with the southern margin of Asia. The 
Central Tarim evolved into the forebulge part of the South-
east foreland basin because of compressive stress in the 
Mesozoic and was entirely uplift and then deposited, events 

Fig. 6  Measured apatite fission 
track ages (left) and length 
(right) profiles with the sample 
depth for the well Z2 in the 
Central Tarim

Fig. 7  AFT ages plotted against mean track lengths for AFT data 
used in this study and previous studies by Qiu et al. (1997), Li et al. 
(2004) and Xiang et al. (2013). A typical ‘boomerang’ trend proposed 
by Green (1986) is shown by the dark dash line
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that were recorded and revealed by the measured AFT ages 
and thermal modeling results from samples Z2-2 and Z2-3 
in this study and the AFT study of Xiang et al. (2013). 
Meanwhile, unconformities are further evidence for the 
Early Jurassic–Early Cretaceous cooling event (Fig. 2b). In 
addition to collisions on the southern margin of the Eura-
sia continent, the Early Jurassic–Early Cretaceous cooling 
event was possibly related to the final accretionary and col-
lisional orogeny of the Chinese Tian Shan northern Tarim 
Basin during the Mid-Triassic (Xiao et al. 2013), a theory 
that is supported by the Permian–Triassic titanite fission 
track and zircon (U–Th)/He data (Glorie et al. 2011).

The measured AFT ages of the samples Z2-7, Z2-10, 
Z2-11, TZ12-4, TZ6-1, TZ401-1, TZ401-3, and TZ401-4 
and the unconformity between Lower Cretaceous and Pale-
ocene in Fig. 2b demonstrated the Central Tarim experi-
enced another cooling event during the Late Cretaceous–
Early Paleocene (80–45 Ma), which was also found in the 
Bachu Uplift, Kuqa Depression, Kuluketage Mountain, 
and Tian Shan (Wang et al. 2009; Qiu et al. 2011; Zhang 
et al. 2011a, b; Glorie et al. 2011). The collision of the 
Dras–Kohistan arc with Eurasia in the Late Cretaceous is 

generally considered as the driving force of this cooling 
event in Central Asia (Zhang et al. 2011a, b; Glorie et al. 
2011; Clift et al. 2014). The continuous uplift and ero-
sion during the Early Paleocene in the Central Tarim and 
other areas were probably related to the collision between 
the Tibetan–Himalayan microcontinent and the southern 
margin of Eurasia, which was also called a soft collision 
between Greater India and Eurasia (van Hinsbergen et al. 
2012). This soft collision probably resulted in the crustal 
shortening of the Tian Shan and the clockwise rotation of 
the Tarim Block during the Early Cenozoic (Chen et al. 
1991). Meanwhile, crustal shortening and convergence of 
the Tian Shan corresponded to crustal thickening of the 
Qinghai–Tibet Plateau in the Early Cenozoic (England 
and Houseman 1986; Deng et al. 2000). In addition, Wang 
et al. (2008) proposed the distant effects of the soft colli-
sion would have reached the East Tian Shan in the Early 
Cenozoic, based on AFT data. More recent paleomagnetic, 
biostratigraphic, and sedimentological studies suggested 
that the final collision of the India plate with Eurasia, 
which was called a hard collision by van Hinsbergen et al. 
(2012), occurred around 38–25 Ma (Aitchison et al. 2007; 

Fig. 8  Thermal histories of the 
samples Z2-2 and Z2-3 from the 
well Z2 by using AFT data. The 
left figure shows the attempted 
temperature paths and the thick 
black line is the best modeled 
thermal history. The right figure 
indicates the measured and 
modeled AFT length distribu-
tion. GOF means goodness of fit
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Jiang et al. 2015). In this study, the measured AFT ages of 
the samples Z2-8, Z2-9, TZ10-3, TZ8-2, TZ6-2, TZ6-3, 
and TZ401-2 were consistent with the hard collision time, 
indicating that the hard collision played an important role 
on the late uplifting and erosion in the Central Tarim. In 
addition, the Late Cenozoic cooling event in the northern 
margin of the Tarim Basin was also probably related to this 
hard collision (Hendrix et al. 1994; Dumitru et al. 2001; 
Wang et al. 2009; Zhang et al. 2009; Chang et al. 2012).

What affected the thermal evolution in the Central 
Tarim?

In a previous study, Xiang et al. (2013) suggested that 
heated fluid played an important role in AFT data. How-
ever, thermal perturbations caused by heated fluid could 
not be found for Ro (or Requ) or AFT data in this study 
(Bray et al. 1992; Holford et al. 2005). The measured Ro 
of wells Z1, Z2, and Z11 showed a linear relationship with 

depth (Figs. 4, 9), indicating that there was no heated fluid 
to increase the Ro. Sometimes large magmatic events, such 
as the Emeishan basalt province, can increase Ro of sedi-
mentary rocks (Zhu et al. 2010). An Early Permian Tarim 
Large Igneous Province has been systemically studied by 
field observation, borehole data, zircon U–Pb dating, and 
geochemical characteristics in the last 5 years (Li et al. 
2011, 2012; Yu et al. 2011; Zhang et al. 2013a, b; Xu et al. 
2014). However, the 100–300-m thickness of Permian 
basalts in Z1, Z2, and Z11 wells has no influence on Ro in 
older strata (Figs. 4, 9), which indicates that the upwelling 
and eruption of a mantle plume did not occur in the Cen-
tral Tarim. According to thermal modeling, Xu et al. 
(2014) suggested that the Bachu Uplift, with the greatest 
lithospheric thinning, is a favorable area for an upwelling 
mantle plume. Since the Mesozoic, the thermal regime in 
the Central Basin has been mainly dominated by tectonic 
erosion and deposition, based on AFT and Requ analyses in 
this study.

Table 3  Summary of the cooling events revealed by the thermal modeling

* Data refer to this study
† Data refer to Li et al. (2004)

190–140 Ma 80–45 Ma

Decreased  
temperature

Paleo-geothermal  
gradient*

Amount  
of erosion

Decreased  
temperature

Paleo-geothermal  
gradient†

Amount  
of erosion

Z2-2 70 24.8 2800 40 22.0 1800

Z2-3 80 24.8 3200 30 22.0 1400

Mean value 3000 1600

Fig. 9  Reconstructed burial and 
thermal history of the well Z2 
based on the thermal modeling 
results and drilling data. When 
reconstructing the thermal 
history, the paleo-geothermal 
gradients in the Paleozoic, 
Mesozoic, and Cenozoic come 
from the research of Qiu et al. 
(2012), this study and Li et al. 
(2004), respectively. The letter 
“+” means the measured Requ 
data
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Conclusions

We studied the tectono-thermal evolution of the Central Tarim 
by combining AFT and vitrinite reflectance data. A Mesozoic 
paleo-geothermal gradient of approximately 24.8 °C/km was 
obtained from Ro or Requ data of Z1 and Z11 wells in the Cen-
tral Tarim. Measured AFT data and thermal modeling results 
indicated the presence of Early Jurassic–Early Cretaceous 
(190–140 Ma) and Late Cretaceous–Paleocene (80–45 Ma) 
cooling events, in which erosion was 3000 m (consistent with 
the estimated range of 2700–3900 m from the Ro or Requ data) 
and 1600 m, respectively. These cooling events were related 
to collisions between the Qiangtang–Lhasa terranes and the 
Greater India Plate with the southern margin of the Eurasian 
Plate during the Meso–Cenozoic.
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