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on the Late Cretaceous igneous rocks from the Timok area 
in Eastern Serbia, further suggests variation of the water 
content of the primary magma along and across the belt. 
The Apuseni Mts. versus the Banat samples display dif-
ferent isotopic compositions that likely resulted from the 
assimilation of two distinct crustal contaminants, in agree-
ment with their emplacement in two separate mega-units of 
Alpine Europe.

Keywords  Fractional crystallization · Sr and Nd 
isotopes · Amphibole · Water content

Introduction

The Apuseni Mts. are part of the 1500-km-long Late Cre-
taceous Banatitic or Apuseni–Banat–Timok–Srednogorie 
Magmatic and Metallogenic belt that stretches across south-
eastern Europe from Romania, through Serbia and Bulgaria 
(Berza et  al. 1998; Popov et  al. 2002). Late Cretaceous 
magmatic rocks are also known from drillings in the Tatra 
Mts. of Slovakia (Kohut et al. 2013) and in the north-eastern 
part of the Pannonian Basin (NE Hungary–NW Romania) 
(Berza and Ilinca 2014). In outcrop, a NE–SW orientation 
in the Apuseni Mts. and the western end of South Carpathi-
ans (Banat) turns to N–S in Eastern Serbia (Timok and 
Ridanj-Krepolijn) and finally to E–W in Bulgaria (Sredno-
gorie) (Fig. 1). This present-day orientation is due to a 80° 
clockwise rotation of the Tisza and Dacia units during the 
Cenozoic (Panaiotu 1998), turning the Tatra–Apuseni–Banat 
part from an original E–W orientation to a N–S one. The 
Banatitic belt contains abundant ore deposits ranging from 
Cu–Au–Ag epithermal deposits to Fe–Pb–Zn–Mo skarn 
and Cu–Mo–Au porphyry (Berza and Ilinca 2014). Precise 
Re–Os geochronological data acquired on molybdenite from 

Abstract  We provide new whole-rock major and trace 
elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data 
of a suite of samples collected in the Late Cretaceous vol-
canic and plutonic bodies of the Apuseni Mts. (Romania) 
that belong to the Banatitic Magmatic and Metallogenic 
Belt, also called the Apuseni–Banat–Timok–Srednogorie 
belt. The samples define a medium- to high-K calc-alkaline 
differentiation trend that can be predicted by a three-step 
fractional crystallization process which probably took place 
in upper crustal magma chambers. Published experimen-
tal data indicate that the parent magma (Mg# =  0.47) of 
the Apuseni Mts. trend could have been produced by the 
lower crustal differentiation of a primary (in equilibrium 
with a mantle source) magma. The Late Cretaceous mag-
matic rocks of the Apuseni Mts. and Banat display over-
lapping major and trace element trends except that Sr is 
slightly lower and Ga is higher in the Apuseni Mts. parent 
magma. This difference can be accounted for by fractionat-
ing plagioclase-bearing (Apuseni Mts.) or amphibole-bear-
ing (Banat) cumulates during the lower crustal differentia-
tion of the primary magma to the composition of the parent 
magma of both trends. This, together with results obtained 
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these ore deposits (Zimmerman et  al. 2008; Kohut et  al. 
2013) and U–Pb LA-ICPMS ages obtained on the mag-
matic zircon (Nicolescu et al. 1999; Von Quadt et al. 2005; 
Georgiev et  al. 2012; Kohut et  al. 2013; Kolb et  al. 2013) 
indicate the following bracketing ages for intrusion and/
or molybdenite crystallization: Tatra (U–Pb: 81  Ma—Re–
Os: 81  Ma), Apuseni (Re–Os: 79–80  Ma), Banat (Re–Os: 
72–83  Ma—U–Pb: 76–79  Ma), Ridanj-Krepolijn (U–Pb: 
71–76 Ma), Timok (Re–Os: 81–88 Ma—U–Pb: 79–89 Ma) 
and Srednogorie (Re–Os: 87–92 Ma—U–Pb: 78–92 Ma).

The geodynamic setting of the Late Cretaceous mag-
matic rocks, named “banatites” (Von Cotta 1864), was 
mostly considered as subduction-related because of their 
calc-alkaline composition, their enrichment in LILE and 
depletion in Nb–Ta and the presence of a major oceanic 
remnant in the Carpathian–Balkan orogen, namely the 
Eastern Vardar Ocean (a branch of the Tethys Ocean) 
that is supposed to have subducted northward under the 
European margin during the Jurassic to Lower Creta-
ceous and to which the ophiolites of the Mureş zone (or 
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Transylvanides) are linked (Schmid et  al. 2008) (Figs.  1, 
2). However, their precise geodynamic setting is still 
debated (Berza and Ilinca 2014). Based on their occur-
rence in Upper Cretaceous Gosau-type sedimentary basins 
that post-date the Mid-Cretaceous nappe empilement, sev-
eral authors consider that they were emplaced in an exten-
sional regime caused by orogenic collapse (Giuşcǎ et  al. 
1969; Antonijević et  al. 1974; Popov 1981; Berza et  al. 
1998; Popov et al. 2002; Georgiev et al. 2012) or slab roll-
back (e.g. Von Quadt et al. 2005; Zimmerman et al. 2008; 
Schuller et  al. 2009; Kolb et  al. 2013). Neubauer (2002) 
interpreted this magmatism either as Andean-type or post-
collisional and resulting from slab break-off or continuous 
subduction. Quantification of the magmatic processes that 
produced these igneous rocks provides independent con-
straints that help deciphering their origin. Detailed petro-
logical informations are now available for the Banat region 
of southern Romania (Dupont et  al. 2002) as well as for 
the Timok and Ridanj-Krepolijn regions of Eastern Serbia 

(Kolb et al. 2013). In this study, we analyse the petrogen-
esis of Late Cretaceous magmatic rocks outcropping in the 
Apuseni Mts., using new major and trace element, and iso-
topic data (Sr, Nd) on a series of samples collected in this 
region. We discuss their differentiation processes, their 
possible mantle-derived parent magmas and plausible con-
taminants. These data, together with the recent recognition 
of adakite-like magmas in the Timok and Ridanj-Krepolijn 
regions of NE Serbia (Kolb et al. 2013), enable us to pro-
pose that the H2O content of the mantle-derived magmas 
from which the Late Cretaceous magmas differentiated 
varied along the belt.

Geological setting

The Apuseni Mts. are part of the Carpathians of Romania 
and represent a huge basement outcrop between the Neo-
gene Transylvanian and Pannonian Basins (Fig.  2). The 
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southern Apuseni Mts. essentially comprise ophiolites of 
Jurassic age (the Metaliferi Mts.) that represent a branch 
of Neotethys, known as the Mureş zone (Savu 1996) or 
Transylvanian nappes (Rǎdulescu and Sǎndulescu 1973). 
The northern Apuseni Mts. are made of a sequence of 
several nappe systems that was formed during the con-
tinental collision (e.g. Schmid et  al. 2008; Kounov and 
Schmid 2013). Each nappe system comprises crystalline 
basement rocks that deformed and metamorphosed dur-
ing the Variscan orogeny. These basement rocks were 
intruded by Variscan granitoids and later covered by a 
sequence of sedimentary rocks of Permian to Late Cre-
taceous age (e.g. Pană et al. 2002; Balintoni et al. 2009). 
The boundary between the Tisza and Dacia Mega-Units, 
the South Transylvanian fault, passes through the Apuseni 
Mts. The two southern nappe sequences are attributed to 
the Dacia Mega-Unit, whereas the northern ones are inter-
preted as belonging to the Tisza Mega-Unit. However, the 
exact limit between the two Mega-Units is still debated 
(Csontos and Vörös 2004; Schmid et  al. 2008). During 
the Late Cretaceous post-orogenic collapse of the orogen, 
sedimentary Gosau-type basins were formed because of 
extensional processes (Willingshofer et al. 1999; Schuller 
2004; Schuller et  al. 2009). The Late Cretaceous mag-
matic rocks are observed as volcanics in the Gosau-type 
basins and as shallow intrusions and volcanic bodies 
that are spread all over the Apuseni Mts. mostly as small 
occurrences (e.g. Budureasa, Pietroasa, Băişoara, Băiţa 
Bihor) except the Vlădeasa volcano-plutonic complex, 
situated in the northern part, that covers an area of more 
than 600  km2 (Istrate 1978; Stefan 1980; Stefan et  al. 
1982, 1992) (Fig. 2).

Detailed mapping of the Late Cretaceous magmatic 
rocks outcropping in the Apuseni Mts. was performed by 
Istrate (1978), Stefan (1980), Stefan et al. (1982, 1992) and 
Ionescu (1997). These authors recognized volcanic and plu-
tonic facies that range in composition from andesites/quartz 
diorites to dacites and rhyolites/granites. Istrate (1978), Ste-
fan (1980) and Stefan et al. (1982) have also described dark 
fine-grained dykes, referred to as lamprophyres, that are 
up to 1 m of thickness and intrude the Senonian deposits 
as well as the volcanic and eruptive Late Cretaceous igne-
ous rocks. Field evidence indicates that Vlǎdeasa volcanic 
rocks cover sedimentary rocks of Upper Coniacian–Lower 
Maastrichtian age and are themselves included in conglom-
erates of Palaeocene–Ypresian age (Stefan et al. 1992). K–
Ar ages of 61 ± 3 and 61.5 ± 5 Ma were obtained on the 
Vlădeasa rhyolite by Bleahu et  al. (1984). These ages are 
similar to those obtained on pre-Mesozoic Bihor crystal-
line schists, pointing to the presence of a significant ther-
mal aureole of Banatitic plutons, also expressed by aero-
magnetic and gravimetric anomalies (Andrei et  al. 1989). 
Important ore bodies are associated with the granodiorites 

and granites as, for example, the Mo–Cu skarn of Băiţa 
Bihor dated between 80.63 ± 0.3 and 78.69 ± 0.4 Ma (Re/
Os on molybdenite) (Zimmerman et al. 2008). This is cur-
rently the most accurate isotopic age obtained on Late Cre-
taceous igneous rocks from the Apuseni Mts., but ongoing 
research from ETH Zürich will soon present U–Pb zircon 
ages.

Sampling and methods

Because of the abundant vegetation in the region of the 
Apuseni Mts., the number and extension of the outcrops 
are rather limited. This hampers detailed observations of 
the relationships between different facies within one intru-
sion and also of the relationships of one particular intrusion 
with its surroundings rocks. Sixty-one samples were col-
lected in a series of intrusions [Cornet (2), Luncsoara (4), 
Băiţa Bihor (1), Pietroasa (15), Budureasa (8), Vlădeasa 
(21), Băişoara (9), Gilau (1)] and care was taken in the field 
to sample fresh rocks (Table 1; Fig. 2). This is witnessed 
by the absent to weak alteration observed in thin sections, 
except in a few samples that were not considered for geo-
chemistry, and by the low loss on ignition (LOI) (0.78 to 
3.56 wt% with an average of 1.7 wt%) (Table 2). Moreover, 
mobile elements such as Ba, Sr, Pb and Mn are not corre-
lated with the LOI.

A selection of thirty-two samples were crushed with a 
hammer and pulverized in an agate planetary mill (Gesels 
2003). Fused glass discs prepared with lithium tetra- and 
meta-borate and 0.35  g of rock powder previously dried 
at 1000  °C for 2 h were used to measure major elements 
by X-ray fluorescence (ARL 9400 XP wavelength-disper-
sive (WD)-XRF spectrometer, University of Liège). Some 
trace elements (Ba, V, Cr, Ni, Cu, Zn) were also measured 
by X-ray fluorescence on pressed powdered pellets. The 
rest of the trace elements were determined by inductively 
coupled plasma mass spectrometry (VG Elemental PQ2+, 
University of Liège) following the method described by 
Vander Auwera et al. (1998) (Table 2). Accuracy is 1–3 % 
for major elements and ≤5 % for trace elements (Table 2).

Electron microprobe analyses of feldspars, amphibole, 
clinopyroxene and biotite were performed on a selection of 
polished thin sections from the different intrusions (sam-
ples R6 from Cornet, R10 from Luncsoara, R23 from Pie-
troasa, R30 from Budureasa, R43 from Vlădeasa, and R63 
and R64 from Băişoara) with the Cameca SX50 hosted at 
the Ruhr-Universiteit Bochum (Supplementary Material 
S1a to S1e). An accelerating voltage of 15  kV was used, 
and elements were counted for 10  s at a beam current of 
10 nA. Silicate and oxide standards were used, and X-ray 
intensities were reduced with the Cameca PAP correction 
program.
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The isotopic composition of Sr and Nd was measured on 
a selection of 11 samples covering the different intrusions 
of the Apuseni Mts. with an upgraded VG54E thermal 
ionization mass spectrometer (Clermont-Ferrand, France). 
Samples were dissolved by acid digestion (including dis-
solution of any refractory residue in pressurized PTFE 
vessels), and Sr, Sm and Nd fractions were separated by 
using extraction chromatographic methods adapted from 
Pin et  al. (1994) and Pin and Santos Zalduegui (1997). 
Samples were loaded on a Ta single filament with a drop-
let of 3 M H3PO4, and the Sr isotope ratios were measured 
in dynamic triple collection mode, with normalization to 
86Sr/88Sr =  0.1194. After sample loading as a phosphate 
on single Ta filaments, Sm isotope ratios were measured in 
the single collection mode. The Nd separate was loaded on 
the side filaments of a triple Ta–Re–Ta assembly and ana-
lysed as the metal ion in dynamic triple collection mode, 

with normalization to 146Nd/144Nd =  0.7219. Twenty-five 
analyses of the international NBS987 standard have given 
a Sr isotopic composition of 0.710248 ± 0.000026 (mean 
and standard deviation of 25 analyses). The French Ames 
Rennes Nd and the international JNdi-1 standards have 
given values of 0.511966 ± 0.000015 (eight analyses) and 
0.512114 ± 0.000006 (six analyses), respectively (Table 3).

Results

Petrography and mineral composition

Our microscopic examination of the samples corroborates 
previous petrographic descriptions (e.g. Istrate 1978; Ste-
fan et  al. 1982, 1992). Samples collected in several dis-
crete bodies display similar mineralogy and textures. The 

Table 1   Sample name and 
location

Intrusion Sample # Rock type Long.(deg min sec) Lat.(deg min sec)

Cornet R04 Dacite 22 32 15 46 06 42

R06 Andesite 22 34 35 46 07 18

Luncsoara R09 Dacite 22 37 23 46 18 19

R10 Andesite 22 37 20 46 17 36

Băiţa Bihor R11 Andesite 22 37 33 46 29 58

Pietroasa R12 Dacite 22 34 46 46 35 17

R15 Dacite 22 39 30 46 32 43

R21 Dacite 22 38 01 46 37 32

R23 Dacite 22 35 25 46 36 47

R24 fine-grained Trachydacite (encl.) 22 35 25 46 36 47

R24 coarse Dacite 22 35 25 46 36 47

Budureasa R27 Trachyandesite 22 34 48 46 40 01

R28 Rhyolite 22 34 48 46 40 01

R29 Trachyandesite 22 34 30 46 40 09

R30 Basasaltic andesite 22 34 30 46 40 09

Vlădeasa R34 Andesite 22 36 40 46 41 46

R36 Dacite 22 37 23 46 42 33

R39 Rhyolite 22 45 03 46 46 21

R42 Dacite 22 46 14 46 49 50

R43 Dacite 22 47 21 46 50 28

R44 Dacite 22 48 17 46 51 31

R46 Dacite 22 48 47 46 52 13

R47 Rhyolite 22 35 50 47 01 32

R50 Dacite 22 52 21 46 53 52

R53 Dacite 22 52 21 46 53 52

R54 Dacite 22 54 04 46 54 04

Dyke Gilau R55 Dacite 23 11 40 46 36 37

Băişoara R57 Dacite 23 27 30 46 35 17

R61 Andesite 23 27 23 46 32 53

R62 Andesite 23 27 23 46 32 53

R63 Dacite 23 27 23 46 32 53

R64 Dacite 23 27 23 46 32 53
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Table 2   Major and trace 
element concentrations in 
the Apuseni Mts. whole-rock 
samples

Sample # R04 R06 R09 R10 R11 R12 R15

SiO2 64.28 57.27 61.78 56.53 55.04 65.38 65.32

TiO2 0.54 0.80 0.67 0.74 1.08 0.60 0.49

Al2O3 15.20 15.73 15.79 16.34 15.33 15.09 14.93

Fe2O3t 3.77 6.77 5.85 7.62 8.15 3.93 4.21

MnO 0.09 0.12 0.11 0.13 0.12 0.10 0.07

MgO 1.75 5.08 2.78 4.08 5.33 1.33 1.88

CaO 3.75 6.55 4.66 6.67 7.78 3.28 3.50

Na2O 3.95 3.40 3.04 3.00 1.03 3.66 3.29

K2O 2.68 2.26 3.49 2.64 3.19 3.79 3.52

P2O5 0.15 0.23 0.24 0.28 0.28 0.17 0.16

LOI 2.88 0.78 1.47 1.07 1.78 1.85 1.63

Total 99.02 98.97 99.87 99.11 99.11 99.18 98.99

U 3.6 3.1 6.1 2.0 1.8 3.9 2.3

Th 14 11 10 7.2 7.2 14 12

Zr 161 180 144 118 130 207 130

Hf 5.0 4.4 3.6 3.4 3.2 5.4 3.3

Nb 12 12 7.8 4.9 7.5 11 6.1

Ta 1.4 1.0 0.7 0.5 0.5 0.9 0.6

Ba 586 448 619 627 507 728 682

Rb 94 81 123 80 108 137 121

Sr 341 543 433 585 450 286 345

Cs 3.1 3.0 7.4 4.3 15.3 6.5 4.1

Ga 20 21 20 21 20 20 18

V 72 122 151 187 206 65 87

Cr 39 141 39 35 80 17 34

Co 8.4 32 16 26 22 7.7 10

Ni 13 91 9.0 14 16 8.2 9.2

Zn 53 59 73 89 88 55 37

Pb 26 15 22 29 8 35 17

La 26 28 27 25 25 35 26

Ce 47 53 49 49 50 66 47

Pr 5.9 6.9 7.0 6.3 6.6 8.2 5.5

Nd 21 25 26 23 25 28 19

Sm 4.6 5.4 5.4 5.0 5.7 5.3 3.9

Eu 1.5 1.5 1.4 1.5 1.5 1.4 0.8

Gd 4.0 4.9 5.0 4.6 5.1 4.9 3.3

Tb 0.59 0.72 0.73 0.63 0.77 0.77 0.47

Dy 3.8 4.3 4.2 3.8 4.5 4.5 3.1

Ho 0.85 0.91 0.90 0.80 0.90 0.91 0.65

Er 2.5 2.4 2.4 2.2 2.3 2.5 1.8

Tm 0.38 0.38 0.36 0.33 0.34 0.39 0.28

Yb 2.6 2.4 2.4 2.1 2.1 2.5 1.7

Lu 0.40 0.35 0.40 0.30 0.31 0.37 0.30

Y 21 25 25 23 26 28 20

Apatite T (°C) 879 844 907 860 837 911 901

Zircon T (°C) 704 649 678 622 622 730 690
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Table 2   continued Sample # R21 R23 R24 fine R24 coarse R27 R28 R29

SiO2 66.43 66.60 63.06 66.80 55.07 69.87 55.88

TiO2 0.62 0.60 0.92 0.62 1.16 0.42 1.29

Al2O3 15.39 14.98 15.93 15.31 18.61 13.97 19.15

Fe2O3t 3.86 3.71 5.32 3.48 6.94 2.85 6.53

MnO 0.08 0.08 0.13 0.07 0.10 0.05 0.09

MgO 1.24 1.12 1.29 1.13 2.66 0.66 2.65

CaO 2.78 2.90 3.21 2.97 5.99 1.04 5.28

Na2O 3.84 3.69 4.46 3.79 4.08 3.16 4.09

K2O 4.02 3.85 3.62 3.82 2.32 5.73 2.91

P2O5 0.17 0.17 0.33 0.16 0.46 0.12 0.54

LOI 1.03 2.00 1.02 1.01 1.45 1.70 1.55

Total 99.47 99.70 99.29 99.16 98.84 99.56 99.97

U 2.7 3.0 6.1 2.6 1.5 3.7 2.0

Th 15 14 18 13 11 16 7.5

Zr 208 213 287 218 211 185 1364

Hf 5.5 5.6 7.5 6.2 17 4.6 27

Nb 12 12 18 11 10 13 7.2

Ta 1.0 1.0 1.6 0.9 0.5 1.1 0.5

Ba 724 729 723 790 1514 647 2470

Rb 146 142 143 129 74 250 88

Sr 244 228 266 264 597 210 560

Cs 5.6 5.7 5.3 5.1 4.3 7.6 2.7

Ga 19 18 22 19 23 16 29

V 66 65 48 55 93 32 65

Cr 17 10 10 12 13 10 10

Co 7.7 10 11 9.7 12 7.0 15

Ni 4.8 6.1 5.2 5.2 6.3 4.4 6.7

Zn 50 64 66 55 64 39 94

Pb 26 34 27 29 16 23 23

La 33 37 38 36 27 35 30

Ce 67 71 79 73 56 65 57

Pr 7.7 8.6 9.9 8.8 6.8 7.3 7.7

Nd 28 32 38 31 26 23 28

Sm 5.3 6.0 8.3 5.8 5.4 4.0 5.8

Eu 1.3 1.4 1.9 1.5 2.2 0.8 2.2

Gd 5.3 5.7 7.8 5.3 4.8 3.8 5.4

Tb 0.78 0.90 1.26 0.79 0.71 0.57 0.67

Dy 4.9 5.5 7.4 4.9 4.3 3.5 4.4

Ho 1.04 1.12 1.60 0.98 0.91 0.75 0.90

Er 2.9 3.0 4.1 2.8 2.7 2.1 2.7

Tm 0.41 0.46 0.64 0.41 0.39 0.30 0.43

Yb 2.7 3.1 4.3 2.8 2.7 2.0 2.9

Lu 0.43 0.47 0.64 0.39 0.43 0.34 0.50

Y 32 32 45 30 26 24 28

Apatite T (°C) 923 921 962 920 903 919 940

Zircon T (°C) 739 741 752 744 692 752 922
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Table 2   continued Sample # R30 R34 R36 R39 R42 R43 R44

SiO2 52.05 56.85 64.92 71.25 65.99 65.78 62.82

TiO2 1.47 1.08 0.53 0.41 0.51 0.50 0.74

Al2O3 18.16 18.18 15.55 14.04 15.16 15.41 15.60

Fe2O3t 9.11 6.81 4.41 2.47 4.48 4.06 5.42

MnO 0.18 0.11 0.08 0.06 0.08 0.07 0.10

MgO 4.00 2.84 1.43 0.69 1.61 1.63 2.17

CaO 7.61 4.59 3.99 1.84 3.41 3.41 4.28

Na2O 3.27 3.77 3.81 3.65 3.85 3.94 3.84

K2O 1.80 2.19 2.58 4.10 2.67 2.76 2.45

P2O5 0.28 0.32 0.13 0.11 0.12 0.13 0.18

LOI 1.38 2.55 1.42 1.00 1.29 1.13 1.99

Total 99.32 99.31 98.86 99.61 99.18 98.82 99.58

U 1.4 1.7 3.9 4.6 3.7 2.6 3.3

Th 6.5 7.4 11 17 13 12 10

Zr 357 469 179 162 192 164 165

Hf 7.9 11 5.1 4.4 5.1 4.8 4.4

Nb 5.5 15 12 12 12 11 10

Ta 0.5 0.7 1.0 1.0 1.0 0.9 1.8

Ba 768 1100 591 689 654 616 588

Rb 71 77 93 163 97 103 94

Sr 639 511 253 169 212 232 267

Cs 5.1 2.9 4.5 5.7 5.2 6.4 4.0

Ga 29 30 20 18 21 20 21

V 160 106 72 33 62 76 108

Cr 36 37 23 12 18 16 28

Co 22 18 16 7.0 11 12 16

Ni 12 16 9.0 2.6 10 7.5 12

Zn 99 96 62 35 70 57 66

Pb 10 15 23 24 21 19 15

La 17 34 26 30 32 30 24

Ce 40 69 54 66 63 54 50

Pr 5.2 8.6 6.5 7.2 7.8 7.0 6.8

Nd 19 33 23 28 28 21 23

Sm 4.6 7.1 4.5 5.2 5.3 4.3 5.2

Eu 1.9 2.4 1.2 1.3 1.1 1.2 1.3

Gd 4.1 6.4 4.5 4.9 4.6 4.1 5.0

Tb 0.64 0.98 0.77 0.78 0.76 0.71 0.78

Dy 4.0 5.8 4.9 5.0 4.7 4.3 4.7

Ho 0.83 1.21 1.03 1.05 0.99 0.89 0.92

Er 2.4 3.2 2.9 3.1 3.0 2.6 2.7

Tm 0.38 0.48 0.46 0.45 0.43 0.40 0.38

Yb 2.6 3.2 2.8 3.0 2.7 2.6 2.7

Lu 0.40 0.46 0.42 0.41 0.42 0.40 0.39

Y 22 32 28 31 30 27 29

Apatite T (°C) 794 881 875 921 882 881 884

Zircon T (°C) 711 819 717 734 732 716 699
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Table 2   continued Sample # R46 R47 R50 R53 R54 R55 R57

SiO2 61.13 81.89 64.63 67.16 66.83 65.11 62.76

TiO2 0.57 0.09 0.54 0.46 0.49 0.49 0.57

Al2O3 16.96 10.34 15.74 15.31 15.19 15.18 15.69

Fe2O3t 5.62 0.26 4.61 3.70 3.86 3.75 4.58

MnO 0.10 0.01 0.08 0.05 0.07 0.06 0.08

MgO 1.83 0.03 2.10 1.48 1.52 1.78 2.73

CaO 4.70 0.17 3.77 3.54 2.79 3.16 4.55

Na2O 4.54 0.15 4.26 3.23 4.25 3.44 3.26

K2O 2.11 2.91 2.36 3.30 3.18 3.26 2.97

P2O5 0.15 0.15 0.13 0.16 0.13 0.13 0.16

LOI 1.33 3.28 1.55 1.47 1.39 3.56 2.31

Total 99.04 99.28 99.77 99.86 99.69 99.92 99.67

U 2.5 4.6 3.5 4.8 3.6 3.5 4.3

Th 9.1 9.0 10 14 15 15 13

Zr 241 57 158 132 165 131 124

Hf 6.1 1.7 4.7 4.0 4.4 3.8 3.4

Nb 13 18 12 13 11 12 11

Ta 0.8 1.9 0.8 1.3 0.9 1.1 1.2

Ba 660 878 527 659 566 586 605

Rb 71 86 77 117 114 125 89

Sr 304 321 240 312 220 241 367

Cs 2.7 0.7 3.2 3.7 2.8 6.5 2.0

Ga 25 12 20 20 18 19 19

V 63 10 73 55 56 66 92

Cr 14 10 21 19 18 10 52

Co 13 3.0 9.5 4.9 9.8 8.3 11

Ni 9.2 0.2 10 5.0 6.7 6.4 11

Zn 75 12 45 42 46 47 53

Pb 21 17 18 17 23 23 14

La 29 10 25 29 28 24 30

Ce 61 19 50 55 55 48 58

Pr 7.9 2.6 6.3 6.9 6.5 5.8 6.9

Nd 29 7 22 22 22 18 23

Sm 6.6 1.4 4.4 4.0 4.1 3.3 3.8

Eu 1.6 0.5 1.1 1.1 1.0 0.9 0.9

Gd 6.4 2.2 4.0 3.4 3.9 3.1 3.4

Tb 1.04 0.47 0.68 0.54 0.65 0.50 0.55

Dy 6.5 3.5 4.5 3.2 4.0 3.0 3.2

Ho 1.31 0.82 0.96 0.62 0.85 0.61 0.66

Er 3.7 2.5 2.7 1.7 2.5 1.7 1.8

Tm 0.52 0.40 0.39 0.25 0.37 0.27 0.26

Yb 3.5 2.5 2.5 1.7 2.3 1.8 1.8

Lu 0.51 0.34 0.37 0.22 0.33 0.25 0.28

Y 37 27 27 20 27 20 20

Apatite T (°C) 843 1051 875 923 897 880 875

Zircon T (°C) 727 748 704 701 718 701 673
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Table 2   continued Sample # R61 R62 R63 R64

SiO2 60.39 55.78 67.25 61.19

TiO2 0.57 0.73 0.43 0.77

Al2O3 15.71 15.86 14.85 15.36

Fe2O3t 5.20 8.58 3.66 6.08

MnO 0.09 0.19 0.09 0.10

MgO 3.75 4.12 1.31 2.95

CaO 5.45 6.60 2.61 4.69

Na2O 2.95 3.48 4.04 3.20

K2O 1.78 2.11 3.38 2.68

P2O5 0.16 0.36 0.11 0.23

LOI 3.55 1.62 1.22 1.62

Total 99.60 99.43 98.95 98.87

U 3.2 6.2 3.9 5.2

Th 12 14 15 13

Zr 121 170 179 168

Hf 3.2 5.0 4.8 4.8

Nb 10 13 12 15

Ta 0.7 1.3 0.9 1.3

Ba 597 483 664 593

Rb 54 94 121 127

Sr 336 322 182 296

Cs 1.6 2.8 4.3 4.0

Ga 21 22 19 22

V 131 178 48 109

Cr 96 33 14 82

Co 17 26 3.2 16

Ni 11 24 4.9 10

Zn 68 87 72 60

Pb 34 14 27 13

La 28 71 30 34

Ce 57 161 61 72

Pr 6.5 20 7.4 8.7

Nd 23 77 24 32

Sm 4.1 15 5.0 6.7

Eu 1.1 2.1 1.1 1.0

Gd 3.4 11 4.5 5.9

Tb 0.54 1.6 0.73 0.86

Dy 3.2 8.6 4.6 5.2

Ho 0.64 1.7 0.97 1.01

Er 1.7 4.4 2.8 2.9

Tm 0.27 0.67 0.42 0.40

Yb 1.6 4.3 2.9 2.6

Lu 0.23 0.64 0.42 0.36

Y 19 50 30 32

Apatite T (°C) 843 882 883 893

Zircon T (°C) 668 642 729 694
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main rock-forming minerals are plagioclase, K-feldspar, 
quartz, amphibole and biotite. Opaques (magnetite, ilmen-
ite, pyrite and chalcopyrite), apatite, zircon and titanite are 
ubiquitous accessory phases. Relic cores of clinopyroxene 
(augite to diopside (Morimoto 1989): Mg#  =  0.73–0.85) 
(see Supplementary Material S1a) were frequently observed 
in the amphibole which is itself locally surrounded by bio-
tite (Fig. 3a). Plagioclase usually occurs as strongly zoned 
phenocrysts with cores of labradorite and rims of oligo-
clase with the exception of sample R30 in which a core of 
bytownite (An83) has been analysed (see Supplementary 
Material S1b). Plagioclase is mostly euhedral to hypidi-
omorphic, but crystals with higher aspect ratio also occur 
(sample R13). In porphyritic samples, smaller grains of 
plagioclase are present in the groundmass (Fig.  3b). Pla-
gioclase contains some inclusions of amphibole, opaques 
and apatite as well as some rare zircon. K-feldspar is usu-
ally anhedral, locally perthitic and surrounding grains of 
plagioclase, opaques, apatite and biotite. K-feldspar is rich 
in orthose (Or82 to Or96) with a few core analyses ranging 
from Or60 to Or70 (see Supplementary Material S1c). At 
the contact with K-feldspar, plagioclase frequently displays 
partly corroded contours. Quartz is anhedral and fills the 
interstices between the other minerals. Amphibole, a mag-
nesiohornblende (Leake et  al. 2004) with a Mg# ranging 
between 0.64 and 0.82 (see Supplementary Material S1d), 
is usually hypidiomorphic (Fig.  3c), very locally included 
in plagioclase or displaying interstitial contacts with plagio-
clase phenocrysts. Biotite (Fe# =  0.27–0.64, moderate Ti 
content: 0.43–0.76 p.f.u.) (see Supplementary Material S1e) 
is hypidiomorphic to anhedral (Fig. 3d) and locally fills the 
voids between feldspars and amphibole. Small grains of 
biotite frequently surround the amphibole. Euhedral grains 
of apatite are ubiquitous as well as apatite needles dispersed 
in other minerals. Titanite usually surrounds opaque min-
erals and is not abundant. In volcanic facies, the matrix is 
microcrystalline to vitreous. These petrographic observa-
tions suggest early crystallization of apatite and opaques 
followed by plagioclase and clinopyroxene. Amphibole 
seems to have formed by reaction from the clinopyroxene 
and was earlier than biotite. K-feldspar and quartz are late 
crystallizing phases.

The extent of alteration varies among the different sam-
ples with some displaying deep alteration and others being 
totally fresh. Only weakly to non-altered samples have 
been considered for the geochemistry. Hornblende is trans-
formed into an assemblage of fibrous amphibole (actinote), 
epidote, secondary biotite and chlorite. Biotite is frequently 
altered to chlorite and epidote. Alteration is also expressed 
by damouritization of feldspars. Pronounced alteration into 
carbonates was noted in sample R20. The microcrystalline 
groundmass is locally cut by fissures made of calcite, epi-
dote and quartz.Ta
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Geochemistry

In the TAS diagram (Fig.  4a), samples from the Apuseni 
Mts. plot in the fields of basaltic andesites to rhyolites with 
some samples, higher in K2O, in the fields of basaltic trach-
yandesites to trachytes. Most of the samples plot just below 
the limit between the alkaline and subalkaline series (Miya-
shiro 1978). The whole trend is calc-alkaline in the AFM 
(Fig. 4b) and MALI (Frost et al. 2001) (Fig. 4c) diagrams 
and more precisely, medium- to high-K in the K2O–SiO2 
diagram of Peccerillo and Taylor (1976) (Fig.  4d). The 
Apuseni trend is magnesian in the Frost and Frost (2008) 
classification (Fig.  4e). Our data overlap with previous 
results (Istrate 1978; Stefan 1980; Stefan et al. 1982, 1992).

In the Harker diagrams (Fig.  5), samples from the dif-
ferent intrusions display overlapping trends of decreas-
ing FeOt, MgO, CaO, TiO2 and P2O5 and increasing K2O 
with increasing SiO2·Na2O remains relatively constant (not 
shown). The mafic dykes analysed by Istrate (1978), Stefan 
(1980) and Stefan et al. (1982) overlap in composition with 
the least differentiated samples and are similar to the calc-
alkaline dykes associated with the late Alpine intrusions 
(e.g. Traversella, Biella, Bergell, Adamello) (Dal Piaz et al. 
1979; Venturelli et al. 1984; von Blanckenburg et al. 1992; 
Bogaerts 1998; Bogaerts and Vander Auwera 1999; Peccer-
illo and Martinotti 2006) (Fig. 5).

Samples from the different massifs have similar trace 
element contents (Fig.  6). Among trace elements, Sr, Zn, 
V, Ga and Ni (not shown) decrease with differentiation, 
whereas Rb and Th increase and Ba and Zr are rather con-
stant. Two samples from Budureasa (R27 and R29) display 
higher Ba content than the main trend suggesting some 
accumulation of biotite and/or K-feldspar, the main Ba car-
riers in the samples. Three samples (R29, R30 and R34) 
have significantly higher Zr content than the main trend 
suggestive of some zircon accumulation. Chondrite-nor-
malized REE patterns (Fig. 7) display LREE fractionation 
[(La/Yb)N = 3.9–17.4 with an average of 11.7] and nega-
tive to slightly positive Eu anomaly ((Eu/Eu*)N = EuN/
(√(SmN*GdN)) =0.51–1.34). Compared to N-MORB in 
spiderdiagrams (Fig. 8), the Apuseni samples are enriched 
in incompatible elements (K, Rb, Ba, Th, LREE) and dis-
play negative anomalies in Nb, Ta and Ti. The Apuseni 
samples plot in the volcanic arc field (VAG) in the Pearce 
et al. (1984) discrimination diagrams (Fig. 9a–d) and partly 
overlap in composition with arc magmas in the Th/Yb and 
Nb/Yb diagram of Pearce and Peate (1995) (Fig. 9e).   

Sr and Nd isotopic data of the Apuseni samples have been 
recalculated back to an age of 80 Ma in agreement with the 
Re–Os geochronological data on the Mo-Cu skarn associated 
with the Băiţa Bihor granodiorite (Zimmerman et al. 2008). 
In the εNdt versus (87Sr/86Sr)80 (Fig. 10a), samples from the 

Fig. 3   Microphotographic pictures of selected samples from the Late 
Cretaceous magmatic rocks of the Apuseni Mountains. a Sample R10 
(Luncsoara) displaying relic cores of clinopyroxene (Cpx) within the 
amphibole (Hbl) which is itself surrounded by biotite (Bt) (plane-
polarized light). b Sample R53 (Vlădeasa) is porphyritic with large 
phenocrysts of plagioclase (Pl) and biotite (Bt) (crosspolarized light). 

c Sample R52 (Vlădeasa) displaying hypidiomorphic amphibole 
(Hbl) in contact with plagioclase (Pl). Please note the apatite grain 
(Ap) included in biotite (Bt) (plane-polarized light). d Sample R64 
(Băişoara) with biotite (Bt) displaying interstitial contours surround-
ing plagioclase (crosspolarized light)
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Apuseni display mildly negative epsilon Nd (−1 to −4) and 
relatively low Sr initial ratios (0.7055–0.7070) except one 
sample from the Cornet intrusion which has a positive epsi-
lon Nd (2) and lower (87Sr/86Sr)80 (0.7046). These Sr isotopic 
data agree with previous results of Pavelescu et  al. (1985) 
(initial 87Sr/86Sr of 0.708) reported by Stefan et  al. (1992). 
These data imply source materials that on a time-integrated 

basis were both weakly enriched to slightly depleted (Cornet 
sample) in LREE and in Rb relative to Sr.

Barometry and thermometry of the Apuseni samples

P2O5 is decreasing with differentiation (Fig.  5) indicat-
ing that apatite, an ubiquitous accessory mineral, is a 
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Cretaceous magmatic rocks of Banat are from Dupont et al. (2002)
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fractionating phase. On the contrary, Zr remains rather 
constant. In agreement with these observations, apatite 
(792 to 1075  °C) (Harrison and Watson 1984) and zir-
con (622 to 752  °C) (Watson and Harrison 1983) satura-
tion temperatures indicate their, respectively, early and late 

crystallization (Table 2). The Al-in hornblende geobarom-
eter of Johnson and Rutherford (1989) was used on the plu-
tonic samples and confirms the shallow level of emplace-
ment of the intrusions (<0.2 GPa) (see Supplementary 
Material S4).
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Comparison with other Late Cretaceous igneous rocks 
from the Banatitic belt and with Alpine intrusions

The major element composition of our samples from the 
Apuseni Mts. is overlapping with the composition of sam-
ples from Banat (Dupont et al. 2002) and from Eastern Ser-
bia (Timok and Ridanj-Krepoljin) (Kolb et al. 2013) with, 

however, a tendency towards slightly higher TiO2 content 
in the Apuseni samples (Figs. 4, 5). Samples from the dif-
ferent regions have overlapping FeOt/MgO (Fig.  4b), but 
samples from the Apuseni have a slightly higher FeOt/MgO 
than samples from Banat.

Samples from Romania (Apuseni, Banat) and Serbia 
display similar spiderdiagrams (Fig.  8) and REE patterns 
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(Fig. 7). However, samples from Serbia are generally lower 
in U, Th, Zr, Hf, Nb, Ta and LREE (Figs. 6, 8) than samples 
from Romania. Interestingly, samples from the three regions 
mostly differ by their Ga and also Sr contents. The Ga con-
tent decreases from the Apuseni to Banat and then Serbia, 
but the least differentiated samples from Banat and Serbia 
have similar Ga content, whereas the Sr content is lower in 
the Apuseni trend than in the Banat and Serbia trends. These 
differences are better observed in a Ga versus Sr diagram 
(Fig. 11).

Kolb et  al. (2013) recognized that a series of samples 
from Serbia are characterized by high Sr/Y ratios and low 
Y contents and thus have adakite-like signatures (Defant 

and Kepezhinskas 2001). This is not observed in the Roma-
nian samples as Sr/Y is lower than 40 except in four sam-
ples from Banat, La/Yb is lower than 20 and Y is higher 
than 18 except in a few samples of Banat.

Samples from Banat and Apuseni have significantly differ-
ent isotopic composition. In the εNdt versus (87Sr/86Sr)80 dia-
gram (Fig. 10a), samples from Banat have higher εNdt (0–+4) 
and lower (87Sr/86Sr)80 (0.7042–0.7058) than the Apuseni sam-
ples (εNdt (−0.7 to −3.7), (87Sr/86Sr)80 (0.70553–0.70702)). 
Note that the sample from the Cornet intrusion (Apuseni Mts.) 
(εNdt = 1.6, (87Sr/86Sr)80 = 0.70458) plots in the field of the 
Banat samples. The isotopic composition of samples from 
Serbia overlaps with that of samples from Banat (Fig. 10b).
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As shown in Supplementary Materials Fig 1 and Fig 2, 
the Apuseni and Banat samples are similar in major and 
trace element composition to the Adamello and Bergell 
intrusions from the Alps.

Discussion

Differentiation processes within the Apuseni Mts. trend

Samples from the Apuseni Mts. have been collected in dif-
ferent intrusions/extrusions, but their comparable major 
and trace element compositions suggest that they differenti-
ated from a similar parent magma. Consequently, in order 
to constrain the differentiation process(es), we selected 
samples from the Vlădeasa volcanics and Budureasa pluton 
because the largest series of samples is available from the 
former and the latter contains the least differentiated sam-
ple and is also close to Vlădeasa.

Mixing between the least and most differentiated mag-
mas is a possible differentiation process as mingling 
between a microdioritic and a granodioritic facies has 
been observed in the Pietroasa intrusion. The mixing pro-
cess has been tested with two sets of samples: samples R34 
(56.85  wt% SiO2) (mafic end member), R39 (71.25  wt% 

SiO2) (acid end member) and R50 (64.63 wt% SiO2) (inter-
mediate facies) as well as samples R30 (52.05 wt% SiO2) 
(mafic end member), R39 (71.25  wt% SiO2) (acid end 
member) and R44 (62.82 wt% SiO2) (intermediate facies). 
These compositions were selected because, in variation 
diagrams, they plot on the differentiation trends, thus pro-
viding the most favourable cases to test the mixing pro-
cess. All major and trace elements have been considered in 
the test. The procedure proposed by Fourcade and Allègre 
(1981) was used:

where x fraction of the mafic component, Ci

mix
 the concen-

tration of element i in the intermediate sample, Ci

fels
 the 

concentration of element i in the felsic end member of the 
mixing and Ci

maf
 the concentration of element i in the mafic 

end member of the mixing.
In a Cmix–Cfels versus Cmaf–Cfels diagram, the differentia-

tion trend can be predicted by a mixing process if a good-
fit regression line with a slope (=x, the fraction of the 
mafic component) between 0 and 1 can be drawn through 
the origin (Fig.  12). For both sets of samples, Ba, Zr, Sr 
and to a lesser extent Zn, V, Rb plot outside of a possible 
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regression line (Fig. 12a, c). When Ba, Zr, Sr are not consid-
ered (Fig. 12b) in the first set of samples (R34, R39, R50), 
the regression line has a plausible slope of 0.65, but the value 
of the intercept is too low (−3.6) (Fig. 12b). Removing Zn, 

V, Rb from the regression still gives a too high intercept of 
−1.6. The intercept can be improved if additional elements 
such as La, Ce and Nd are also excluded (slope  =  0.43, 
intercept = −0.8). For the second set of sample (R30, R39, 
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R44), removing Ba, Sr, Zr as well as Zn, V, Rb gives a slope 
of 0.6 similar to the one obtained for the first set of samples 
with an intercept close to zero (−0.3) (Fig. 12d). The mix-
ing model could thus explain the differentiation trend if a 
series of elements are not considered. Tests have been made 

with other samples selected as the intermediate facies, but 
Zr, Sr, Ba and sometimes Zn and Rb are outside the regres-
sion line. In the Zr–SiO2 diagram (Fig. 6), data display some 
dispersion that is probably the cause of the poor correlation 
obtained for this element in the mixing test. However, Rb, 
Zn and Sr display good differentiation trends with a good 
alignment of samples R30, R39 and R44 in these variations 
diagrams. The negative test of the mixing process is thus not 
due to samples having their composition affected by mineral 
accumulation. We thus conclude that magma mixing cannot 
be fully excluded, but it was not a major process during the 
differentiation of the Late Cretaceous Apuseni magmas.

Fractional crystallization and batch partial melting can 
be discriminated in a log CA –log CB diagram using the 
most compatible element (A) versus the most incompatible 
element (B) (Joron et  al. 1978; Martin 1987). Indeed, the 
slope of the trend is DB(1−DA)

DA(1−DB)
 and DA−1

DB−1
 for a partial melting 

and a fractional crystallization process, respectively. As DA 
and DB are significantly higher and lower than 1, respec-
tively, the slope of the trend can be simplified and will be 
close to -DA for a fractional crystallization process and -DB 
for a partial melting process. Among trace elements, Th 
appears as strongly incompatible and Zn, as strongly com-
patible. For the Vlădeasa and Budureasa samples, the slope 
of the trend in a logZn–logTh diagram is −1.1. A fractional 
crystallization process thus better predicts the differentia-
tion trend.
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Modelling of the fractional crystallization process

The fractional crystallization process has been modelled 
with the least square regression method in three steps 
that are summarized in Table 4. In the first step, subtrac-
tion of a gabbronoritic cumulate drives the liquid from 
53.64 % SiO2 to 56.95 SiO2 leaving 73 % of residual liq-
uid at this stage. Further differentiation to a proportion 
of 36  % of residual liquid (64.73  % SiO2) is produced 
by subtraction of a dioritic cumulate containing apatite. 
The most evolved composition (72.43 % SiO2) is finally 
reached when the proportion of residual liquid is 21  %. 
The third cumulate is also dioritic but with a more albitic 
plagioclase.

The composition of the cumulates derived with the least 
square regression method on major elements can be tested 
using the trace element composition and the Rayleigh dis-
tillation law:

where C0 and CL are the concentrations of the trace ele-
ment in, respectively, the starting composition and the 
residual liquid, F is the fraction of residual liquid that 

CL = C0.F
(D−1)

has been calculated with the least square regression 
method and D, the bulk partition coefficient, equals 
ΣDi.Xi. Di is the partition coefficient of the trace ele-
ment between mineral i and the liquid, and Xi is the pro-
portion of this mineral in the subtracted cumulate. Xi 
has also been calculated with the least square regression 
method.

Partition coefficients were selected from the litera-
ture for andesitic to dacitic compositions and are given 
in Table 5. In the first step of differentiation, the calcu-
lated composition of the residual liquid compares rather 
well with the composition of sample R27 except for Ba 
and Zn (Table  6). Ba is lower in the calculated liquid 
(781  ppm) than in R27 (1514  ppm). However, sample 
R27 as well as samples R29 and R34 have a Ba con-
tent significantly higher than the main trend suggesting 
some mineral accumulation. The calculated Ba content 
is within the range observed in the samples having a 
SiO2 content close to that of R27 (referred to L1 sam-
ples below and as “Range L1” in Table  6). The calcu-
lated Zn content in L1 (93  ppm) is higher than the Zn 
content of sample R27 (64 ppm) but hereto in the range 
of L1 samples. In the second step, the composition of 
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sample R27 has been considered as the starting com-
position except for Ba, Co and Zn. For these three ele-
ments, the starting content has been interpolated from 
the main differentiation trend displayed by the Budu-
reasa and Vlădeasa samples. The calculated composi-
tion is very close to that of sample R44 (Rb, REE, V, 
Co, Zn) or in the range of the L1 samples (Sr, Ba). 
Similarly, in the third step, the calculated composition 
is very close to the trace element content of sample R39 
(Sr, Ba, REE, V, Zn) or close to the L1 samples (Rb, 
Co). The trace element contents thus support the min-
eral proportions of the three cumulates derived from the 
least square regression method. 

The parent magmas of the Apuseni and Banat Late 
Cretaceous igneous rocks

Because the Late Cretaceous igneous rocks from Banat and 
the Apuseni Mts. crosscut the Mid-Cretaceous nappe piles 
and are extruding in Gosau-type basins, we consider that 
they were emplaced during the post-collisional stage of the 
belt. Their high-K calc-alkaline character, that is typical 
of this geodynamic setting (Liégeois et al. 1998), supports 
this conclusion. Harris et al. (1986) pointed out that post-
collisional and arc magmas are difficult to discriminate 
geochemically and further suggested that the mantle com-
ponent of the post-collisional magmas is produced from a 

Table 4   Results of least-
squares modeling calculations 
for major elements

STEP1 STEP2 STEP3

L0 = R30 L1 = R27 L0 = R27 L1 = R44 L0 = R44 L1 = R39

SiO2 53.64 56.95 56.95 64.73 64.73 72.43

TiO2 1.52 1.20 1.20 0.76 0.76 0.42

Al2O3 18.72 19.25 19.25 16.07 16.07 14.27

FeOt 8.45 6.46 6.46 5.03 5.03 2.26

MnO 0.19 0.10 0.10 0.10 0.10 0.06

MgO 4.12 2.75 2.75 2.23 2.23 0.70

CaO 7.84 6.20 6.20 4.41 4.41 1.87

Na2O 3.37 4.22 4.22 3.96 3.96 3.71

K2O 1.86 2.40 2.40 2.53 2.53 4.17

P2O5 0.29 0.47 0.47 0.18 0.18 0.11

100.00 100.00 100.00 100.00 100.00 100.00

Composition of calculated daughter liquids (observed composition-calculated composition)

SiO2 56.94 (0.01) 64.72 (0.01) 72.45 (−0.02)

TiO2 1.20 (0.00) 0.76 (0.00) 0.42 (0.00)

Al2O3 19.26 (−0.01) 16.11 (−0.04) 14.47 (−0.20)

FeOt 6.46 (0.00) 5.03 (0.00) 2.25 (0.01)

MnO 0.16 (−0.06) 0.09 (0.01) 0.05 (0.01)

MgO 2.78 (−0.03) 2.36 (−0.13) 0.73 (−0.03)

CaO 6.21 (−0.01) 4.25 (0.16) 1.77 (0.10)

Na2O 4.25 (−0.03) 4.12 (−0.16) 3.02 (0.69)

K2O 2.54 (−0.14) 2.35 (0.18) 3.85 (0.32)

P2O5 0.40 (0.07) 0.39 (−0.21) 0.23 (−0.12)

Phase composition and proportions (%) and in the subtracted cumulate

Plagioclase An83 50.4 An46 70.8 An33 63.3

Ca-poor px Mg# 62 25.1

Ca-rich px Mg# 75 15.5

Amphibole Mg# 60 4.5 Mg# 60 31.8

Biotite Mg# 54 19.5 Mg# 54 0.2

Magnetite Mt64Usp36 5.9 Mt64Usp36 3.7 Mt64Usp36 4.3

Ilmenite Ilm87Hm13 3.2 Ilm87Hm13 0.2 Ilm87Hm13 0.1

Apatite 1.3 0.3

Σr2 0.017 0.034 0.228

F (proportion residual liquid) 0.73 0.36 0.21
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source above a subduction zone, i.e. a mantle wedge that 
has been enriched in LILE. In the following, we will thus 
discuss the petrology of the Late Cretaceous igneous rocks 
using experimental and geochemical data obtained on arc 
magmas.

As the least differentiated samples from the Apuseni 
Mts. and Banat have a low Mg# (below 0.5 in the Apuseni 
and below 0.55 in Banat) as well as Cr and Ni contents 
below 55  ppm and 25  ppm, respectively, these samples 
cannot be representative of primary magmas in equilib-
rium with a mantle source as these magmas are inferred to 
have an Mg# > 0.7 and high Cr and Ni contents (e.g. Grove 
et al. 2012). Compared to sample SH-85-44C, recognized 
as a near-primary magma of Mont Shasta (Cascade Range, 
USA) (Grove et al. 2012), the least differentiated composi-
tions of the Banat and Apuseni Mts. trends are indeed sig-
nificantly lower in MgO (Fig.  5). Consequently, the least 
differentiated samples, parent magmas of the Apuseni and 
Banat differentiation trends, were either produced by par-
tial melting of a lower crustal source or are the result of 
lower crustal differentiation from a precursor mantle melt 
as interpreted for the Late Cretaceous magmatism from 
Serbia (Kolb et al. 2013) and for the Tertiary Alpine intru-
sions such as Bergell (von Blanckenburg et al. 1992, 1998) 
and Adamello (Ulmer et al. 1983; Macera et al. 1983; Kag-
ami et al. 1991). Partial melting of a lower crustal source 
to produce mafic magmas would require extensive melting 
of an ultramafic source at very high temperature. This pro-
cess seems unlikely as there is no evidence of an important 
thermal anomaly associated with the Late Cretaceous mag-
matism. We thus retain the second hypothesis, lower crustal 

differentiation from a mantle-derived melt. Moreover, as 
the parent magmas of the Banat and Apuseni Mts. differ-
entiation trends have overlapping major and trace element 
composition, except for Ga and Sr (see discussion in the 
next section), we consider that they were derived from the 
same mantle melt.

Lower crustal differentiation of the mantle‑derived 
melt and the question of Ga and Sr

It has already been pointed out that in a Ga–Sr diagram 
(Fig. 11), the Apuseni Mts. magmatic rocks display a sig-
nificantly higher Ga content and a slightly lower Sr content 
than the Banat magmatic rocks. This also holds for the least 
differentiated samples (parent magmas) of the two trends. 
These differences could result either from precursor man-
tle melts with different Sr and Ga contents or from the dif-
ferentiation processes that produced the parent magmas of 
both trends from the mantle melts.

In a subduction-related geodynamic setting, the com-
position of primary magmas reflects contributions from 
the slab (including subducted sediment: Plank and Lang-
muir 1993) and the overlying mantle wedge (e.g. Gill 
1981; Plank and Langmuir 1993). These magmas are 
enriched in LILE (Rb, Cs, Th, Pb) relative to the HFSE 
(Nb, Ta, Zr, Hf, TiO2) that display negative anomalies 
compared to primary MORBs or OIBs, and these geo-
chemical patterns are considered as resulting from the 
slab contribution (e.g. Gill 1981; Plank and Langmuir 
1993). In a Th/Yb versus Nb/Yb diagram, arc magmas 
have thus notably higher Th/Yb ratios than the MORB 

Table 5   Partition coefficients for trace elements

Plag plagioclase, opx orthopyroxene, cpx clinopyroxene, mgt magnetite, ilm ilmenite, amph amphibole, bio biotite

* Partition coefficient used in step 2; ** partition coefficient used in step3
a  Bacon and Druitt (1988), b Ewart and Griffin (1994), c Nagasawa and Schnetzler (1971), d McKay (1989), e Nagasawa (1973), f Sisson (1994), 
g Villemant (1988), h Bea et al (1994), i Fujimaki (1986), j Toplis and Corgne (2002), k Nakamura et al (1986), l Ewart et al.(1973), m Luhr and 
Carmicahel (1980), n Dostal et al (1983), o Horn et al (1994), p Esperança et al. (1997), q Philpotts and Schnetzler (1970), r Duchesne (1978)

STEP1 STEPS 2 and 3

plag opx cpx mgt ilm plag amph bio apatite mgt ilm

Rb 0.3a 0.062b 0.03a 0.01a 0.01a 0.3a 0.18b 1.35g 0.01a 0.01a 0.01a

Sr 2.3r 0.068b 0.5a 0.01a 0.01a 4r 0.01a 0.31a 2a 0.01a 0.01a

Ba 1.8a 0.07b 0.1a 0.1a 0.01a 0.17l 0.62e 6.36q 0.01a 0.1a 0.01a

Ce 0.2a 0.082c 0.075d 0.71a 0.0019k 0.2a 0.53a 0.32a 21.1i 0.71a 0.0019k

Sm 0.1a 0.133c 0.22d 1.2a 0.0023k 0.1a 2a 0.26a 46i 1.2a 0.0023k

Eu 2a 0.113c 0.2d 0.91a 0.0009k 2a 1.9a 0.24a 25.5i 0.91a 0.0009k

Tb 0.1a 0.215c 0.258d 1.3a 0.0095k 0.1a 2a 0.28a 39.4i 1.3a 0.0095k

Yb 0.1a 0.73c 0.3d 0.44a 0.057k 0.1a 2.1a 0.44a 15.4i 0.44a 0.057k

V 0.2a 1.2l 12l 1.2j 14j 0.2a 4.92*,f–17**,f 0.0001 0a 1.2j 14j

Co 0.1a 3.4l 2.4l 5o 11j 0.1a 6.1a 4g 0.01a 5o 11j

Zn 0.17b 2.6m 0.3n 2.6p 8.3b 0.17b 1.6*,a–8**,b 11.4h 0.01a 2.6p 8.3b
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array (Pearce 1983; Pearce and Peate 1995) (Fig.  9e). 
Ga and Sr have different geochemical behaviours: Ga is 
not contributed from the slab (in a Ga/Yb versus Nb/Yb 
diagram arc magmas plot in the MORB array), whereas 
Sr is (Pearce and Peate 1995). Consequently, variable 
trace element content of the mantle source would not 

produce high Ga and low Sr contents (Apuseni parent 
magma) versus low Ga and high Sr contents (Banat par-
ent magma). Moreover, we note that in the Th/Yb versus 
Nb/Yb diagram (Fig.  9e), the Apuseni Mts. and Banat 
samples overlap in composition suggesting similar con-
tribution of LILE from the slab.

Table 6   Results of trace 
elements modelling

* Derived from the differentiation trend. See text for explanation

** Range of composition displayed by the samples having a SiO2 content close to that of sample R27, R44, 
R39, respectively

STEP1

L0 = R30 L1 = R27 Range L1** Calculated L1

Rb 71 74 74–94 91

Sr 639 597 322–597 592

Ba 768 1514 448–2470 781

Ce 40 56 49.5–69.4 51

Sm 4.6 5.4 5.0–7.1 5.9

Eu 1.9 2.2 1.5–2.4 1.8

Tb 0.6 0.7 0.6–1.0 0.8

Yb 2.6 2.7 2.1–3.2 3.2

V 160 93 65–206 94

Co 22 12 12–32 17

Zn 99 64 59–96 93

STEP2

L0 = R27 L1 = R44 Range L1** Calculated L1

Rb 74 94 77–143 85.8

Sr 597 267 240–367 343.6

Ba 700* 588 527–723 625.0

Ce 55.7 50.2 46.8–78.8 63.7

Sm 5.4 5.2 3.8–8.3 5.6

Tb 0.7 0.8 0.6–1.3 0.8

Eu 2.2 1.3 0.9–1.9 1.7

Yb 2.7 2.7 1.8–4.3 3.2

V 93.0 107.7 47.7–107.7 109.4

Co 17* 16 8–16 15.0

Zn 93* 66.4 53.2–66 60.0

STEP3

L0 = R44 L1 = R39 Range L1** Calculated L1

Rb 94 163 121–250 117

Sr 267 169 169–210 171

Ba 588 689 647–689 715

Ce 50.2 65.7 61.2–65.7 60

Sm 5.2 5.2 4.0–5.2 5

Eu 1.3 1.3 0.8–1.3 1

Tb 0.8 0.8 0.6–0.8 1

Yb 2.7 3.0 2.0–3.0 3

V 107.7 33.0 32.2–47.8 29

Co 16 7 3–10 11

Zn 66.4 34.9 34.9–72.4 34
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We have tested the hypothesis that the different Ga and 
Sr contents were produced during the lower crustal differ-
entiation of a mantle-derived magma using the experimen-
tal data of Müntener et al. (2001) performed at 1.2 GPa on 
sample SH-85-44, a near-primary magma composition at 
Mont Shasta. These experimental data indicate that when 
the H2O content of the melt is above 3  wt%, amphibole 
crystallizes early and the liquidus temperature of pla-
gioclase is lowered. More particularly, when their starting 
composition has an H2O content of 5  wt% (run B704 of 
Müntener et  al. (2001)), the cumulate contains amphibole 
(45 %), orthopyroxene (19 %), clinopyroxene (36 %) and 
trace amount of garnet, whereas in their run B668 with a 
lower H2O content (2.5 wt% in the starting composition), 
the melt is in equilibrium with a cumulate made of pla-
gioclase (27  %), orthopyroxene (34  %) and clinopyrox-
ene (39  %). The experimental melts of runs B704 (with 
amphibole) and B668 (with plagioclase) have a major 
element composition very close to that of samples 98R12 
(Dupont et al. 2002) and R30, parent magmas of the Banat 
and Apuseni differentiation trends, respectively (Fig.  5) 
supporting the hypothesis that these mafic magmas were 
derived by differentiation from a precursor mantle melt. 
Using appropriate partition coefficients (amphibole: 1.77 
(Ewart and Griffin 1994), orthopyroxene: 0.32 (Ewart and 
Griffin 1994), clinopyroxene: 0.69 (Blundy et  al. 1998), 
plagioclase: 0.08 (Blundy et  al. 1998)), a Ga content of 
17  ppm for the primary magma (sample 85-44 of Mount 
Shasta: Baker et al. 1994) and the Rayleigh distillation law, 
the Ga content of the residual melt is 24 ppm and 16 ppm 
when subtracting the plagioclase-bearing and amphibole-
bearing cumulates, respectively. This agrees very well with 
the observed Ga contents of samples R30 (29  ppm) (par-
ent magma of the Apuseni trend) and 98R12 (16.2  ppm) 
(parent magma of the Banat trend). Similarly, using the Sr 
content of sample 85-44 (295 ppm: Baker et al. 1994), the 
calculated Sr content of the residual melt is higher when 
subtracting the amphibole-bearing cumulate (524  ppm) 
than the plagioclase-bearing cumulate (445  ppm). The 
calculated values are lower than the observed Sr contents 
[766  ppm in sample 98R12 (Banat); 639  ppm in sample 
R30 (Apuseni)], but precise constraints on the Sr content 
of the mantle-derived magma are not available and sub-
duction-related primary magmas have rather variable Sr 
contents (41 up to 745 ppm: Grove et  al. (2012) and ref-
erences therein). When considering 431 ppm Sr in the pri-
mary mantle melt, in the range of the Sr content of primary 
magmas, the calculated Sr content of the residual liquid 
is 766  ppm and 651  ppm with the amphibole- and plagi-
oclase-bearing cumulates, respectively. The slightly higher 
TiO2 content of the Apuseni differentiation trend (Fig.  5) 
compared to the Banat trends can also be predicted with 
these two different cumulates as amphibole has a higher 

TiO2 content than plagioclase. It is thus plausible that the 
different Ga and Sr contents in the parent magmas of both 
trends (Banat versus Apuseni) are due to a different H2O 
content of the mantle-derived magma. A higher H2O con-
tent in the primary magma of Banat induces early crystal-
lization of amphibole, thus decreasing the Ga content and 
increasing the Sr content in the derivative liquids, whereas 
a lower H2O content in the Apuseni induces early crystal-
lization of plagioclase, thus decreasing the Sr content and 
increasing the Ga content in the derivative liquids. Inter-
estingly, the Late Cretaceous magmatic rocks from Serbia 
(Timok, Ridajn-Krepolijn), for which amphibole was also 
considered as a high- and/or low-pressure fractionating 
phase (Kolb et  al. 2013), display similar Sr, Ga and TiO2 
contents than the Banat trend (Fig. 11).

Crustal contamination

As mentioned above, samples from the Apuseni Mts. and 
Banat have different isotopic compositions except that 
the sample of Cornet (Apuseni Mts.) plots in the field 
of samples from Banat (Fig.  10), maybe because, before 
its final emplacement in calcareous marbles, this latter 
intrusion has crosscut the formations of the Mureş zone 
(Fig.  2) that are essentially made of Jurassic mafic rocks 
of MORB affinity overlain by calc-alkaline lavas (Bor-
tolotti et  al. 2002). The sample from Băiţa Bihor is also 
close to the Banat field. Most Banat samples plot on the 
mantle array and two of them (Oraviţa) are also close to 
the composition of near-primary arc magmas from North 
America (Mt-Shasta: Grove et  al. 2002) and Adamello 
(Kagami et  al. 1991). The rest of the Romanian banatite 
samples are displaced towards higher initial Sr isotopic 
composition and lower epsilon Nd (Apuseni Mts.) com-
pared to the mantle array. Instead of displaying a continu-
ous trend of decreasing epsilon Nd and increasing Sri, the 
Late Cretaceous igneous rocks of Romania more or less 
define three discrete groups (Fig.  10). One group plots 
close to the composition of primary arc magmas. A sec-
ond group, comprising most of Banat samples has mildly 
positive epsilon Nd and clusters around an Sri of 0.705. 
The third group includes most of the Apuseni samples 
and displays negative epsilon Nd and high Sri. This split 
in three groups is in agreement with the lack of correla-
tion with wt% SiO2. The first group likely witnesses the 
isotopic composition of the mantle source. The other two 
groups probably evidence crustal contamination. As the 
Banat and Apuseni Mts. igneous rocks were emplaced in 
two different crustal segments, respectively, the Dacia and 
Tisza blocks, the occurrence of distinct isotopic composi-
tion probably results from the interaction with two differ-
ent crustal contaminants. The Sr and Nd isotopic composi-
tions of the geological formations that make the Tisza and 
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Dacia blocks have not been extensively studied, but data 
are available for the granitoids belonging to the basement 
of the Getic nappes in the South Carpathians (Duchesne 
et al. 1997, 2008) (Dacia block) (Fig. 13a), the pre-Alpine 
crust in the Apuseni Mountains (Fig.  13b) [northern and 
southern terranes as well as the Highis–Biharia zone; Per-
mian volcanics (Nicolae et al. 2014); Muntele Mare grani-
toid and surrounding rocks (Somes Series) (Anton 2000; 
Balintoni et al. 2014; Balintoni, pers comm) and the Vari-
scan Mecsek granitoid from the Tisza block in Hungary 
(Klötzli et al. 2004)]. Available isotopic data show rather 
overlapping composition in the two blocks with, how-
ever, higher Sri and more negative epsilon Nd in the Tisza 

block, especially for the granito-gneisses analysed by Pană 
et al. (2002) for which no Sr isotopic composition is given. 
Crustal contamination has been tested with an AFC model 
as described by De Paolo (1981) and Ersoy and Helvaci 
(2010). As in the epsilon Ndt versus Sri, the Romanian 
samples seem to cluster in three discrete groups, and 
within each of these groups, the isotopic composition (Sri, 
epsilon Nd) is not correlated with the SiO2 content, and 
we suggest that assimilation occurred very early, prob-
ably when the primary mantle-derived magma differenti-
ated towards the composition of the parent magmas of 
the Apuseni and Banat trends. We used the average iso-
topic composition of the Mecsek (Klötzli et al. 2004) and 
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Fig. 13   Epsilon Ndt versus initial Sr isotopic compositions of the 
Apuseni and Banat (Dupont et al. 2002) samples compared with pos-
sible contaminants of the Getic nappes (a) (Duchesne et  al. 1997, 
2008) and  of the Apuseni Mountains [Permian volcanics (Nicolae 
et al. 2014); Muntele Mare granitoid and surrounding rocks (Somes 
Series) (Anton 2000; Balintoni et  al. 2014; Balintoni, pers comm); 
granito-gneisses from the Apuseni Mts. (Pană et  al. 2002)] and the 

Mecsek granitoid from the Tisza block in Hungary (Klötzli et  al. 
2004) (b). AFC model (De Paolo 1981; Ersoy and Helvaci 2010) 
using the Sr and Nd isotopic composition as well as the Sr and Nd 
content (Grove et al. 2002) of sample 85-44 (Mt-Shasta) as the start-
ing composition and, as the contaminant, the average Sr and Nd iso-
topic composition of the Sicheviţa (Duchesne et al. 2008) (c), or the 
Mecsek granite (Klötzli et al. 2004) (d)
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Sicheviţa (Duchesne et al. 2008) granitoids (Fig. 13c, d) as 
possible contaminants of the Apuseni and Banat magmatic 
rocks, respectively. The Sicheviţa intrusion indeed belongs 
to the Getic nappes that have been crosscut by the Late 
Cretaceous magmas. The Sr and Nd contents of the bulk 
continental crust (Sr = 320 ppm; Nd = 20 ppm) (Rudnick 
and Gao 2003) were selected for the element composition 
of the contaminants, and the experimental amphibole- 
(Fig. 13c) and plagioclase-bearing (Fig. 13d) cumulates of 
Müntener et al. (2001) were used to model the fractional 
crystallization process. Results are displayed in Fig. 13c, d 
and show that with an r value (fraction of crust assimilated 
versus crystals formed) of 0.3–0.4, it is possible to predict 
the isotopic composition of the Banat and Apuseni mag-
matic rocks, thus supporting the hypothesis of two distinct 
contaminants.

Conclusions

The geochemical and isotopic data presented here provide 
constraints on the petrology of the Late Cretaceous igneous 
rocks of Romania and lead to the following conclusions:

1.	 The parent magma of the Apuseni Mountains Late Cre-
taceous magmatism is a basaltic andesite that differen-
tiated to rhyolitic composition mainly by a fractional 
crystallization process. The Al-in hornblende geoba-
rometer indicates that this process occurred in upper 
crustal storage chambers.

2.	 Because of their too low Mg#, the parent magmas of 
the Apuseni and Banat differentiation trends cannot 
be considered as primary magmas. The experimental 
data acquired by Müntener et al. (2001) on a primary 
magma at 1.2 GPa indicate that they could have been 
produced by lower crustal fractionation from a primary 
mantle melt.

3.	 The Apuseni and Banat magmatic rocks display 
overlapping differentiation trends in variation dia-
grams except for Ga and to a lesser extent Sr. The 
parent magma of the Apuseni trend has a higher Ga 
and slightly lower Sr content than the parent magma 
of the Banat trend. This difference can be taken 
into account by a higher H2O content in the Banat 
mantle-derived magma which induces early crystal-
lization of amphibole at the expense of plagioclase. 
Amphibole has indeed a high and low partition coef-
ficient for Ga and Sr, respectively. As the Timok and 
Ridanj-Krepolijn Late Cretaceous magmatic rocks 
(Kolb et al. 2013) overlap with the Banat samples in 
the Ga–Sr diagram, this suggests that the H2O con-
tent of the mantle-derived magmas varied along the 
belt.

4.	 The Banat and Apuseni samples have contrasting iso-
topic compositions that can be taken into account by 
contamination with two different contaminants in 
agreement with the emplacement of the Banat and 
Apuseni magmatic rocks in two different crustal ter-
ranes, respectively, Dacia and Tisza.

Acknowledgments  This work was supported by grants from 
the CGRI of Belgium to J. Vander Auwera and by FNRS Grants 
2.4530.98 and 2.4512.00. It is partly based on the work carried out by 
J. Gesels during her Master’s degree. The authors would like to thank 
C. Pin (Université Blaise Pascal, Clermont-Ferrand) for his contribu-
tion during the radiogenic isotopes analyses. Careful reviews by N. 
Bonev and P. Barbey improved the manuscript.

References

Andrei J, Cristescu T, Calota C, Proca A, Romanescu D, Russo-
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Geol Rom 69:179–180

Schmid S, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schus-
ter R, Tischler M, Ustaszewski K (2008) The Alpine–Car-
pathian–Dinaridic orogenic system: correlation and evolution of 
tectonic units. Swiss J Geosci 101:139–183

Schuller V (2004) Evolution and geodynamic significance of the 
Upper Cretaceous Gosau basin in the Apuseni Mountains 
(Romania), Tübingen, 112 pp

Schuller V, Frisch W, Danišik M, Dunkl I, Melinte M (2009) Upper 
Cretaceous Gosau deposits of the Apuseni Mountains (Roma-
nia)—similarities and differences to the Eastern Alps. Austrian 
J Earth Sci 102:133–145

Sisson T (1994) Hornblende-melt trace element partitioning measured 
by ion microprobe. Chem Geol 117(1–4):331–344

Stefan A (1980) Petrographic study of the eastern part of the Vladeasa 
eruptive massif. Annu Inst Geol Geofiz 55:208–325

Stefan A, Lazar C, Intorsureanu I, Horvath A, Gheorghita I, Bratosin 
I, Serbanescu A, Calinescu E (1982) Petrological study of the 
banatitic eruptive rocks in the eastern part of the Gilau Moun-
tains. D.S. Inst Geol Geofiz 69(1):215–246

Stefan A, Rosu E, Andar A, Robu L, Robu N, Bratosin I, Grabari G, 
Stoian M, Vajdea E (1992) Petrological and geochemical fea-
tures of banatitic magmatites in northern Apuseni Mountains. 
Rom J Petrol 75:97–115

Steiger R, Jäger E (1977) Subcommission on geochronology: conven-
tion on the use of decay constants in geo- and cosmochronol-
ogy. Earth Planet Sci Lett 36:359–362



847Int J Earth Sci (Geol Rundsch) (2016) 105:819–847	

1 3

Sun S, McDonough W (1989) Chemical and isotopic systematics of 
oceanic basalts: implications for mantle composition and pro-
cesses. In: Saunders A, Norry M (eds) Magmatism in the ocean 
basins., Geological Society Special PublicationBlackwell Sci-
entific Publications, Oxford, pp 313–345

Toplis M, Corgne A (2002) An experimental study of element par-
titioning between magnetite, clinopyroxene and iron-bearing 
silicate liquids with particular emphasis on vanadium. Contrib 
Mineral Petrol 144:22–37

Ulmer P, Callegari E, Sonderegger U (1983) Genesis of the mafic and 
ultramafic rocks and their genetical relations to the tonalitic-
trondhjemitic granitoids of the southern part of the Adamello 
batholith (Northern Italy). Mem Soc Geol Ital 26:171–222

Vander Auwera J, Bologne G, Roelandts I, Duchesne JC (1998) 
Inductively coupled plasma-mass spectrometry (ICP-MS) anal-
ysis of silicate rocks and minerals. Geol Belgi 1(1):49–53

Venturelli G, Thorpe R, Dal Piaz G, Del Moro A, Potts P (1984) 
Petrogenesis of calc-alkaline, shoshonitic and associated ultra-
potassic Oligocene volcanic rocks from the Northwestern Alps, 
Italy. Contrib Mineral Petrol 86:209–220

Villemant B (1988) Trace element evolution in the Phlegrean fields 
(central Italy)—fractional crystallization and selective enrich-
ment. Contrib Mineral Petrol 98(2):169–183

von Blanckenburg F, Früh-Green G, Diethelm K, Stille P (1992) Nd-, 
Sr-, O-isotopic and chemical evidence for a two-stage contami-
nation history of mantle magma in the Central-Alpine Bergell 
intrusion. Contrib Mineral Petrol 110:33–45

von Blanckenburg F, Kagami H, Deutsch A (1998) The origin of 
Alpine plutons along the Periadriatic Lineament. Schweiz Min-
eral Petrogr Mitt 78(1):55–66

Von Cotta B (1864) Erzlagerstätten im Banat und in Serbien. 
Braumüller, Wien, 108 pp

Von Quadt A, Moritz R, Peytcheva I, Heinrich C (2005) Geochro-
nology and geodynamics of Late Cretaceous magmatism 
and Cu–Au mineralization in the Panagyurishte region of the 
Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geol 
Rev 27:95–126

Watson EB, Harrison TM (1983) Zircon saturation revisited: temper-
ature and compositional effects in a variety of crustal magma 
types. Earth Planet Sci Lett 64:295–304

Wiesinger M, Neubauer F, Peytcheva I, von Quadt A, Berza T (2007) 
Geochemical characteristics of Surduc pluton (Upper Creta-
ceous), Romania: significance for banatite magmatism. In: 
Andrew C (ed) Digging deeper. Proceedings of the ninth bien-
nial SGA meeting, Dublin, Ireland pp 913–916

Willingshofer E, Neubauer F, Cloetingh S (1999) The significance of 
Gosau-type basins for the Late Cretaceous tectonic history of 
the Alpine-carpathian belt. Phys Chem Earth (A) 24(8):687–695

Zimmerman A, Stein HJ, Hannah JL, Koželj D, Bogdanov K, Berza 
T (2008) Tectonic configuration of the Apuseni–Banat–Timok–
Srednogorie belt, Balkans-South Carpathians, constrained 
by high precisions Re–Os molybdenite ages. Miner Deposita 
43:1–21


	The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes
	Abstract 
	Introduction
	Geological setting
	Sampling and methods
	Results
	Petrography and mineral composition
	Geochemistry
	Barometry and thermometry of the Apuseni samples
	Comparison with other Late Cretaceous igneous rocks from the Banatitic belt and with Alpine intrusions

	Discussion
	Differentiation processes within the Apuseni Mts. trend
	Modelling of the fractional crystallization process
	The parent magmas of the Apuseni and Banat Late Cretaceous igneous rocks
	Lower crustal differentiation of the mantle-derived melt and the question of Ga and Sr
	Crustal contamination

	Conclusions
	Acknowledgments 
	References




