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Abstract The Late Cenozoic evolution of the south-
eastern margin of the Tibetan Plateau has been well
documented, but controversies remain concerning Late
Cenozoic acceleration of exhumation. We present 41
new apatite and zircon (U-Th)/He ages from six tran-
sects in the Daliang Mountains that provide constraints
on the timing and the rate of denudation. We calculated
exhumation rates for the transects based on the age ver-
sus elevation/structural depth relationship. The results
are consistent across the Daliang Mountains and indicate
a protracted period of slow cooling and denudation from
~30 to ~10 Ma, with an exhumation rate of ~0.15 mm/
year. This slow exhumation is followed by accelerated
rates of ~0.4—0.8 mm/year since ~10 Ma. The protracted
slow denudation and long residence time within the apa-
tite helium partial retention zone resulted in large varia-
tions in single-grain (U-Th)/He ages. We suggest that the
post ~10-Ma rapid cooling and exhumation in the Daliang
Mountains is driven by the eastward growth of the Tibetan
Plateau. Furthermore, we suggest that the mountain
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building in the Daliang Mountains result from the crustal
shortening accompanied with transpression, rather than
from the lower crustal channel flow.
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Introduction

Progressive Indo-Eurasian convergence induces numerous
lithospheric-scale strike-slip faults and orogenic thrusts,
which partly account for the Tibetan Plateau formation and
its margin construction during the Cenozoic (Tapponnier
et al. 2001; Royden et al. 2008). Large-scale Tibetan crus-
tal mass is currently moving eastwards and rotating clock-
wise around the eastern Himalayan syntaxis (Fig. 1). Most
of the motion is redirected into northeast and southeast
flow around the Sichuan Basin (Clark and Royden 2000;
Zhang et al. 2004b; Enkelmann et al. 2006), due to the
backstop from the craton-like lithosphere of the Sichuan
Basin (Copley 2008; Liu et al. 2012). Although no signifi-
cant shortening has been observed across the eastern and
southeastern margin of the Tibetan Plateau by geodetic
and geologic studies (Burchfiel et al. 1995; Wang et al.
1998; Zhang et al. 2004b; Shen et al. 2005), the margin has
experienced extensive deformation and denudation dur-
ing Cenozoic time due to the far-field effect of the Indo-
Eurasia convergence. There is widespread thrusting within
the Longmen Mountains, and strike-slip motion along the
Xianshuihe fault, the Red River fault, and other large-scale
strike-slip systems (Wang et al. 1998; Hubbard and Shaw
2009; Zhang et al. 2010), resulting in significantly different
topography along the eastern margin of the Tibetan Plateau
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(Kirby et al. 2002; Clark et al. 2005) (Fig. 1). Low-temper-
ature thermochronology investigations have yielded valua-
ble insights into the exhumation history of the eastern mar-
gin of the Tibetan Plateau (Fig. 1). Late Cenozoic cooling
ages at the Songpan—Ganzi area reflect regional denudation
of the eastern Tibetan Plateau. This regional denudation has
been interpreted as a response to crustal thickening (Arne
et al. 1997; Kirby et al. 2002; Li et al. 2012), lower crus-
tal channel flow (Clark and Royden 2000; Mukherjee 2005;
Godard et al. 2009a), and drainage reorganization (Rich-
ardson et al. 2008). Recently, Ouimet et al. (2010) inferred
a relatively constant and uniform regional uplift at ~10 Ma
in the southeastern margin of the Tibetan Plateau, by using
zircon and apatite (U-Th)/He data. However, Wang et al.
(2012a) argued that two phases of rapid exhumation took
place at 30-25 and at 15-10 Ma ago, respectively. Most of
the previous studies concentrated on the Songpan—Ganzi
fold and thrust belt, but studies at further southeastern mar-
gins of the Tibetan Plateau are rare (Fig. 1).

The Daliang Mountains represent the boundary between
the southeastern Tibetan Plateau and the Sichuan Basin
(Fig. 1). This paper presents new apatite and zircon (U-
Th)/He (AHe and ZHe, respectively) thermochronometry
results from the Daliang Mountains, which indicate multi-
ple periods of cooling and denudation during the Cenozoic
transpressional strike-slip tectonics. The new data supports
an interpretation that (1) cooling and exhumation with
apparent rates of ~0.15 mm/year from ~30 to ~10 Ma were
pervasive across the region and (2) Late Cenozoic eastward
growth of the Tibetan Plateau controlled the rapid post
~10-Ma cooling and denudation in the Daliang Mountains.
The results from the Daliang Mountains provide an exam-
ple of how low-temperature thermochronometry can pro-
vide additional information on the denudation and moun-
tain building at low-relief topographic regions, especially
in absence of syn- to post-deformational strata.

Geological setting

The ~300-km-long and ~80-km-wide Daliang Mountains
chain marks the southwestern boundary of the Sichuan
Basin and of the southeastern margin of the Tibetan Pla-
teau. The Daliang Mountains are located at the western
margin of the Yangtze craton (South China Block) and
are nearly N-S trending (Fig. 1). This mountain range is
characterized by north—south-trending low- to medium-
grade metamorphic rocks of Proterozoic and Archean age
(Zhang et al. 1990; BGMRSP 1991; Luo 1998; Zheng et al.
2006), which comprise the basement of the Yangtze craton.
The area underwent complicated tectonic evolution from
a continental margin during Paleozoic—Mesozoic times to
collisional orogeny since the Late Triassic and Cenozoic
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Fig. 1 Map of the southeastern margin of the Tibetan Plateau and the ™
Daliang Mountains. The locations of sample transects for this study
are indicated by blue stars (vertical transects) and black lines (vertical
vs. depth transects). Recent thermochronological data of age—eleva-
tion profiles are indicated in yellow, white, purple, gray, deep gray,
black stars, and red star are from Liu et al. (2008); Richardson et al.
(2008), Li et al. (2012); Clark et al. (2005), Ouimet et al. (2010),
Godard et al. (2000b), and Wang et al. (2012a, b), respectively. The
~0.25 mm/year, ca. 9 Ma indicate that rapid exhumation with rate of
~0.25 mm/year began at ca. 9 Ma. Inset shows the location of eastern
margin of Tibetan Plateau with the box that outlines the study area.
The Indian plate motion vector with 36-40 mm/year showed by black
arrow is after Zhang et al. (2004a, b); the red arrows show the east-
ward growth of Tibetan Plateau. EHS—eastern Himalayan syntaxis
(the red triangle), XSH F—Xianshuihe fault, DLS F—Daliangshan
fault, ANH F—Anninghe fault, XJ F—Xiaojiang fault, MPS F.—
Mopanshan fault, JH F—Jinghe fault, GS G.—Gonga shan granites.
a Xide transect, b Mianshan transect, ¢ Ganluo transect, d Wushihe
transect, ¢ Muchuan transect, f Wudu transect

(Burchfiel et al. 1995; Chen et al. 2011). The Phanerozoic
strata are dominated by Silurian—Triassic marine clastic—
carbonate sequences, and Permian continental flood basalts
that widely cover the western margin of the Yangtze cra-
ton (Xu et al. 2001; He et al. 2007). Post Late Triassic ter-
restrial sediments are dominated by fluvial and lacustrine
red bed facies with only sparse outcrops of Cenozoic rocks.
The terrestrial sediments are laterally synchronous and
comparable between the Panzhihua—Xichang area and the
Sichuan Basin. Moreover, the similarity and comparability
in sediment, depositional facies, and paleontology indicate
that both basins were linked as a paleo-Sichuan Basin dur-
ing Mesozoic time (Xia 1982; Zhang et al. 1990; BGMRSP
1991; Guo et al. 1996).

The Daliang Mountains comprise a series of N to NNW
sinistral strike-slip faults (e.g., Jinghe fault, Anninghe fault,
Xiaojiang fault). Our field studies indicate that the Dali-
ang Mountains are weakly deformed and the strata out-
crop predominantly horizontally, or with a low inclination.
There are two different phases that are generally control-
ling the tectonic framework of the eastern Tibetan Plateau
after the Late Triassic. During the Late Triassic, the Song-
pan—Ganzi units, comprised by thick sequence of deep
marine Triassic strata, often called the Songpan—Ganzi fly-
sch (BGMRSP 1991), were thrust southeastward onto the
Yangtze craton (Sichuan Basin), along the Longmen thrust
belts, to form the western Sichuan foreland basin (Fig. 1;
Chen et al. 1995; Worley and Wilson 1996; Deng et al.
2012a). The thrusting along the Jinghe fault farther south
formed the Panzhihua—Xichang Basin (Fig. 1; BGMRSP
1991; Burchfiel et al. 1995). Thrusting with sinistral strike-
slip occurred initially during the Late Triassic (Dirks et al.
1994; Chen et al. 1995; Worley and Wilson 1996), but was
reactivated during Cenozoic time as a dextral strike-slip in
the north and sinistral strike-slip in the south (Chen et al.
1994; Burchfiel et al. 1995; Wang and Burchfiel 2000).
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The reactivation of older structures has been interpreted as
the result of the Late Cenozoic eastward or southeastward
extrusion of crustal material from the Tibetan Plateau and
subsequent clockwise rotation around the eastern Himala-
yan syntaxis (Wilson et al. 2006; Schoenbohm et al. 2006a;
Royden et al. 2008). The Xianshuihe—Anninghe—Xiaoji-
ang fault forms the natural southeastern boundary for the
clockwise rotation (Wang et al. 1998; He et al. 2008). This
fault marks a major strike-slip system, where the Panzhi-
hua—Xichang area or even the southeastern margin of the
Tibetan Plateau seems to be moving actively by sinistral
strike-slip for more than ~60 km, relative to the west-
ern edge of the Sichuan Basin (Wang et al. 1998; Zhang
et al. 2004b; Shen et al. 2005; Schoenbohm et al. 2006b).
“OAr/**Ar, U-Pb and Rb-Sr data indicate that a rapid cool-
ing event occurred along the Xianshuihe fault zone during
12-10 Ma, coevally with the emplacement and deformation
of the Gonga Shan granite (Roger et al. 1995; Zhang et al.
2004a). The Gonga Shan region accommodates extensive
uplift and denudation at the southeastern margin of the
Tibetan Plateau during this time (Xu and Kamp 2000; Lai
et al. 2007; Clark et al. 2005; Ouimet et al. 2009, 2010).

Sample transects and methods

In the Daliang Mountains, samples were collected on three
transects along one limb of an anticline, with wavelengths
more than 20 km (e.g., Xide, Ganluo, Muchuan). The iso-
therms represented by helium age were probably perturbed
by the deformation. Samples comprise Late Triassic to
Early Cretaceous strata within a ~2-km-long stratigraphic
profile (Table 1; Figs. 2, 3, 4). The other samples were col-
lected from 3-1.1 km vertical transects in Precambrian
granites (e.g., Mianshan granite, Wudu granite, Wushihe
granite), over a short horizontal distance of ~4-9 km
(Fig. 5). All the anticlines that were sampled are character-
ized by gentle-to-moderate deformation, whereas the gran-
ites are undeformed and lack significant foliation and/or
lineation.

The Muchuan and Wudu transects are located at the
southeastern margin of the Daliang Mountains at eleva-
tions between 400 and 1,200 m (Fig. 4). The Ganluo and
Waushihe transects are located within the Daliang Moun-
tains at elevations between 600 and 1,300 m (Fig. 3), and
the Xide and Mianshan transects are at the western margin
of the Daliang Mountains at elevations between 1,700 and
3,000 m (Fig. 2).

Based on detailed orientations of the stratigraphy in the
structural profiles, we can construct a stratigraphic column
(Figs. 2, 3, 4). Because no faults are present and insignifi-
cant thickness variations are observed within each section,
we argue that the error in estimated stratigraphic thickness
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and sample location is less than ~100-200 m and that the
restored stratigraphic column from a single anticlinal struc-
ture can be used as a proxy for original depth. Thus, a plot
of stratigraphic depth (structural depth) versus sample age
can be constructed to calculate the exhumation rate over
time. The other three transects in granites can be used for
a comparison, using an age versus elevation relationship.
All exhumation rates were derived by the linear regression
of the structural depth/elevation versus ages using Isoplot
(Ludwig 2003).

We used apatite and zircon (U-Th)/He thermochronom-
etry on minerals separated from sedimentary and granitic
rocks in order to gain information about the cooling history
of these rocks. For an effective grain radius of ~60 wm and
a cooling rate of ~10 °C/Myear, the closure temperatures
of the (U-Th)/He system in apatite and zircon are ~65 °C
(Wolf et al. 1998; Farley 2000), and ~180 °C (Reiners et al.
2004), with their relative helium partial retention zone
(HePRZ) of ~50-80 and ~160-200 °C (Wolf et al. 1998;
Stockli 2005), respectively.

Apatite and zircon grains were separated from rocks
by crushing, sieving, and washing the samples, and using
standard magnetic and heavy liquid separation techniques.
Clear and undisturbed apatite and zircon grains without
inclusions were selected using a binocular microscope.
The grain dimensions were measured for the calculation of
the alpha correction factor after Farley et al. (1996). After-
ward individual grains (usually three replicates per sample,
and each replicate was a single grain) were, respectively,
packed in Nb-tubes for (U-Th)/He analysis. The helium
gas was first extracted in the Patterson helium extraction
line equipped with a 960-nm diode laser at the University
of Tiibingen. Each sample was reheated at the same con-
ditions to ensure that all helium was extracted. The re-
extracted component of helium gas showed typically <1 %
of the first signal. After Helium analysis, the grain pack-
ages were sent to the University of Arizona at Tucson for
U, Th, and Sm measurements using an ICP-MS. The ana-
lytical errors of the mass spectrometer measurements are
generally very low and do not exceed 2 %. In contrast,
the alpha correction factor and reproducibility of the sam-
ple age constitute a much larger error. We therefore report
the mean (U-Th)/He age and the standard deviation of the
measured aliquots as the sample error (10).

Results

Fifty-nine AHe ages (18 AHe samples), ranging from 4 to
50 Ma, and 63 ZHe ages (22 ZHe samples), ranging from
5 to 230 Ma, were measured (Table 1). Thirteen sam-
ples are Upper Triassic to Upper Jurassic sandstones, and
twenty samples are Precambrian granites. A summary of
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all single-grain ages and mean ages is presented in Table 1.
In most cases, apatite and zircon single-grain ages are sub-
stantially younger than depositional ages of the host rocks
(or crystallization age of granite), and apatite ages are sys-
tematically younger than zircon ages from the same rock
sample, or from the same stratigraphic column. ZHe ages
of sediment samples with single-grain ages older than the
depositional age are unreset, or partially reset (as apparent
or mixed age) in the cases where some single-grain ages
are younger and some are older than the deposition age.

Xide transect

Three samples were analyzed from the Xide transect
located at the southeastern limb of Lianghekou anticline
(Fig. 2; Table 1). The five AHe and six ZHe ages range
from 4.2 £ 0.2 to 11.9 £ 0.7 Ma and from 19.6 £ 1.3 to
49.3 + 4.0 Ma, respectively. The anticline is characterized
by NE striking terrestrial sequences of the Baiguowan For-
mation that is Late Triassic to Early Jurassic in age (T5—
J,b), and by the Upper Cretaceous Leidashu Formation
(K,D).

AHe ages of sample SYX06 from the top of the strati-
graphic column range from 4.2 + 0.2 to 11.9 £ 0.7 Ma with
a mean age of 7.4 = 4 Ma. The sample SYXO01 from the
base of the column yielded a similar age with mean AHe
age of 9.2 & 0.5 Ma (Table 1). The ZHe ages in the same
section show a distinct decrease with increasing depth with
mean ages of 37.7 £ 10 Ma (SYXO03) and 24.6 £+ 4.5 Ma
(SYXO01; Fig. 2). It should be noted that there is a differ-
ent trend in AHe and ZHe age with increasing depth, which
could be correlated with a large variation in single-grain
AHe ages in SYXO06, or the topography influence of the
AHe system that is of lower closure temperature than in
ZHe system.

All cooling ages are significantly younger than the depo-
sitional age of the host rock, indicating that these samples
had been exposed to temperatures >180 °C after deposition.
Using the different closure temperatures and the ages of the
AHe and ZHe system for our samples, we can calculate the
different exhumation rates for various time intervals (Rein-
ers et al. 2003; Reiners and Brandon 2006). The difference
between mean AHe and ZHe ages for the sample SYXO01 is
~16 Ma and yields an exhumation rate of ~0.21 mm/year
from ca. 24.6 & 4.5 to 9.2 + 0.5 Ma, assuming a paleo-
geothermal gradient of ~30 °C/km (Hu et al. 2000) and a
surface temperature of 10 °C.

Ganluo transect
At the Ganluo transect, five samples were collected from

the Late Triassic to Early Jurassic Baiguowan Formation
(T3-J,b) to Upper Jurassic Xincun Formation (J,x) at the

northeastern limb of the Yutian anticline (Fig. 3; Table 1).
These samples provide thirteen AHe ages ranging from
4.6 &+ 0.2 to 21.1 £ 3.1 Ma and only one ZHe age of
35.2 4+ 3.4 Ma (Table 1). The NW striking anticline expose
a sequence from the Emeishan basalt (P,d) to the Niugun-
tang Formation (J,n). The undeformed Neogene Xigeda
Formation outcrops horizontally and overlies the gentle
Yutian anticline, indicating that the deformation occurred
between Early Cretaceous and Late Cenozoic time.

AHe ages from the sample at the top of the stratigraphic
column (SS22) yielded a mean age of 7.9 £ 2.9 Ma, and
the sample SS26 from the base yielded a mean AHe age
of 6.7 &+ 1.6 Ma (Table 1). Overall, these AHe data from
the Ganluo transect indicate an apparent exhumation rate
of 0.8/ .- mm/year between ~9 and 5 Ma (Figs. 3, 6).

Furthermore, at the bottom of this transect, there is only
one ZHe age of 35.2 + 3.4 Ma from sample SS26. With
only one replicate, it is difficult to be certain that the base
of this transect is fully reset. Given that the ZHe age of the
sample SS26 is substantially younger than the depositional
age of the host rock (~175-220 Ma), we argue that the base
of this transect is fully reset. Thus, the interval time of sam-
ple SS26 through the AHe and ZHe closure temperatures is
~29 Ma, suggesting an exhumation rate of ~0.13 mm/year
from 35.2 £ 3.4t0 6.7 £ 1.6 Ma.

Muchuan transect

The Muchuan anticline transect is comprised by marine
Permian to middle Triassic strata (P,-T,) and terrestrial
Late Triassic to Early Jurassic (Xiangxi Group T;-Jx) to
Lower Cretaceous strata. Five samples were collected at
the northeastern limb of the Muchuan anticline (Fig. 4;
Table 1), which provided 18 AHe ages, ranging from
5.6 £0.7t050.2 £ 3.1 Ma.

Single-grain AHe ages from the top of the stratigraphic
column (SQMOS5) show a significant range from 11.4 £ 0.9
to 50.2 + 3.1 Ma and are interpreted to represent an
exhumed AHe PRZ (Table 1; Figs. 4, 6). The samples that
are stratigraphically lower show a systematic decrease
in the spread of the single-grain ages and also a decrease
of the mean AHe ages with increasing structural depth
(Fig. 4). The mean AHe ages decrease from 26.4 + 12 Ma
to a mean age of 9.9 £ 5.5 Ma at the base of the section.
The linear regression indicates an apparent exhumation rate
of 0.1379%_ \» mm/year from ~30 to 9 Ma (Fig. 6).

Two samples in the lower part of the column yielded
ZHe ages. At the base, the ZHe ages range from
132.0 £ 164 to 178.4 £+ 20.1 Ma (Table 1), slightly
younger than the depositional age. In contrast, the ZHe
ages from sample SQMOS range from 21.1 £ 2.0 to
227.9 £ 16.7 Ma, with the two older ZHe ages predating
deposition (Fig. 4). Excluding the 21.1 + 2.0 Ma ZHe age
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that is unusually young, the ZHe ages within this transect
display an increase in temperature with depth and reveal
that none of these rocks had been exposed to temperatures
>160-200 °C, high enough to reset zircon (U-Th)/He ages
after deposition.

Mianshan transect

Eight samples within the Mianshan transect were collected
from Precambrian granites (Fig. 5a). The ZHe ages in the
Mianshan granite range from 8.1 £ 1.0 to 29.3 £ 2.8 Ma,
with mean ages from 8.5 £ 0.4 to 23.2 & 5.4 Ma (Table 1).
The linear regression of the age—elevation plot shows
an apparent exhumation rate of 0.15"™F/_  ,, mm/year
between ~20 and 10 Ma (Fig. 7b). Due to the sample
SYX14 far off the regression line, it is occurred a low prob-
ability of R* with 0.3.

The upper two samples SYX13 and SYX16 show
AHe ages ranging from 19.1 + 2.4 to 37.7 & 3.2 Ma,
and from 13.9 £+ 1.1 to 44.2 + 4.3 Ma (Fig. 7a). The
samples below ~2,500 m elevation yielded mean ages
of 10 £ 1.9 and 12.4 + 1.5 Ma. The age—elevation plot
suggests a negative relationship; however, the mean AHe
ages are similarly within error and indicate a rapid uplift
and exhumation at ~10 Ma (Fig. 7). The lowermost sam-
ple (SYX11) at the transect shows large scatter in single-
grain AHe ages ranging from 5.4 £ 0.4 to 30.1 £ 3.1 Ma
(Table 1). Due to the fact that the zircons of the same
sample yielded a well-reproduced 11.1 + 0.6 Ma ZHe
age, we assume that the two older AHe ages were influ-
enced by parentless helium from microinclusions. Thus,
two potential causes should be considered to account
for the significantly scattered AHe ages in the upper two
samples.

The first one is that those samples with poor qual-
ity, e.g., microinclusions, indicating the single-grain
ages >~20-30 Ma (the ZHe ages of the upper two sam-
ples), e.g., SYXI13-2a and SYXI16-3a, are probably
influenced by the microinclusions. The second is that a
long residence time in the AHe PRZ between ~10 and
20 Ma, diffusion magnified the difference in He con-
centration and resulted in a large variation in AHe ages,
which was followed by a rapid uplift and exhumation at
~10 Ma. The lowermost sample (SYX11) with ZHe age
of 11.1 £ 0.6 Ma indicates that the sample was above
160-200 °C at ~10 Ma. There is ~1500 m elevation dif-
ference across the Mianshan transect, with a 40-60 °C
variation in temperature—slightly smaller than the dif-
ference between the apatite HePRZ (50-80 °C) and zir-
con HePRZ (160-200 °C). It means that the uppermost
sample was probably located around the apatite HePRZ.
Excluding the single-grain AHe ages >~30 Ma in the
upper two samples, those samples still have large scatter

@ Springer

Fig. 2 Simplified geologic map, structural profile, reconstructed
stratigraphic column, and sample location of the Xide transect. The
error in estimated stratigraphic thickness and sample location could
be up to ~100 m

in replicate ages (Fig. 7a). Thus, we prefer the second
cause for interpretation of the variation in AHe ages,
although some grains were not completely suitable for
helium dating. Such an interpretation could be further
resolved by apatite fission track dating.

Using the difference in the AHe and ZHe cooling ages
(1.7-7.0 Ma) and the difference in the closure temperatures
of the two systems, the data indicate rapid exhumation after
10 Ma with cooling at rates of ~24 °C/Ma (~0.8 mm/year),
following a protracted denudation during ~20-10 Ma with
rate of ~0.15 *™NF/_ |, mm/year (Fig. 7b).

Wudu and Wushihe transects

The Wushihe and Wudu transects are located along the
Dadu River (Fig. 5c, b), where twelve ZHe samples were
collected. The ZHe ages in the Wudu transect range from
15.4 £ 3.0 to 64.8 £ 7.4 Ma (Table 1). The uppermost
sample, SS04, shows significant scatter in replicate ages.
Samples below ~1,200 m show a negative age—elevation
relationship (—1.89 “'9/_41 mm/year), yet even so the scat-
ter between single-grain ages is large (Fig. 7), indicating a
rapid uplift and exhumation at ~20 Ma. It could be probably
correlated to the deformation along the fault, as tilt related
to deformation could result in such negative age—elevation
relationship (Stockli 2005; Lee et al. 2013). The sample
SS06 in the middle of the Wudu transect has single-grain
ZHe ages ranging from 135 £ 14.6 to 484 + 50.3 Ma, sub-
stantially older than the rapid cooling age and younger than
the crystallization ages, which were probably influenced by
the parentless helium.

The ZHe ages in the Wushihe transect yielded mean
ages ranging from 2.9 4+ 2.7 to 8.9 £ 3.3 Ma. Some of
the single ZHe ages that are very old (from 192 £ 15.7 to
1,304 £ 140.5 Ma; Table 1; Fig. 7d) may reflect parent-
less helium from fluid inclusions. Moreover, one addi-
tional AHe age from a sample collected on the Dadu River,
20 km east of the main transect at ~580 m (sample SS12
in Fig. 5c), shows single-grain AHe age from 9.3 £ 1.1
to 22.1 £ 0.6 Ma, with a mean age of 15.7 &= 6 Ma. The
age—eclevation relationship of the Wushihe granite samples
suggests an apparent exhumation rate of 0.35™NF/_ | mm/
year from ~10 to 5 Ma (Fig. 7d). However, the sample SS20
yielded very young ages of 0.4 £ 0.7 to 2.7 = 0.6 Ma,
which could be caused by local thrusting or ground-hot-
water flow (Whipp and Ehlers 2007), given there is no vol-
canicities occurred during Late Cenozoic times across the
sampled area.
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Discussion
Variation of (U-Th)/He single-grain ages

Although most of the sample ages show consistency in rep-
licates and a systematic relationship with structural depth/
elevation, a few samples show a large scatter in replicate
analyses (e.g., sample SQM11, SS23 and SS12, Table 1).
Variations between sample replicates have been reported in
an increasing number of studies and can be attributed to (1)
parentless helium from microinclusion, (2) helium implan-
tation, (3) radiation damages, and (4) zoning of U and Th
(Fitzgerald et al. 2006; Flowers et al. 2007; Spiegel et al.
2009).

There are several anomalous ages that could be attrib-
uted to microinclusions, e.g., SS15_1z and SYX11_3a. It
is difficult to dismiss the possible influence of poor qual-
ity of some samples that have affected the He ages. How-
ever, samples in the Muchuan and in the Mianshan tran-
sects show a systematic decrease in the spread of AHe and
ZHe ages in a single grain, respectively (Figs. 6a, 7b). We
thus do not consider microinclusions to be the predominant
source of the observed scatter.

Spencer et al. (2004) suggested that the majority of
the “too old” ages can be explained by helium implanta-
tion from surrounding U-Th-rich minerals and host sedi-
mentary components. Spiegel et al. (2009) argued that He
implantation is most pronounced in apatite with effective
U concentration <5 ppm. Thus, most reliable results for
AHe ages are probably attained from those samples where
U concentrations are >5 ppm. We did not measure the U
and Th concentration directly, but made a rough estimate
of the effective U concentration in ppm by calculating the
grain mass using the measured grain size and a 3.2 g/cm®
apatite density. The result shows that the effective U con-
centrations are relatively high (between 10 and 300 ppm;
Table 1), which makes the possibility of He implantation
from its surrounding unlikely. Furthermore, we do not
observe a correlation between U concentration and AHe
ages (Fig. 8). This is opposite to the trend of increasing
age with increasing effective U concentrations resulting
from radiation-induced damage to the apatite structure, as
described by Shuster et al. (2006) and Flowers et al. (2007).
Thus, He implantation and radiation damage trapping can
be excluded as explanations for the variation in ages.

The AHe and ZHe system is thought to be an open sys-
tem at temperatures between ~50-80 and 160-200 °C,
respectively (Wolf et al. 1998; Reiners and Brandon 2006).
That means when a sample underwent slow cooling, or pro-
longed residence in the PRZ, diffusion could potentially
magnify the difference in He concentration. This is particu-
larly the case when each grain has slightly different U and
Th distribution and/or different grain sizes, which results
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Fig. 3 Simplified geological map, structure profile, reconstructed »
stratigraphic column, and sample location of Ganluo transect. The
error associated with the stratigraphic thickness and sample location
can be up to ~ 100 m

in a large variation between (U-Th)/He ages of replicates
of the same sample (Farley 2000; Reiners and Farley 2001;
Meesters and Dunai 2002; Fitzgerald et al. 2006). Further-
more, a very slow cooling rate could amplify any kinetic,
anisotropy, or zonation effects in apatite and zircon (Hou-
rigan et al. 2005; Reich et al. 2007; Flowers et al. 2007),
which result in considerable age differences (Biswas et al.
2007). Furthermore, an age signature typical for slow cool-
ing through the PRZ is observed in several samples located
at the upper part of the profiles (i.e., SQMOS at the top of
Muchuan transect). These samples are interpreted to rep-
resent an exhumed PRZ and allow the estimate of burial
depth and exhumation (see below).

As for considerably scattered single-grain (U-Th)/
He ages, Fitzgerald et al. (2006) suggested that the “true
age” lies between the minimum (U-Th)/He age and the
weighted mean age. However, most of the sample ages
show consistency in replicates and a systematic relation-
ship with structural depth/elevation. Only a few samples
show a large scatter in replicate analyses with a range of
10-20 Ma, smaller than the variation suggested by Fitzger-
ald et al. (2006) with a range of 30-100 Ma. We thus argue
that the mean (U-Th)/He age is more valid than the young-
est single-grain age to represent sample age. The observed
variation of replicate ages can be thus attributed to the ther-
mal history of the sample characterized by a prolonged res-
idence time in the PRZ.

Estimates of burial depths and exhumation

There are various post-depositional (or burial) depths and
exhumation magnitudes between the stratigraphic columns
(T5-J,) indicated by the AHe and ZHe ages. Mean surface
temperatures and proximal borehole thermal gradients rep-
resent the best available proxy for the current thermal field
through which the samples cooled. More than seven meas-
urements at the southwestern margin of the Sichuan Basin
indicate a geothermal gradient of ~25-35 °C/km and a sur-
face temperature of 20 °C (Hu et al. 2000; Xu et al. 2011).
For the Muchuan transect, the partially reset ZHe ages
indicate a maximum burial temperature of 160-200 °C for
the T;-J, strata. For this temperature, we estimated a maxi-
mum thickness of the overlying sedimentary column that
has been removed of 4.5-6.4 km. Consequently, the Lower
Cretaceous burial depth could not exceed ~2-3.5 km,
which is roughly consistent with the observed paleo-AHe
PRZ, which represents paleo-temperatures of 50-80 °C
(Fig. 6). Given that there are ~0.8- to 1.5-km-thick Late
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Fig. 4 Simplified geological map, structure profile, reconstructed
stratigraphic column, and sample locations at the Muchuan transect.
The error associated with stratigraphic thickness can to be up to
~200 m

Cretaceous deposits in the region today (BGMRSP 1991;
Guo et al. 1996), we suggested that ~1- to 2-km-thick Ter-
tiary strata must have been eroded during the Late Ceno-
zoic, and a ~1-2 km exhumation occurred here.

The fully reset ZHe ages found at the bottom of the
stratigraphic profile of the two other transects (Xide
and Ganluo) suggest a minimum exhumation magnitude
ranging from 4.2 to 5.6 km, assuming a paleo-geother-
mal gradient of 30-40 °C/km and surface temperature of
10 °C across much of the Daliang Mountains (Hu et al.
2000). The burial depths of the present surfaces (K, and
J,) are thus greater than ~1-2 and ~3—4 km in the Xide
and Ganluo transects, respectively. According to the
exhumation magnitude at the base of each column equal
to a sum of the surface denudation, the reconstructed
depth and the preserved strata overlying the columns,
the estimates of ~1.8-3.5 and ~2.8-5.2 km probably

represent a suitable exhumation at the Xide and Gan-
luo transects. This conclusion is based on (1) the recon-
structed depths in each stratigraphic column have up to
~0.2-0.5 km difference than regionally averaged strati-
graphic thicknesses, (2) the assumption of ~1- to 2-km-
thick Tertiary section is based on the Muchuan transect,
and (3) the regionally preserved thicknesses of ~0.5-
1.2 km and ~0.5 km in the Lower Cretaceous and Upper
Jurassic (BGMRSP 1991; Guo et al. 1996). Furthermore,
the exhumed AHe PRZ in the Mianshan granite indicates
an exhumation magnitude of ~1.0-2.5 km. We argue
that ~2.5 and ~5 km are the best estimates of the Late
Cenozoic exhumation magnitude for the Xide and Gan-
luo transects, respectively. Exhumation near the margin
of the Sichuan Basin is characterized by much smaller
amounts of denudation (~1-2 km in the Muchuan tran-
sect). It should be noted that the estimated exhumation
in transects could significantly change due to new infor-
mation on changes of deposits thickness (e.g., inter-
mountain basin), deformation and thrusting along faults
(e.g., growth strata), etc.

© Apatite Sample
@ Zircon Sample

Fig. 5 Sample location maps for the Mianshan granite (a), Wudu granite (b) and Wushihe granite (c). Topography maps are from Google Earth
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Two-phase exhumation of the Daliang Mountains

Documenting exhumation intensity, as well as its spatial and
temporal variations, is important for understanding regional
patterns of denudation. The Muchuan, Ganluo, Mian-
shan, and Xide transects show a similar exhumation rate of
~0.15 mm/year from ~30 to 10 Ma. Most of the transects
(e.g., the Wushihe, Ganluo, Xide, Mianshan, and Wudu
transects) show a faster rate of ~0.4-0.8 mm/year (or a neg-
ative elevation vs. age relationship) since 10 Ma (Fig. 9).
The regional consistency of these data suggests that the
Daliang Mountains experienced a protracted period of slow
cooling and exhumation before ~10 Ma, then an accelerated
cooling and exhumation during Late Miocene time.

Due to the lack of Cenozoic depositional records in the
region, the deformation and Cenozoic uplift in the south-
western part of the Sichuan Basin are not well constrained,
although thermochronometric data have recently revealed
that episodic exhumation played a key role in shaping the
topography (An et al. 2008; Richardson et al. 2008; Deng
et al. 2009; Li et al. 2012). The deformation of the youngest
Upper Cretaceous strata demonstrates that the main defor-
mation in the Daliang Mountains occurred post Cretaceous
(Figs. 2, 3, 4), consistent with no significant change in the
paleocurrent and sedimentary facies across much of the
intermontane basins in the Daliang Mountains (e.g., Ganluo
and Jiuxiang Basins) during Late Triassic to Jurassic times
(Chen et al. 2011). Those folded precretaceous strata were
overlain by undeformed Late Cenozoic strata (i.e., Neogene
Xigeda Fm). Recently, Zhao et al. (2008) and Kong et al.
(2009, 2012) argued that the Xigeda Formation has an age
of ~1.5-8.7 Ma, according to magneto-stratigraphic research
and cosmogenic '°Be and 2°Al dating. In particular, there is
only nonconformity to low-angle unconformity developed
during Jurassic to Paleogene sedimentary deposition, across
the Daliang Mountains and the southwestern Sichuan Basin

@ Springer

(BGMRSP 1991; Guo et al. 1996; Deng et al. 2012b). Thus,
we argue that the main phase of deformation in the Daliang
Mountains probably occurred in the Late Miocene, post-dat-
ing the protracted period of slow cooling and exhumation.

The protracted process is consistent with an erosional
response to broad regional uplift (Richardson et al. 2008;
Wilson and Fowler 2011; Wang et al. 2012a; Li et al. 2012;
Deng et al. 2013). It can be correlated with an increase in
stream incision on the plateau margin (Clark et al. 2004;
Wilson and Fowler 2011) or with a base-level fall in the
adjacent Sichuan Basin (Richardson et al. 2008), where
1.5-4 km of strata was eroded by the Yangtze river (Rich-
ardson et al. 2010; Deng et al. 2013). Based on the apatite
fission track and (U-Th)/He data, Richardson et al. (2008),
Li et al. (2012), and Deng et al. (2013) argued that major
regional erosion has not started earlier than ~40-20 Ma
ago. This timing of Cenozoic erosion is consistent with our
oldest ZHe age that displays cooling at 37.7 + 10 Ma (i.e.,
Xide transect). It resulted to thick deposits of gypsum and
mirabilite across the southwestern Sichuan Basin during
Paleogene times (e.g., Shuangliu and Minshan area in the
southwest of Sichuan Basin), indicating that a connection
between the Sichuan Basin and the Panzhihua—Xichang area
was closed and the southwestern Sichuan Basin became an
interior basin (BGMRSP 1991; Guo et al. 1996). Later, the
connection of the Sichuan Basin to the South China Sea or
East China Sea has been established, but different hypoth-
eses were proposed for the timing of this opening (Clark
et al. 2004; Xiang et al. 2007; Richardson et al. 2010).

Late Cenozoic deformation and rapid exhumation
across the Daliang Mountains

East—west compression as a far-field effect of Indo-Eurasia
convergence has accommodated widespread deformation
to form those nearly N-S striking structures, including
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anticlines (e.g., the Ganluo and Xide anticline), synclines,
and faults (BGMRSP 1991; Burchfiel et al. 1995; Wang
and Yin 2009); for example, the Jinping thrust belt (shown
as Jinping Mts. in Fig. 1) thrusts on the footwall of Oligo-
cene—Miocene strata during this time indicated by apatite
fission track ages (Wang et al. 2012b). Kinematic studies
on the southeastern margin of the Tibetan Plateau show that
the Xianshuihe fault is characterized by ~60-80 km left-lat-
eral offset and that the Xiaojiang fault show a ~48-60 km
offset (Burchfiel et al. 1995; Wang et al. 1998). Southeast-
ward displacement of the southern part of the Songpan—
Ganzi fold belt (e.g., Yajiang Terrane) and in particular the
Xianshuihe fault (with at least a ~10-20 km offset) was
absorbed by deformation in the Daliang Mountains (Wilson
et al. 2006; Wang and Yin 2009). Based on a balanced cross
section, Chen and He (2008) suggested a crustal shorten-
ing of 17.8 % during Miocene—Pliocene time, with an aver-
age shortening of ~11 km in the Daliang Mountains and
its western margin (e.g., the Qinghe area with a shorten-
ing of ~20 %, Wang et al. 2012b). We thus argue that rapid
cooling and exhumation occurred coevally in the Daliang
Mountains (e.g., Ganluo and Mianshan sections, Wushihe
granite).

The estimated post ~10-Ma exhumation rates (~0.4—
0.8 mm/year) across the Daliang Mountains are similar
to rates of 0.25-0.5 mm/year suggested for the Songpan—
Ganzi region for the same time (Clark et al. 2005; Ouimet
et al. 2010). Furthermore, a similar timing in the onset of
rapid denudation is observed across much of the eastern
margin of the Tibetan Plateau, e.g., the Longmen Shan at
5-15 Ma (Kirby et al. 2002; Godard et al. 2009a; Wang
et al. 2012a), the Gonga Shan at ~12 Ma (Roger et al. 1995;
Zhang et al. 2004a), and the western Qinling at 94 Ma
(Enkelmann et al. 2006). It suggests that this rapid exhuma-
tion is due to the eastward growth of the Tibetan Plateau
and its associated uplift and erosion.

The Indo—Eurasia collision resulted in crustal mate-
rial being extruded and rotated clockwise around the east-
ern Himalayan syntaxis (Fig. 1). The region between the
syntaxis and the Xianshuihe—Xiaojiang fault system is
extruded southeastward in an inhomogeneous and diachro-
nous process during the Late Cenozoic (Wang et al. 1998;
Burchfiel and Wang 2003). The plateau growth toward the
southeast is mainly accommodated by large strike-slip fault
zones like the Xianshuihe-Daliangshan strike-slip fault
(e.g.. Tapponnier et al. 2001; Wilson et al. 2006), which
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is thought to be active since at least ~12-5 Ma (Roger
et al. 1995; Xu and Kamp 2000; Zhang et al. 2004a). Fur-
thermore, widespread occurrence of flower structures

suggest that the deformation is mainly accommodated
with transpression along strike-slip faults (e.g., Xianshuihe
fault, Mopanshan fault) in the Daliang Mountains. Most of
the transects in our study area that have the youngest AHe
ages are located in the hanging wall of Daliangshan and
Anlinghe faults (i.e., Ganluo and Xide transects, Mianshan
and Wushihe granites, Figs. 1, 9), where there occurred
rapid exhumation with gentle-to-moderate deformation.
Due to eastward growth of the Tibetan Plateau and its com-
pression, widespread eastward thrusting structures (e.g.,
the Mabian fault) and NWW to S-N striking structures
around the southwestern Sichuan Basin developed (Chen
et al. 2011; Wilson et al. 2006; Wang et al. 2012b). It sug-
gests that rapid exhumation in the Wudu granite can be cor-
related with the deformation at the Mabian fault, which is
consistent with the Late Cenozoic architecture of the south-
western Sichuan Basin (An et al. 2008; Liu et al. 2012).
Notwithstanding, there is some geophysical evidence
(Xu et al. 2007; Bai et al. 2010) to support a lower crustal

Songpan-Ganzi Daliang Mts.
o Yalong granite (I;-Mianshan granite 0 a-Xide transect 0c—Ganluo transect 0d-Wushihe granite Sichuan basin
Elevati — - PN ~ =
Gam) | NE - e Er\os B2 E[\os 2l s
- £ £ 0.15 £ £ \0\1 E e-Muchuan transect
sk . B N S R R S S —ai 0
L 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 £ 05y %
A 7 C o Age(Ma) Age (Ma) z AN
4 E o \\ 4 "\ ) 7 /’A X Xzaoxtanglmg Mt § exh;n;nﬁ;n
\ / s WO e ) ki Daduhe Mt . L rate (mm/yr),
s F — ‘0 A XCB . GLB. ) i~ 0 10, 20,30
L Y Oy [T \ / \ \ e
E U %[ “\ / Bg\ *ﬁ« N\ w,r:d R AT SR Muchuan anticline
2 r g - ! - ““/C‘/ \)/ \Q‘ \ \ - \\ //\\
1 F Yalong River Yalong River =~ Anning River L&\ o
- o ¥d ~10-5Ma £ Ay S
oF [AHe S&T ASE Jeosmmyy 2010 /: ~30-10Ma
T & & .
b,»,% gz& @ 2 I 5’ & (~0.15 mm/yr)
N\ X ¢ N
ZHe ¢ ~20-10Ma ' 10-5Ma ~15-40Ma  ~35Ma
- ~0.35
1 1 1 1 (~0.15 mlm/yr) (I mm Iyr) 1 1 I 1 L 1
50 100 150 200 250 300 350
Distance (km)
NE A~
MNB XCB. GLB. . MGB Sichuan basin
€
T, K X

JHF.

XSHF.

Fig. 9 Tectonics transect across the southeastern margin of the Tibetan
Plateau and the Daliang Mountains to show the relationship between
the topography, the (U-Th)/He ages, and exhumation rates. AHe and
ZHe ages show the range of single-grain ages (yellow circles and star
from Clark et al. (2005) and green stars are this study). a Xide transect,
b Mianshan granite, ¢ Ganluo transect, d Wushihe granite, ¢ Muchuan
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O Clark et al. 2005
¥ This study

transect, f Wudu granite. XSH F—Xianshuihe fault, DLS F—Daliang-
shan fault, ANH F—Anninghe fault, XJ F—Xiaojiang fault, JH F—
Jinghe fault, MB F—Mabian fault, MN B.—Miannin Basin, XC B.—
Xichang Basin, GL B.—Ganluo Basin, MG B.—Meigu Basin. It should
be noted that there is a distinct boundary on Daliangshan fault with an
apparent exhumation rate of 0.4-0.8 mm/year from ~10 to 5 Ma
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channel flow that caused surface uplift and exhumation
across the eastern Tibetan Plateau. A consistent pattern of
exhumation without anomalously uplifted areas as in the
studies of Clark et al. (2005) and Enkelmann et al. (2006)
is observed across the Daliang Mountains, even across
much of southeastern Tibet (Wilson and Fowler 2011). Fur-
thermore, geological studies indicated a significant amount
of shortening and deformation (Chen and He 2008; Wang
et al. 2012b). Thus, our results of accelerated denudation
in the Daliang Mountains (post ~10 Ma) require a tectonic
explanation of denudation, as related to eastward growth of
the Tibetan Plateau. It is accommodated by the boundary
strike-slip faults (Fig. 9) and crustal shortening accompa-
nied with transpression as a primary driver for uplift and
topography of the Daliang Mountains. It should be noticed
that we did not rule out the lower crustal channel flow here,
as we argued that a crustal shortening is more significant
than the lower crustal channel flow for surface exhumation
in the Daliang Mountains .

Pattern of erosion rates across the southeastern margin of
the Tibetan Plateau shows a strong gradient in exhumation
rates with the highest rates at the eastern Himalayan syn-
taxis and a decrease toward the southeastern margin of the
plateau (Henck et al. 2011). At the southeastern plateau mar-
gin, exhumation studies reveal a general eastward increase in
cooling ages and a decrease in exhumation rate and amount
toward the boundary strike-slip fault in the Daliang Moun-
tains (Fig. 9). To the east of the strike-slip system, there is
a broad consistency in AHe and ZHe ages and exhumation
rates. The Muchuan transect at the southwestern margin
of the Sichuan Basin shows a slower exhumation rate and
smaller amount (~1-2 km) than others. It indicates significant
differences in apatite and zircon He ages, exhumation rates
and amounts between the Daliang Mountains and the Sichuan
Basin. These strike-slip faults are thus interpreted to be the
northernmost part of a NW-trending boundary between the
southeastern Tibetan Plateau and the Sichuan Basin (even the
South China block), controlled by a crustal fragment rotating
clockwise around the eastern Himalayan syntaxis.

Conclusions

A positive age—depth correlation in restored stratigraphic
column and age-elevation profiles are interpreted with
respect to the denudation history of the Daliang Mountains.
The Daliang Mountains record a period of slow cooling and
exhumation during the Cenozoic with apparent exhuma-
tion rates of ~0.15 mm/year from ~30 to 10 Ma. This pro-
tracted slow cooling was followed by accelerated exhuma-
tion with rates ~0.4-0.8 mm/year during the Late Miocene.
The post ~10-Ma rapid cooling and exhumation, we have
attributed to the transpressional strike-slip faulting at the

Xianshuihe—Xiaojiang fault system that resulted from the
southeastward growth of the Tibetan Plateau. Our results
thus support the hypothesis that mountain building in the
Daliang is mainly caused by crustal shortening accompa-
nied by transpression, rather than the previously suggested
lower crustal channel flow. Based on the stratigraphy of the
transects and the AHe and ZHe ages, we estimate the maxi-
mum burial depths and exhumation amount to be ~3-5 km
in the Daliang Mountains and ~1-2 km at the margin to the
Sichuan Basin.
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