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topography. Although the highest seismicity concentration 
is dominant in this zone, the Lesser and the Tethys Hima-
layas in Sikkim–Darjeeling area also record relatively fair 
seismic activity. More compressive stress field in different 
layers right within the sharp bending zone supports this 
observation. We thus propose that the sharp bending zone 
beneath the Greater Himalaya is suffering maximum defor-
mation, and the deformation is continued in the mantle too. 
We also identify both right-lateral shear and radial ver-
gence slip, which are presumably associated with the gen-
eral dynamics and kinematics of the Himalaya.

Keywords  Flexing · Deformation · Stress field · 
Seismicity · Plate obliquity

Introduction

The Himalayan range is a diffused plate boundary evolved 
through continental collision between the Indian land mass 
and the Asia, and began at some 50 Ma before (Besse et al. 
1984; Molnar 1984; Patriat and Achache 1984; Gaetani 
and Garzanti 1991). The convergence rates of Indian plate 
against the southern margin of the Tibetan plateau vary sig-
nificantly between ~4.2 and 5.4  cm/years (DeMets et  al. 
1990). The convergence led to the tectonic stacking of 
upper and mid-crustal slabs on the northern margin along 
the foreland of the Indian plate originating from the basal 
decollement called the Main Himalayan Thrust (MHT). 
The compression due to convergence and stacking of crus-
tal slabs over the leading edge of the Indian plate results its 
flexure and progressive thickening of the crust toward the 
north (Lyon-Caen and Molnar 1985). The weight of the 
mountains is supported in part by the strength of the plate, 
and the plate distributes the load by flexing down in front 

Abstract  Researchers ubiquitously noted that the com-
mon processes of partitioning oblique convergence in 
response to drag from the trench-hanging plate simultane-
ously produce radial slips, along-strike translation, and 
extension parallel to the deformation front. Here, we focus 
on the area between Nepal and Sikkim–Darjeeling Himala-
yas, and carry out gravity and finite-element stress mode-
ling of the strike-orthogonal converging Indian lithosphere. 
We delineate the geometries of different layers and their 
interfaces through gravity modeling. The optimum model 
parameters along with rheological parameters of different 
layers are used for finite-element modeling. Finite-element 
modeling is done with boundary conditions of keeping 
the upper surface free and rigidly fixing the section of the 
northern boundary below the Main Himalayan Thrust. We 
impart on its frontal section an amount of 6 ×  1012 N /m 
force, equivalent to resistive force of the Himalayan–Tibet 
system, and analyze the maximum and minimum compres-
sive stress fields evolved in the lithosphere. We testify our 
observations with earthquake database and other geophysi-
cal and geological studies. We note that an increasing flex-
ing of the Indian lithosphere beyond the Main Boundary 
Thrust becomes maxima between the Main Central Thrust 
and South Tibetan Detachment in both the areas; how-
ever, more steepening of the Moho boundary is identified 
in the Sikkim–Darjeeling Himalaya. This abrupt change 
in lithospheric geometry beneath the Greater Himalaya is 
likely correlated with the sharp elevation changes in the 
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of the range to form a basin (e.g., Lyon-Caen and Molnar 
1983). The Moho configuration of the lithosphere beneath 
the Greater Himalaya toward north accounts for decrease 
in flexural rigidity (Jin et al. 1996; Cattin et al. 2001; Jor-
dan and Watts 2005; Hetényi et  al. 2006; Tiwari et  al. 
2006, 2010). Gravity data show an increase in gravity gra-
dient from ~1 mgal  km−1 over the Indo-Gangetic plain to 
2  mgal  km−1 over the Greater Himalaya, which accounts 
for more steepening of the Moho beneath the Greater Hima-
laya (i.e., ~10°–15°) than beneath the Lesser Himalaya 
(i.e., ~2°–3°) (Molnar 1983; Ni and Barazangi 1984). The 
seismic experiments conducted in southern Tibet indicate a 
crustal thickness of the order of 70–80 km (e.g., Hirn et al. 
1984; Zhao et al. 1993; Nelson et al. 1996), consistent with 
isostatic adjustment of the plateau (Lyon-Caen and Molnar 
1985; Jin et al. 1996; Hetényi et al. 2006; Tiwari et al. 2006, 
2010). Tectonic crustal thickening associated with deforma-
tion in the Himalaya is in part compensated by denudation 
(Cattin and Avouac 2000); however, the denudation rates 
vary laterally along the stretch of the Himalayan arc (Cat-
tin and Avouac 2000). Lavé and Avouac (2000) have shown 
that the localized thrust faulting on the Main Frontal Thrust 
(MFT) is continued along the MHT and absorbs ~22 mm/
years, an amount that accounts for all shortening rate across 
the range. This is in agreement for thrusting of the Hima-
laya over the MHT with little internal deformation (Cattin 
and Avouac 2000). Li et al. (2008) advocated a significant 
lateral variations in subduction-related mantle structure 
beneath the Himalayan collision zone and inferred that the 
horizontal distance over which the Indian lithosphere slides 
northward beneath the plateau decreases from west to east.

Our study area is focused over two important tectonic 
domains of the Himalayas: (1) the Nepal and (2) the Sik-
kim–Darjeeling sector (Fig.  1a). Along with north-south 
variations of tectonic processes all through the ~ 2500 
km long Himalayan belt (Ni and Barazangi 1984; Hodges 
2000), there is significant west-east variations of topog-
raphy (Duncan et  al. 2003; Yin 2006; Khan et  al. 2014), 
a reduction in crustal shortening (McQuarrie et  al. 2008; 
Long et  al. 2011), decrease in flexural wavelength (Ham-
mer et  al. 2013) and patterns of focal mechanisms (Haz-
arika et  al. 2010). Besides, the Indian plate obliquity 
increases both toward west and east of Kathmandu, Nepal, 
and reaches to highest values at the termini of the Hima-
layan orogen (McCaffery 1996). Northward penetrating 
evenly spaced basement ridges (e.g., Monghyr-Saharsa, 
Faizabad, and Delhi–Hardwar) in the central sector of the 
Himalayan foothill (Sastri et  al. 1971; Rao 1973; Valdiya 
1976; Dasgupta et  al. 1987; Gahalaut and Kundu 2012), 
uneven along-strike distribution of seismicity (Ni and 
Barazangi 1984; Khattri 1987; Verma and Kumar 1987; 
Bilham and Gaur 2000; Rajendran and Rajendran 2005), 
counterclockwise rotational underthrusting, oroclinal 

bending and the consequent southward non-uniform migra-
tion of overriding land mass toward the Himalayan margin 
(Klootwijk et al. 1985; Willet and Beaumont 1994), and the 
confinement of earthquakes in the deeper part of the con-
verging Indian lithosphere (Nábelek et al. 2009; Ansari and 
Khan 2013) clearly envisage a lateral change in dynamics/
kinematics of the Himalaya. In line with these evidences, 
we examine the gravity data through modelling of Nepal 
and Sikkim–Darjeeling sectors of this intercontinental dif-
fuse boundary. We note an apparent change in dip of the 
Moho between these regions. We further testify our obser-
vations through finite-element stress modelling and earth-
quake’s source processes in these areas. Two trench-orthog-
onal vertical models for the oppositely converging Indian 
lithosphere and the Asian land mass for Nepal as well as 
Sikkim–Darjeeling Himalayas have been proposed through 
improving model parameters for geometry and density of 
each prism by linear inversion (Webring 1985). To mini-
mize the non-uniqueness of the modeling, the initial geom-
etries of different layers and crustal boundaries within the 
converging Indian lithosphere and the overriding Asian 
land mass (Fig. 1b) have been initially constrained by the 
works of Owens and Zandt (1997), Johnson (2002), Thiede 
et al. (2004), Bollinger et al. (2006), Robert et al. (2009), 
Zhang and Klemperer (2010), and Hammer et al. (2013).

During the last two decades, numerical modeling has 
been widely used to explore the stress field and mechanics of 
lithospheric deformation in different tectonic regimes of the 
world (Makel and Walters 1993; Willett et  al. 1993; Beau-
mont et  al. 1994; Sassi and Faure 1997; Vanbrabant et  al. 
1999; Mikhailov and Marin 2001) and also in the Himalayan 
arcuate belt (Wang and Shi 1982; Singh et al. 1990; Vergne 
et al. 2001; Sanker et al. 2002; Berger et al. 2004). We also 
do the finite-element modeling on the converging litho-
sphere, delineated through gravity modeling, for understand-
ing the local deformation in the crust and mantle, and also 
along crustal discontinuities. We further analyze 114 earth-
quake events (magnitude ≥4.0) occurring during the period 
1902 to 2012 in these sectors of the Himalayan arcuate belt 
(Fig. 2). The earthquake data were taken from the catalogues 
of Indian Society of Earthquake Technology (Bapat et  al. 
1983), International Seismological Centre, and US Geologi-
cal Survey. A total of 13 focal mechanisms of earthquakes 
of magnitude Mw ≥ 4.7 are also compiled from the Harvard 
Centroid Moment Tensor Catalogue, Chandra (1978), Mol-
nar and Tapponnier (1978), Tandon (1972) for better under-
standing the deformation processes.

Tectonic framework

The Himalaya marking the southern edge of the Tibetan 
Plateau was built through southward transportation of 
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thrust packages along the numbers of east–west-oriented 
crustal-scale discontinuities, viz., Main Central Thrust fault 
(MCT), Main Boundary Thrust fault (MBT), and the MFT 
(Le Fort 1986). Deformation of the overriding Asian land 
mass has been migrated southward and the MFT being 
the most recently activated one in the sequence (Lavé and 

Avouac 2000). This fault is delineated to the top of the 
Indian basement at a depth of about 5 km and extends sub-
horizontally beneath the Lesser Himalaya (Schelling and 
Arita 1991; Lavé and Avouac 2000). The MFT places the 
sub-Himalayan molasse belt over undeformed foreland 
sediments of the Indo-Gangetic plain. The basement of the 

Fig. 1   a Simplified tectonic map with overview of topography of 
Nepal and Sikkim–Darjeeling Himalayas reconstructed after Gan-
sser (1964), Valdiya (1980), Verma and Kumar (1987), Gahalaut 
and Kundu (2012). The shaded areas in the inset map on top right 
represent the study area. The topographic elevation is shown by the 
colored scale on left bottom corner. Solid arrows represent the con-
vergence velocity direction of the Indian plate with respect to the 
Asian plate (after DeMets et  al. 1994). Barbed solid triangle rep-
resents the thrusting. Various profiles (1 after Thiede et  al. 2004; 
2 after Bollinger et  al. 2006; 3 after Schulte-Pelkum et  al. 2005; 4 
after Tiwari et  al. 2006; 5 and 6 after INDEPTH; 7, 8, and 9 after 
Hammer et  al. 2013) used for constraining the initial lithosphere 

geometries are also shown by solid green-colored lines. Profiles 
AA′ and BB′ are considered for the present study. b Simplified sec-
tion across the Himalaya illustrating the subduction of Indian litho-
sphere beneath southern Tibet (after Owens and Zandt 1997; Johnson 
2002; Thiede et  al. 2004; Bollinger et  al. 2006; Robert et  al. 2009; 
Zhang and Klemperer 2010; Hammer et al. 2013). MFT Main Fron-
tal Thrust, MBT Main Boundary Thrust, MCT Main Central Thrust, 
MHT Main Himalayan Thrust, STD South Tibetan Detachment, ITS 
Indus-Tsangpo Suture, SH Siwalik Himalaya, LH Lesser Himalaya, 
GH Greater Himalaya, THS Tethys Himalaya, ST Southern Tibet, 
IUC Indian Upper Crust, ILC Indian Lower Crust
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active Himalayan foreland basin is irregular, with several 
subsurface ridges extending from the Peninsula Highlands 
northwards to the Himalayan front. These structural highs 
generally trend at high angles to the Himalayan range and 
have structural relief locally exceeding ~2.0  km along 
east–west direction parallel to the Himalayan thrust front 
(Raiverman 2000). The sub-Himalayan belt, consisting of 
Miocene to Quaternary molasse exposed in the Himalayan 
foothills (Acharya and Ray 1977), has an average elevation 
of about 0.9–1.5 km (Valdiya 1988). The ruggedly youth-
ful Siwalik domain is characterized by steep slopes, swift-
flowing consequent streams, and deep valleys of anteced-
ent rivers (Valdiya 1988). The south-vergent MBT, which 
appears to have been active some ~10  Ma before (Meigs 
et al. 1995; Burbank et al. 1996), placed the Lesser Himala-
yan meta-sedimentary belt over the sub-Himalayan molasse 
belt. The Lesser Himalayan belt consists of ~12-km-thick 
section of phyllites, schists, slates, and marbles (Schelling 
1992). The average elevation of rising Lesser Himalaya is 
1.5–2.5 km, and its sub-province shows a mild and mature 
topography with gentle slope toward the north (Valdiya 
1988; Yin 2006). The region is characterized by several 
nappes of metamorphic rocks brought southward over 
long distances by imbricate thrusting (e.g., Le Fort 1975; 
Valdiya 1976, 1989; Gansser 1981). The south-vergent 
MCT places the Greater Himalayan crystalline belt over the 
Lesser Himalayan belt, resulting in upward increasing met-
amorphic grade within both (Hubbard and Harrison 1989). 

The Main Himalayan Seismic belt is mostly confined 
within the MBT and MCT zones (Ni and Barazangi 1984). 
The Greater Himalayan belt is interpreted as a thrust sheet 
of Indian continental basement displaced southward along 
the MCT (Argand 1924; Heim and Gansser 1939; Le Fort 
1975; Schelling and Arita 1991). The Great Himalaya rises 
to a height over 6.5–7.0  km (Valdiya 1988) over which 
lies the perennial snows (Yin 2006). The Greater Himala-
yan zone consists of 15- to 20-km-thick slab of crystalline 
rocks, which has been thrusted southwards along the MCT, 
overriding the Lesser Himalayan formations (Yin 2006). 
Structural relations, together with the INDEPTH profil-
ing (Hauck et al. 1998), imply that MFT, MBT, and MCT 
merge at depth to a single northward dipping decollement, 
the MHT (Schelling and Arita 1991; Zhao et  al. 1993; 
Makovsky et al. 1996; Hauck et al. 1998; Bollinger et al. 
2006). The Greater Himalayan belt is succeeded north-
ward by the Tethyan sedimentary belt. The Tethyan belt 
strata were deposited on the northern passive continental 
margin of India (Burg and Chen 1984; Searle et al. 1987). 
The Greater Himalayan belt is generally considered base-
ment of the Tethyan belt cover (Gansser 1964; Burg and 
Chen 1984). The Tethyan belt is succeeded northward by 
the Indus-Tsangpo Suture zone, which is characterized by 
dismembered ophiolites, radiolarian cherts, forearc flysch 
deposits, and tectonic mélange-containing blocks of Teth-
yan strata (Burg and Chen 1984). The composite Gangdese 
batholiths of Cretaceous to Eocene age (Schärer et al. 1984; 

Fig. 2   Contour map illustrates 
the variations in Bouguer 
gravity anomalies across the 
Nepal and Sikkim–Darjeeling 
Himalayas reconstructed based 
on EGM2008 gravity model. 
Profiles AA′ and BB′ were 
chosen through Nepal and 
Sikkim–Darjeeling Himalayas 
for gravity modeling of the 
converging Indian lithosphere. 
A comparison of dip-angle 
variations in Moho boundaries 
is made between profiles AA′ 
and BB′ (present study) and 
XX′ (after Schulte-Pelkum 
et al. 2005) and YY′ (after 
Tiwari et al. 2006). Black stars 
represent the distribution of 
earthquake’s epicenters with 
magnitude 4.0 and above. Note 
the higher concentration of 
seismicity in Sikkim–Darjeeling 
Himalayas. Solid blue rectangle 
represents the epicenter of 2011 
Mw 6.9 Sikkim earthquake. 
Abbreviations are explained in 
the caption of Fig. 1
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Debon et al. 1986; Copeland et al. 1995) lies immediately 
north of the suture.

Gravity modeling

Several new global gravity models (EIGENGL04C, Forste 
et al. 2008; EGM2008, Pavlis et al. 2008) are developed 
based on the data from GRACE/CHAMP satellite mission 
for long wavelengths (low degree and order of spheri-
cal harmonics) and terrestrial data for short wavelengths. 
Gravity field of the EIGENGL04C model is computed 
for spherical harmonics of degree and order 360. It com-
bines GRACE data for spherical harmonic coefficients 
up to degree and order 70, amalgamation of satellite and 
terrestrial data at intermediate wavelength, and terrestrial 
data at short wavelength (higher spherical harmonics of 
115–360). The EGM2008 gravity model is complete to 
the spherical harmonics of degree and order 2,159, and 
also combines primarily the satellite and surface measure-
ments (Pavlis et al. 2008). The EGM2008 model is com-
puted for higher spherical harmonics, and thus, its spa-
tial resolution is relatively more than the EIGENGL04C 
model. The present Bouguer gravity anomaly (BGA) map 
(Fig.  2) is constructed from EGM2008 gravity model 
after incorporating Bouguer correction and all terrain 
corrections and compared with ground gravity data. The 
Bouguer anomalies are consistent with terrestrial data; 
however, short-wavelength anomalies are filtered for con-
sistency. Thus, such map has potential in studying large-
scale geologic features across the Himalaya, where lit-
tle or no terrestrial data are available (e.g., Tiwari et  al. 
2010). The 2D modeling is undertaken by choosing long 
profile that cuts all through the main geological features 
of the collision zone, to understand the long-wavelength 
gravity anomalies. Both the profiles AA′ and BB′ are 
taken nearly orthogonal to the strike of the India–Eurasia 
collision zone.

One of the most common problems encountered in 
geophysical studies is the determination of the geometry 
of geological contacts at depth. Bouguer gravity anoma-
lies reflect lateral variations in density at depth. The larg-
est subsurface density discontinuity near the surface of 
earth occurs at the Moho, a chemical boundary between 
crust and mantle rocks. Seismic velocities also have a sig-
nificant jump across the Moho. The deformation of the 
Moho can be used to gauge the deformation of the upper 
mantle of the lithosphere. The Bouguer gravity anoma-
lies caused by heterogeneities in the distributions of 
masses and therefore density contrast between them can 
be used for delineating structures in the subsurface (Mol-
nar 1988). Models based on gravity and seismic data sug-
gest that the long-wavelength gravity anomalies arise due 

to Moho-depth variations caused by flexing of the Indian 
lithosphere (Tiwari et  al. 2006). Flexural model (e.g., 
Hetényi et  al. 2006) explains the base of the foreland 
Indo-Gangetic basin and crustal thickness variations that 
corroborate with the results of receiver function analysis. 
Considering that long-wavelength gravity anomalies are 
explained with flexural Moho and basement, we have first 
defined Moho depth and basement based on average effec-
tive elastic thickness (EET) of ~40 km with Moho depth 
of 36 km in the south of Ganga Basin (Krishna and Rao 
2005). The initial densities of different layers are assigned 
based on the previous studies (Gansser 1981; Cattin et al. 
2001; Tiwari et  al. 2006; Hetényi et  al. 2007). Our ini-
tial model geometry is similar in the depth range inferred 
from seismic, seomological studies (DMG 1990; Hauck 
et al. 1998; Schulte-Pelkum et al. 2005). We consider the 
densities of 2,300  kg/m3 for the Indo-Gangetic sediment 
(Gansser 1981); 2,450  kg/m3 for the Siwalik sediment; 
2,670  kg/m3 for the Indian Basement rock, Lesser, and 
Greater Himalaya formations; 2,900 and 3,270 kg/m3 for 
the Indian Lower Crust and Upper Mantle (Cattin et  al. 
2001), respectively. Besides, the initial densities of Tethys 
sediment, Asian Crust, part of the Indian Upper Crust 
toward north below the Asian Crust, and part of the Indian 
Lower Crust toward north below the Asian Crust are taken 
as 2,650 and 2,870 kg/m3 (Tiwari et al. 2010), 2,740 kg/m3 
(Hetényi et al. 2007), and 2,980 kg/m3. We consider a sin-
gle-fault geometry system (i.e., MHT, a major shear zone) 
where all the MFT, MBT, and MCT terminate at depth 
(cf. Makovsky et  al. 1996; Hauck et  al. 1998; Bollinger 
et al. 2006). We find the best fit between the observed and 
computed gravity field for the effective elastic thickness 
of ~40–50  km of the northward converging lithosphere. 
The present procedure (Fig.  3) is based on an interactive 
forward modeling (Webring 1985), which calculates the 
gravity responses of the modeled geometries. The initial 
geometries and initial densities of different layers pro-
vide the initial rms errors of 33 mgal for modeling along 
the profile AA′ and 30 mgal along BB′, respectively. The 
fit between observed and calculated gravity is compared 
through successive iterations, and the best fit is selected 
for the improved model. Finally, the rms error values 
reduce to 5.59 mgal and 7.41 mgal for profiles AA′ and 
BB′ for the optimum models (Figs. 4, 5). It is well known 
that Bouguer anomalies are combined effect of lateral den-
sity heterogeneities beneath reference level (in the present 
study, mean sea level, MSL) and anomalies due to depar-
ture of lithological densities from the reduction density 
(2.67 gm/cc) above reference level. The second component 
is small particularly over low-lying flat region; however, it 
is considerable in the regions like Himalaya. To overcome 
this problem, we have used density contrast with respect to 
2,670 kg/m3 for the layers above MSL.
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Finite‑element modeling

Finite-element modeling for quantitative estimates 
of regional and local tectonic stress fields within the 

lithosphere is an important tool for analyzing the lith-
ospheric deformation (Artyushkov et  al. 1996). In view 
of this, several workers (Willett et  al. 1993; Beaumont 
et  al. 1994; Sassi and Faure 1997; Mikhailov et  al. 2002; 

Fig. 3   Flowchart illustrating 
the path followed for gravity 
modeling

Fig. 4   Plot showing the 2D 
gravity modeling with topog-
raphy along profile AA′ for 
Nepal Himalaya. Plot at the top 
illustrates the topography of the 
area along AA′ compiled from 
GTOPO 30, a global digital 
elevation model with a hori-
zontal grid-spacing of 30 arc s 
(a). Plot at the mid illustrates a 
comparison between observed 
and computed Bouguer gravity 
anomalies along the profile 
(b). Lower plot (c) represents 
the 2D gravity density model. 
Hypocenter of 28 earthquake 
events and 2 focal mechanisms 
are also shown in the section of 
the model
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Chamlagain and Hayashi 2004) have applied numerical 
modeling for understanding faulting and resulting geody-
namics. Singh et al. (1990) modeled a cross section extend-
ing from the Ganga Plain to the Tibetan Plateau, aiming to 
simulate earthquake activity using force rather than dis-
placement boundary conditions. Vergne et  al. (2001) pre-
ferred 2D finite-element model consisting of different rheo-
logical layering of the continental lithosphere. Using the 
distinct-element method (Cundall 1990) or the finite-ele-
ment method (Zienkiewicz and Taylor 1989, 1991), Sassi 
and Faure (1997) computed stress pattern, which depends 
on the boundary conditions, the presence of large-scale 
discontinuities, and/or contrasting mechanical properties 
of the constitutive rocks. Wang and Shi (1982) proposed 
through 2D finite-element modeling that the Himalaya 
is dynamically supported. Berger et  al. (2004) used the 
ADELI 2D finite-element code (Hassani 1994; Hassani 
et al. 1997) to simulate the interseismic deformation in the 
three distinct western, central, and eastern Nepal blocks. 
They considered three geological domains along each 

profile, Indian crust, Tibetan crust, and upper mantle. The 
rheologies of these three blocks were assumed to be homo-
geneous along the models and similar for eastern, central, 
and western Nepal.

In the present study, we perform finite-element mod-
eling on two 2D vertical sections of the underthrusted 
Indian and overthrusted Asian lithospheres, along the pro-
files AA′ (~520 km long) and BB′ (~515 km long) in the 
Nepal Himalaya and Sikkim–Darjeeling Himalaya. The 
vertical section is divided into 11 different layers following 
the works of Owens and Zandt (1997), Cattin et al. (2001), 
Tiwari et  al. (2006), Hetényi et  al. (2007), and Hammer 
et  al. (2013). Meshing is done through reconstruction of 
1,039 nodes and 1,774 triangular elements along profile 
AA′ for the Nepal Himalaya, and 993 nodes and 1,746 tri-
angular elements along the profile BB′ for the Sikkim–Dar-
jeeling Himalaya. To understand the localized deformation 
vis-à-vis displacements, one should have the knowledge of 
rheology of the constituent rocks. The rock rheology has a 
significant influence on the occurrences of earthquakes as 

Fig. 5   Plot showing the 2D 
gravity modeling with topog-
raphy along profile BB′ for 
Sikkim–Darjeeling Himalaya. 
Plot at the top illustrates the 
topography of the area along 
AA′ compiled from GTOPO 
30, a global digital eleva-
tion model with a horizontal 
grid-spacing of 30 arc seconds 
(a). Plot at the mid illustrates a 
comparison between observed 
and computed Bouguer gravity 
anomalies along the profile 
(b). Lower plot (c) represents 
the 2D gravity density model. 
Hypocenter of 86 earthquake 
events and 11 focal mechanisms 
are also shown in the section of 
the model
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well as the source dynamics/kinematics (Watts and Burov 
2003; Khan and Chakraborty 2009). The rock rheologies 
involving density, Poisson’s ratio, Young’s modulus, angle 
of friction, and cohesive strength of the rock are used for 
elastic modelling. The other parameters like cohesion coef-
ficient (c) and frictional angle (ϕ) have been taken from the 
studies of Cattin et  al. (2001), Hetényi et  al. (2006), and 
Clark (1966). The improved density parameters of the dif-
ferent rock layers, achieved through the present gravity 
modeling (Figs. 4, 5, Table 1), are used for the finite-ele-
ment modeling. The rock properties vary laterally as well 
as vertically. For the simplicity of computation, the whole 
models are divided into 11 layers and each layer has been 
assigned with distinct rock properties. The other parameters 
such as Poisson’s ratio (v) and Young’s modulus (E) have 
been computed using the following equations (Timosenko 
and Goodier 1970; Shearer 1999).

where seismic wave velocities, VP (P-wave) and VS 
(S-wave), were taken from the studies of Cotton et  al. 
(1996) and Khattri et al. (1995).

where ρ is the density. The values of densities for different 
layers are taken from Table 1.

Boundary conditions play important role in simulating 
the tectonic processes. In order to get the real situation, 
we apply the reasonable boundary conditions to represent 
the present-day kinematics in the Himalayan fold-and-
thrust belt. The boundary conditions are illustrated in 
Fig.  6a, b under the present finite-element modeling. In 

(1)v =

(

V
2
p − 2V

2
s

)

2
(

V2
p −V2

s

)

(2)E = ρV
2
p

(1 + v)(1 − 2v)

(1 − v)

both the models, the upper surface is free to move in all 
directions. The lower section of the northern boundary 
below the MHT is fixed horizontally (cf. open circles, 
Fig. 6) for understanding the deformation caused by resis-
tive forces along the Himalaya (Richardson 1992; Copley 
et al. 2010). The force balance calculations for the pre- and 
post-collision configurations under application of forces on 
the edges of the plate and the tractions on the base of the 
plate (Copley et  al. 2010) showed that the resistive force 
induced by mountain building in the Himalaya–Tibet area 
is ~5–6  ×  1012 N /m. We therefore impart an amount of 
6 × 1012 N/m force, instead of displacement, on the frontal 
vertical part of the section (cf. arrows in Fig. 6), which is 
equivalent to the resistive force caused by the Himalayan–
Tibet system to the Indian plate (Copley et al. 2010).

Results and discussion

The varying degrees of tectonic loading and flexure are 
imaged by earthquake receiver function analysis (Hetényi 
et al. 2006; Rai et al. 2006), seismicity studies (Seeber and 
Armbruster 1981; Ni and Barazangi 1984), magnetotellu-
ric (MT) experiments (Chen et al. 1996; Lemonnier et al. 
1999; Unsworth et  al. 2005; Arora et  al. 2007), seismic 
profiling (DMG 1990), INDEPTH (Zhao et al. 1993; Nel-
son et  al. 1996; Hauck et  al. 1998; Alsdorf et  al. 1998), 
HIMNT experiment (Schulte-Pelkum et  al. 2005), and 
gravity modeling (Lyon-Caen and Molnar 1985; Cattin 
et al. 2001; Banerjee and Prakash 2003; Jordan and Watts 
2005; Tiwari et al. 2006) in different parts of the Himalaya. 
Invariably, different studies are in agreement with the three 
interfaces, the Moho, lower–upper crustal interface (Con-
rad discontinuity), and mid-crustal decollement (Hetényi 
et  al. 2006). We summarize the gravity modeling results 
in Table  2 for depth distributions of these three different 

Table 1   Physical parameters for different crustal units used for the gravity and finite-element modeling

Layer nos. Crustal layers/ 
geological units

Density 
(kg/m3)

Poisson’s 
ratio (v)

Young’s modulus 
(E in GPa)

Cohesion 
coefficient (MPa)

Frictional 
coefficient

1 Indo-Gangetic plain 2,260 0.258 22.7 8 0.57

2 Sub-Himalaya 2,550 0.258 25.6 12 0.84

3 Lesser Himalaya 2,660 0.258 26.7 15 0.84

4 Higher Himalaya 2,700 0.257 27 18 0.84

5 Tethys Himalaya 2,650 0.258 26.6 17 1

6 Asian crust 2,760 0.258 61 10 0.12

7 Southern part of Indian upper crust 2,710 0.258 60 10 0.57

8 Northern part of Indian upper crust 2,800 0.258 62.1 10 0.57

9 Southern part of Indian lower crust 2,930 0.257 86.7 10 0.57

10 Northern part of Indian lower crust 2,980 0.257 88.2 10 0.57

11 Mantle 3,270 0.247 189.9 10 0.57
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interfaces beneath the different crustal provinces along 
the south–north transects AA′ and BB′ for the Nepal and 
Sikkim–Darjeeling Himalayas. We note that the northward 

continuity of the MHT, Conrad (boundary between IUC 
and ILC), and Moho is more or less gentle and similar 
beneath the Indo-Gangetic plain, Siwalik Himalaya, and 

Fig. 6   Plot showing the simpli-
fied geometries (after present 
gravity models) with boundary 
conditions for the 2D finite-
element modeling for Nepal (a) 
as well as Sikkim–Darjeeling 
(b) Himalayas

Table 2   Showing the depth 
variations in different crustal 
interfaces along profiles AA′ 
and BB′ below different crustal 
provinces in the Nepal and 
Sikkim–Darjeeling Himalayas

Crustal provinces Nepal Himalaya Sikkim–Darjeeling Himalaya

MHT Conrad Moho No. of 
event

MHT Conrad Moho No. of 
event

Indo-Gangetic plain 2–7 21–24 40–44 01 2–5 20–24 38–43 03

Siwalik Himalaya 7–9 24–26 44–45 00 5–7 24–26 43–46 04

Lesser Himalaya 9–15 26–32 45–51 04 7–11 26–33 46–55 19

Higher Himalaya 15–33 32–51 51–67 19 11–29 33–53 55–74 48

Tethys Himalaya 33–38 51–52 67–68 04 29–38 53–55 74–75 12

Southern Tibet 38–40 52–54 68–69 – 38–39 55 75 –
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Lesser Himalaya. However, a sharp change in dips of all 
these crustal features is quite apparent further north beyond 
the Lesser Himalaya. Dip changes are reduced significantly 
from the Tethys Himalaya toward southern Tibet. We also 
critically examine the distribution of seismicity below dif-
ferent tectonic provinces and note a clear distinction of 
seismicity concentration. Greater Himalaya in both Nepal 
and Sikkim–Darjeeling records maximum concentration of 
seismic events. Another important feature is the shallower 
Moho of 40–44 km in Nepal and 38–43 km in Sikkim–Dar-
jeeling beneath the Gangetic alluvium increases beyond the 
Lesser Himalaya and attains ~69 km in Nepal and ~75 km 
in Sikkim–Darjeeling beneath the southern Tibet (Figs. 4, 
5), suggesting a locus of flexural loading on the Indian 
crust beneath the Greater Himalaya. A relative assessment 
clearly demonstrates a higher concentration of seismicity 
(i.e., 48 events) beneath the Greater Himalaya of Sikkim–
Darjeeling than the Nepal Himalaya (i.e., 19 events). We 
thus find an excellent correlation between the zone of sharp 
bending of the descending Indian lithosphere and the maxi-
mum concentration of seismicity. This is possibly indicat-
ing the highest degree of deformation within the sharp flex-
ing zone of the converging lithosphere.

During finite-element modeling, a series of model cal-
culations have been carried out, but only representative 
models are illustrated here. The computed stress fields 
and related faulting processes have been assessed through 
contouring of maximum compressive stress (σ1) (Fig.  7a, 
b) and minimum compressive stress (σ3) (Fig.  8a, b). We 
invariably note a zone of maximum compression (~1013 Pa) 
all along the northern part of the MHT (Fig.  7a, b). This 
higher compressive zone of one order more is abruptly ter-
minated to the south of the Greater Himalaya. It was also 
noted that the compressive stress fields are more dominated 
within the different layers, and the relatively less compres-
sive stress fields are distributed laterally in different layers 
of the Nepal Himalaya, while the bending zone of the con-
verging lithosphere in Sikkim–Darjeeling Himalaya docu-
ments southwesterly distributed compressive stress field. 
The distribution of moderate (~3.3 × 1012 Pa) compressive 
stress field is also found at the shallower part near the Indo-
Gangetic plain. Figure 8a, b shows the distribution of mini-
mum compressive stress field within the converging litho-
sphere. Although the minimum compressive stress fields 
are mainly confined near the upper surface of different 
layers around the bending portion of the descending Indian 
lithosphere, the minimum compressive stress is distributed 
laterally in Nepal Himalaya (Fig. 8a). Here, another impor-
tant observation is that the magnitude of minimum com-
pressive stress is nearly half of the maximum compressive 
stress.

Microseismicity survey in Nepal Himalaya shows that 
the seismic belt follows approximately the front of the 

Greater Himalaya and especially more concentrated in 
eastern and far western Nepal. The earthquakes are gen-
erally shallower, clustered at a depth range of 10–20  km 
(Pandey et al. 1999; Kayal 2001). Based on the microseis-
micity survey in Sikkim–Darjeeling Himalaya, De (2000), 
Kayal (2001), Monsalve et al. (2006), and Hazarika et al. 
(2010) reported that the higher concentration of earth-
quakes is noted to the north of the MBT without follow-
ing any particular trend. In addition, Kayal (2001) observed 
the earthquakes occurring predominantly below the plane 
of detachment and proposed that the MBT is seismogenic 
up to the mantle in the Sikkim Himalaya. While the pre-
sent study reveals that the seismic activity is more con-
centrated right within the converging Indian lithosphere 
beneath the Greater Himalaya (Figs. 4, 5) with a signifi-
cant distribution in the uppermost part of the Indian man-
tle lithosphere. Kayal (2001) and Nábelek et al. (2009) also 
identified active deformation within the upper mantle in 
the Sikkim Himalaya. Besides, the occurrence frequency 
or the incidences of numbers of earthquakes in Sikkim–
Darjeeling section are quite unusual, whereas the Nepal 
Himalaya documents less seismic activity. Figure  9 illus-
trates the variation in dip-angle of the Moho boundary of 
the penetrating Indian lithosphere. A noteworthy change 
in dip-angles (e.g., ~6°–8°) of the Moho boundary beyond 
MCT, particularly, beneath the Greater Himalaya is iden-
tified from Nepal to Sikkim–Darjeeling sectors. We thus 
may anticipate that the higher seismicity concentration 
might be caused by the increasing bending of the Indian 
lithosphere below the Sikkim–Darjeeling Himalaya. This 
was also appreciated in the literature (Conrad and Hager 
1999) that ~60  % of energy dissipation occurs through 
the bending portion (flexing zone) of the subducting slab. 
It was noted that the hypocenters of the mega-earthquake 
events coincide with the zone of flexing (cf. Khan and 
Chakraborty 2005, 2009; Khan 2011; Khan et  al. 2012) 
where the descending lithosphere takes a sharp change in 
inclination to reach into the deeper level. It was estimated 
that the maximum bending stress in the descending oceanic 
lithosphere at the subduction margins is about an order of 
magnitude larger than the maximum strength of the oce-
anic lithosphere (Kohlstedt et al. 1996; Conrad and Hager 
1999); only 10 % of the elastic bending stress is supported 
without deformation, and the remaining stress is relieved in 
the form of seismicity by fracturing of rocks (e.g., Turcotte 
and Schubert 1982). Recent works of Singh et al. (2008), 
Khan and Chakraborty (2009), Khan (2011), and Khan 
et  al. (2012) on the source dynamics and localization of 
hypocenter of the 2004 off Sumatra mega event envisage 
its association with the uppermost part of the mantle and 
advocate its intraplate origin.

Focal mechanisms of moderate magnitude earthquakes 
reveal that the sharp bending section of the lithosphere is 
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associated with both strike-slip and thrust-dominated move-
ments, and shear planes of most of these events are more 
or less parallel with the interfaces of the different crustal 
layers. Another significant observation is the dominant 
right-lateral shear movements operative in the crust part 
of the converging lithosphere, which is possibly controlled 
by either local or regional changes in plate obliquities 
(Liu et al. 1995). These typical features might be account-
ing an accommodation of crustal packages along both 
orthogonal and parallel with the arc of the Himalaya. We 
thus propose that the deformation is more dominant within 
the sharp bending zone than other parts of the converging 
lithosphere, and the lateral shearing between crustal blocks 

is presumably constrained by the obliquity of the plate. It 
was noted that the motions following the occurrences of 
moderate-to-large earthquake events in an oblique conver-
gent margin are generally partitioned into trench-parallel 
shear component and trench perpendicular subduction 
component (Fitch 1972; Ben-Menahem et al. 1974; McCaf-
frey 1992, 1996; Ishii et  al. 2005; Lay et  al. 2005; Khan 
2005; Khan et  al. 2010). McCaffrey and Nabalek (1998) 
interpreted the right-lateral strike-slip fault motion on the 
Karakoram-Jiali fault zone and the east–west extension on 
north-trending normal faults, and the radial vergence slips 
in the Himalayas are all due to basal shear caused by the 
obliquely converging Indian plate beneath the Tibet. The 

Fig. 7   Contour plot illustrates 
the variations in the maximum 
compressive stress fields (σ1) 
for Nepal (a) and Sikkim–Dar-
jeeling (b) Himalayas. Note the 
confinement of σ1 right within 
the layers
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fluids at the mid-crustal depths surrounding MHT (Gokarn 
et al. 2002; Spratt et al. 2005; Unsworth et al. 2005; Patro 
and Harinarayan 2009) might be facilitating the slips along 
both orthogonal and parallel to the Himalayan arc.

Conclusions

Although the converging Indian lithosphere takes a sharp 
downward turn beneath the Greater Himalaya, relatively 
more steepening Moho boundary is identified through grav-
ity modeling beneath the Sikkim–Darjeeling Himalaya. 

This is likely correlated with higher seismicity concen-
tration for this region. Further, a significant distribution 
of seismicity in the upper-most part of the mantle clearly 
shows its higher degree of deformation. It is also apparent 
from the finite-element modeling that the maximum com-
pressive stress field is more confined right within the bend-
ing zone of the penetrating Indian lithosphere beneath the 
Greater Himalaya. We thus propose that the sharp bending 
zone of the converging Indian lithosphere is the nodal area 
of stress concentration and recording maximum deforma-
tion. Amplitude of estimated stresses might change due to 
uncertainties in the several parameters utilized to compute 

Fig. 8   Contour plot illustrates 
the variations in the minimum 
compressive stress fields (σ3) 
for Nepal (a) and Sikkim–
Darjeeling (b) Himalayas. Note 
the distribution of σ3 along 
the upper surfaces of different 
layers
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the stresses; however, the pattern would remain same, and 
the inferences drawn from our studies remain valid.

We find dominant right-lateral shear motion in the crus-
tal blocks of the Indian lithosphere and thrust-dominated 
movements orthogonal to the strike of the Himalaya. The 
strike-parallel components of motions of the converging 
Indian plate against the southern part of the Asian plate are 
presumably motivating the shear motion, and the strike-
perpendicular components driving the radial vergence slips. 
The Indian plate obliquity is increasing both toward east 
and west of the Nepal Himalaya, and might be intrinsi-
cally related with the degree of arc-parallel shear motion. 
We thus may expect maximum lateral shearing of crus-
tal blocks toward the termini of the Himalaya, where the 
Indian plate obliquity reaches its highest values.
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