
SHORT NOTE

Viscous dissipation pattern in incompressible Newtonian simple
shear zones: an analytical model

Soumyajit Mukherjee • Kieran F. Mulchrone

Received: 11 October 2012 / Accepted: 23 February 2013 / Published online: 12 March 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract An analytical model of shear heating in an

inclined simple shear zone with Newtonian rheology under

a reverse shear sense and an upward resultant pressure

gradient is presented. Neglecting a number of secondary

factors, the shear heat is expressed as a function of the total

slip rates at the boundaries, pressure gradient, dip and

thickness of the shear zone, and density, viscosity, and

thermal conductivity of the rock. A quartic temperature

profile develops with a point of maximum temperature near

the bottom part of the shear zone in general. The profile is

parabolic if pressure gradient vanishes leading to a Couette

flow. The profile attains a bell shape if there is no slip at

the boundaries, i.e., a true Pouseille flow. The present

model of shear heating is more applicable in subduction

channels and some extruding salt diapirs where the rheol-

ogy is Newtonian viscous and pressure gradient drives

extrusion.

Keywords Viscous dissipation � Newtonian fluid �
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Introduction

Similar to ‘frictional heating’ in the brittle regime (Cam-

acho et al. 2001; Ben-Zion and Sammis 2013), mechanical

work that converts into heat during ductile shear is known

as ‘shear heating’, ‘viscous dissipation’, ‘viscous heating’,

or ‘strain heating’ (Brun and Cobbold 1980; Nabelek and

Liu 2004; Nabelek et al. 2010). Although deciphering

shear heating from field-scale observations is not well

established (Brun and Cobbold 1980; Vauchez et al. 2012),

the heating could affect the thermal evolution of any

nearby sedimentary basins. Such evolution paths are of

practical interest, especially in the petroleum geosciences

(Starin et al. 2000; Souche, internet reference).

Shear heating has been reported to attain significant

magnitude when (1) the overthrust unit is thick (C5 km;

Brewer 1981); (2) the shear stress and the strain rate are

high (*1,000 MPa, 10-11-10-12 s-1; Molnar and Eng-

land 1990); (3) the slip/convergence rate is high ([1 cm

year-1; Graham and England 1976; Burg and Gerya 2005;

more precisely *4 cm year-1: Nabelek and Liu 2004) as

expected in subduction zones (review by Seyfert 1987);

(4) deformation that takes place at a shallower depth

(Hochstein and Regenauer 1998); (5) the shear zone

material is ‘cold’ and rigid (Leloup et al. 1999); and (6) the

sheared rock has a high viscosity and a high magnitudes of

activation energy (Regenauer-Lieb and Yuen 2003). Shear

heating may (Harris et al. 2000) or may not (Nabelek et al.

2010) be dependent on the distribution pattern of radioac-

tive isotopes in the shear zones.

Shear zones can act as paths and source of melts by

shear heating (Nabelek et al. 2010; review by Clark et al.

2011; but see Camacho et al. 2001 for counter arguments),

which in collisional regimes is leucogranites (Nabelek and

Liu 1999; Nabelek and Liu 2004; Nabelek et al. 2011).

Had there been partial melting (‘thermal softening’: Brun

and Cobbold 1980), further shear heating would have

decreased, and the buoyant melt would have extruded

leading to further heating. Subsequent melting could

extrude the melt in a second pulse, and the cycle may
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continue (Nabelek et al. 2010; also see Fig. 1 of Hobbs et al.

2011). The heating could be tectonically noteworthy by

reducing the viscosity thereby enhancing the ongoing defor-

mation (Fleitout and Froidevaux 1980); triggering large-scale

earthquakes and micro-scale grain growth (Regenauer-Lieb

and Yuen 2003; Keleman and Hirth 2007); localizing strain

(Vauchez et al. 2012; but see Montési 2013 for reverse

arguments); syn-kinematic magmatism in the lithospheric

mantle (Vauchez et al. 2012); accelerating the exhumation

rate of rocks from the lower crust by producing 0.1-1 l
Wm-2 of heat prior to orogenic melting (Burg and Gerya

2005; Johnson and Harley 2012); and switching the defor-

mation pattern in orogens, from buckling to thrusting for

example (Burg and Schmalholz 2008).

Several 2D and 3D thermo-mechanical models in the

last few decades have come up to explain terrain tectonics

(e.g., Burg and Schmalholz 2008), viz. the Barrovian- and

the inverted metamorphism, and the dynamics of subduc-

tion zones (Burg and Gerya 2005; Camacho et al. 2001 and

references therein). Analytical modeling of shear heating of

non-Newtonian ductile shear zones, not specific to simple

shear, led Fleitout and Froidevaux (1980) to conclude that

the mid-portion of the shear zone develops the highest

temperature, and thermal conduction widens the shear zone

leading to a progressive drop in shear stress. While clay

gouge developed, coeval to brittle shear may modulate

viscous dissipation. The situation does not arise in ductile

shear zones since no gouge develops in the latter case.

Thus, this brief review (plus that given in Vanderhaeghe

2012) reveals that no geoscientific study to date has focused on

shear heating of ductile rocks of simple Newtonian rheology.

Unlike the pseudotachylites that are possibly the products of

shear heating for brittle fault zones (review by Blenkinsop

2000), the physical manifestation of such heating during

ductile deformation on semi-solid rocks is not well under-

stood. Also, shear heating as a function of slip rates at the

boundaries, pressure gradient, dip of the shear zone, density

and viscosity of the rock are not available. This work aims to

use these parameters to deduce shear heating from Newtonian

ductile simple shear zones. Simple shear has recently been

discussed for the ductile- and brittle regimes (Mukherjee and

Koyi 2009; Mukherjee 2010a, b; Mukherjee 2011a, b; Muk-

herjee 2012a; Koyi et al. 2013 etc.).

Mathematical model

Formulation

A parallel-sided and dipping shear zone with very long and

rigid boundaries containing an incompressible Newtonian

viscous fluid is considered. A pressure gradient acts along the

shear zone and comprises a component due to gravity tending

downdip flow of the fluid. The extrusive pressure gradient

could occur due to density differences between the material in

the shear zone and the surrounding material. Here, it is

assumed that the gradient due to extrusion is of greater mag-

nitude than that due to gravity, and overall, the gradient drives

the fluid updip along the zone. In the case of a shear zone

inclined to the horizontal by h (Mukherjee and Mulchrone

2012), the pressure gradient due to gravity is given byqcg sin h
where qc is the density of the material in the shear zone, and

the pressure gradient due to extrusion is qbg sin h due to the

surrounding material of density qb and g is acceleration due to

gravity. Hence, the overall pressure gradient is ðqb � qcÞg
sin h so that when qb [qc extrusion overcomes gravity. The

boundaries of the shear zone are considered to undergo

reverse-sense simple shear so that the hanging wall block

moves up relative to the footwall block.

Derivation

From continuum mechanics (Lautrup 2011, p. 262), the

governing equation is:

l
d2UxðyÞ

dy2
¼ dp

dx
ð1Þ

where l is the viscosity of the material inside the shear

zone, Ux(y) is the velocity in the x-direction which varies

only with y, and dp

dx
is the pressure gradient along the

channel. The pressure gradient is a constant as follows:

dp

dx
¼ �G ð2Þ

where G encapsulates the gradient due to gravity and

extrusion, i.e., for positive G motion takes place in the

Fig. 1 A simple shear zone of Newtonian rheology and parallel

boundaries that dip at an angle of h. Shear velocity (Ux) is plotted

along the X-axis across the shear zone (along the Y-direction). Green
profile pressure gradient induced flow with stationary boundaries.

Black profile boundaries slipping with a reverse shear sense under

zero resultant pressure gradient. Orange profile boundaries slipping

with a reverse sense and at the same time a resultant pressure gradient

pushes the fluid updip. For these flow types, the temperature

(T) profiles are shown in respective colors. See the main text for

discussion
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positive x-direction (see Fig. 1) so that extrusion over-

comes gravity and vice versa for negative G. Taking G ¼
ðqb � qcÞg sin h so that when qb [ qc then G [ 0 and

extrusion overcomes gravity.

The shear zone is of width 2y0 with the x-axis parallel to

the shear zone boundary and placed equidistan from the

boundaries. Solving Eq. 1 along with the boundary con-

ditions that Ux(y0) = Us and Ux(-y0) = 0, the velocity

profile is given by:

UxðyÞ ¼
G

2l
ðy2

0 � y2Þ þ Us

2y0

ðy0 þ yÞ ð3Þ

(see the orange colored profile of Ux in Fig. 1). Us [ 0

results in a reverse shearing, whereas Us \ 0 results in

normal shearing along the channel. If there is a need to

model a shear zone where both boundaries are in motion

(i.e., Ux(y0) = Uu and Ux(-y0) = Ul), then one needs to

consider Us = Uu - Ul. Shear senses in these types of flow

have been described in detail by Mukherjee (2012b, c).

The first component of the right hand side of Eq. 3

represents the motion due to Poiseuille flow and the second

component represents motion due to Couette flow. Eq. 3

may be conveniently re-parameterized in terms of average

velocities. The average velocity due to Poiseuille flow is:

Vp ¼
1

2y0

Zy0

�y0

G

2l
y2

0 � y2
� �

dy ¼ Gy2
0

3l
ð4Þ

so that G ¼ 3lVp

y2
0

, and the average velocity due to Couette

flow is:

Vc ¼
1

2y0

Zy0

�y0

Us

2y0

ðy0 þ yÞdy ¼ Us

2

Hence, the velocity is as follows:

UxðyÞ ¼
3Vp

2y2
0

ðy2
0 � y2Þ þ Vc

y0

ðy0 þ yÞ ð5Þ

The thermal effect of such a velocity profile is obtained

from work rate associated with the velocity field

(Mulchrone 2004; Turcotte and Schubert 2006; Lautrup

2011, p. 381) and is given by

l
dUx

dy

� �2

¼ l
Vc

y0

� 3Vpy

y2
0

� �2

ð6Þ

Hence, the equation for temperature (T) in the steady

state is:

k
d2T

dy2
þ l

Vc

y0

� 3Vpy

y2
0

� �2

¼ 0 ð7Þ

subject to the boundary conditions T(-y0) = Tl and

T(y0) = Tu, which impose constant temperatures at the

lower and upper boundaries, respectively. k is the

coefficient of thermal conductivity of the material inside

the shear zone. Effectively, this means that heat is allowed

to conduct in or out of the channel. The solution to Eq. 7 is:

TðyÞ ¼
1
2
ðTu þ TlÞ þ y

y0
ðTu � TlÞ

� �
þ lV2

c

2k 1� y2

y2
0

� �

þ lVcVp

k
y
y0

y2

y2
0

� 1
� �

þ 3lV2
p

4k 1� y4

y4
0

� �
2
4

3
5

ð8Þ

The first term represents the steady-state temperature

solution in the absence of viscous heating and demonstrates

a linear variation in temperature from Tl to Tu from the

lower to upper boundaries. The second term is the

contribution due to Couette flow and the fourth term is

due to Poiseuille flow. The third term is present only when

both shearing and channel flow persists (see Mukherjee

2005 for the global debate on channel flow). Temperature

profiles due to Couette or Poiseuille flow alone are

symmetric, whereas when both flow types interact, the

profile becomes asymmetric (see Fig. 1). The last three

terms of Eq. 8 give the temperature rise due to shear

heating.

Interpretation

Equation 8 reveals that shear heating depends on the fol-

lowing parameters: thermal conductivity (k), density (qc)

and viscosity (l) of the rock material inside the shear zone,

slip rate of the boundaries, position (y) inside the shear

zone, and dip (h) and thickness (2y0) of the shear zone. The

temperature distribution within the shear zone follows an

asymmetric quartic curve when both Poiseuille and Couette

flow occur inside the shear zone (Us = Uu - Ul indicates

absolute movement direction similar to Goncharov et al.

2007) (see orange curve for temperature in Fig. 1).

Whereas the velocity profile in this case has its vertex

located within the upper portion of the shear zone, the

maximum of the temperature profile lies within the bottom

portion (compare orange curves of Ux and T in Fig. 1). This

is to be expected since the maximum of the velocity profile

represents the point of minimum shear strain. Away from

the velocity maximum shear strain increases. The temper-

ature profile is independent of duration of shearing since no

time parameter occurs in Eq. 8; however, this is because

the derviation inherently assumes that the temperature has

reached the steady state. Further, shear heating is inversely

proportional to the thermal conductivity for any orientation

of the shear zone. The faster the average velocities (Vc and

Vp in Eq. 8) in the shear zone, the more vigorous is the

shear heating, proportional in general to the square of the

velocity. This is consistent with Burg and Gerya’s (2005)

conclusion that a higher slip/convergence rate between
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plates produces higher temperatures. On the other hand,

shear heating is directly proportional to viscosity of the

fluid. There is a nonlinear relationship between the dip (h)

of the shear zone and shear heating as evidenced from

the relationship between Vp and h (ðqb � qcÞg sin h ¼
G ¼ 3lVp

y2
0

). These relations hold true for any location of the

vertex and the pivot of the velocity profile (see Fig. 2a, b of

Mukherjee 2012b for their locations).

The flow component due to a pressure gradient, i.e.,

Poiseuille flow vanishes when either (1) the gravity and the

extrusive contributions to the pressure gradient counter-

balance within the inclined shear zone (i.e., qb - qc = 0,

equal densities) or (2) the shear zone is horizontal thus no

pressure gradient exists (i.e.,sin h ¼ 0). In these cases,

Vp = 0 and the last two terms in Eq. 8 disappear. The

temperature distribution inside the shear zone becomes

symmetric and parabolic in this case with the maximum at

the center of the shear zone. In other words, the central

portion of the shear zone undergoes maximum heating

(black profile of T in Fig. 1).

For a purely Poiseille flow, i.e., when there is no relative

motion of the shear zone boundaries (Vc = 0), and only a

pressure gradient drives the fluid, ðqb � qcÞg sin h 6¼ 0, the

temperature distribution follows a symmetric quartic curve.

There must exists a broad zone of elevated shear-related

temperatures in the central zone. Near the boundaries,

temperature drops abruptly and is zero at the boundaries

(the green profile of T in Fig. 1).

Discussion and conclusions

Understanding viscous dissipation is of importance in

deformation and extrusion mechanisms, orogeny, basin

evolution and in the petroleum geosciences. For an inclined

simple shear zone with Newtonian rheology where an

updip density-driven pressure gradient overpowers the

downdip gravity gradient along the shear zone, shear

heating is a function of thermal conductivity, slip rate,

position of measurement inside the zone, density and vis-

cosity of the shear zone material, and dip and thickness of

the shear zone. This model has the advantage over previous

models of being able to take account of the extrusive

pressure gradient that exists in many collisional orogens

such as the Himalaya (Yin 2006) and the Grenville prov-

ince (Rivers 2009). In general, the temperature due to shear

heating peaks inside the shear zone and falls to zero at its

boundaries. Shear heating intensifies when the total slip

rate increases. A parabolic temperature profile is produced

when there is no resultant pressure gradient. Shear heat is

proportional to the square of the slip rate of the boundaries

in that case. A flow driven solely by pressure gradient

without slip along the boundaries leads to a broad zone of

uniform high temperature inside the shear zone. For an

inclined shear zone with a reverse sense of movement and

an upward resultant pressure gradient, the top portion of the

zone attains maximum velocity, but the bottom portion a

maximum temperature.

A number of thermo-mechanical models for orogenic shear

zones (Kellett et al. 2010) take care of geothermal gradient,

radioactive heat, thermal expansion coefficients, power law

behavior, density changes due to mineral phase transition,

extrusion augmented by focused erosion, vertical variation of

viscosity, correlation between the width of the shear zone and

depth, etc. (partially reviewed in Mukherjee 2012d). How-

ever, this work follows Mukherjee (2012b, c, d) and uses what

are considered the minimum basic parameters (also see

Mukherjee 2007; Mukherjee and Koyi 2010a, b; Mukherjee

et al. 2012; Mukherjee 2013a). Besides, gravitational

spreading of the extruded mass, kinematic dilatancy, strain

partitioning, and temporal changes in mechanical behavior of

rocks were also ignored. Equation 8 can also describes tem-

perature profiles when (1) there is a normal sense of ductile

shear and/or the resultant pressure gradient drives the fluid

downdip and (2) the shear zone is horizontal.

Ductile shear zones at depth are dominated by simple shear

(Vauchez et al. 2012; Mukherjee 2013b). Therefore, investi-

gation of viscous dissipation in simple shear is important.

Shear zones in some cases, e.g., subduction channels (Gerya

and Stöckhert 2006; Mukherjee and Mulchrone 2012), and

extruding salt diapirs (Bruthans et al. 2006; Mukherje et al.

2010) behave as Newtonian viscous fluids. In those cases, the

presented model is most applicable. However, many natural

shear zones consist of a significant pure shear component (e.g.,

sub-simple shear zones/general shear zones) (review by Xy-

polias 2010). The present shear heat model cannot be applied

directly to these cases. A more general shear heating model is

required to decipher the relative role of simple shear in the

case of general shear. Can shear heating explain abnormal

geothermal gradients observed in some shear zones (such as

Montomoli et al. 2013)?
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Bruthans J, Fillipi M, Geršl M et al (2006) Holocene marine terraces

on two salt diapirs in the Persian Gulf, Iran: age, depositional

history and uplift rates. J Quat Sci 21:843–57

Burg J-P, Gerya T (2005) The role of viscous heating in Barrovian

metamorphism of collisional orogens: thermomechanical models

and application to the Lepontine Dome in the Central Alps.

J Metamorph Geol 23:75–95

Burg J-P, Schmalholz SM (2008) Viscous heating allows thrusting to

overcome crustal-scale buckling: Numerical investigation with

application to the Himalayan syntaxes. Earth Planet Sci Lett

274:189–203

Camacho A, McDougall I, Armstrong R et al (2001) Evidence of

shear heating, Musgrave Block, central Australia. J Struct Geol

23:1007–1013

Clark C, Fitzsimons ICW, Healy D et al (2011) How Does the

Continental Crust Gets Really Hot?. Elements 7:235–240

Fleitout L, Froideavaux C (1980) Thermal and mechanical evolution

of shear zones. J Struct Geol 2:159–164
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