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Abstract Continuous magmatic activity occurred in the

western Chinese Tianshan, Central Asia, from the Car-

boniferous to the Permian, i.e. before and after the Late

Carboniferous amalgamation of Junggar and the Yili

Blocks. Zircon U–Pb LA-ICPMS and Ar–Ar data reveal a

coincidence in time between regional wrench faulting and

granitoid emplacement. Permian post-collisional granitoids

crop out within or at the margins of large-scale dextral

strike-slip shear zones, some of them show synkinematic

fabrics. The whole rock geochemical features of the Early-

Middle Permian granitoids indicate an evolution from

high-K calc-alkaline towards alkaline series. In other pla-

ces of the North Tianshan, alkaline magmatism occurred

together with deep marine sedimentation within elongated

troughs controlled by wrench faults. Therefore, in contrast

with previous interpretations that forwarded continental rift

or mantle plume hypotheses, the coexistence of diverse

magmatic sources during the same tectonic episode sug-

gests that post-collisional lithosphere-scale transcurrent

shearing tightly controlled the magmatic activity during the

transition from convergent margin to intraplate anorogenic

processes.

Keywords Granitoids � Zircon U–Pb geochronology �
Geochemistry � Transcurrent shear zones �
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Introduction

The tectonic assemblage of the Central Asian Orogenic

Belt was suggested to occur during Palaeozoic time by the

closure of Paleoasian Ocean and multi-phase subduction–

accretion of various micro-continents, ancient island arcs

and fragments of oceanic island (Coleman 1989; Dobretsov

et al. 1995; Jahn et al. 2000, 2004; Jahn 2004; Xiao et al.

2004; Windley et al. 2007).

The Chinese Tianshan Belt which is a part of this oro-

genic belt, separates the Tarim Basin to the south from the

Junggar Basin to the north (Fig. 1). Classically, it is con-

sidered that the western Chinese Tianshan (west of Meridian

88�E; Fig. 1) was built by two collisions, during the Early

Palaeozoic between Tarim and Central Tianshan blocks, and

during the Late Palaeozoic between Central Tianshan and

North Tianshan (Windley et al. 1990; Allen et al. 1993; Gao

et al. 1998; Chen et al. 1999; Carroll et al. 2001; Zhou et al.

2001), but there is no agreement about the end of conver-

gence. Generally, the convergent orogeny is considered to

be terminated before the Early Permian (Wang et al. 1994;

Liu et al. 1996; Xiao et al. 2004, 2006; Gao and Klemd 2003;

Klemd et al. 2005; Gao et al. 2006; Li et al. 2006a; Charvet

et al. 2007), and this phase of amalgamation was followed

by regional-scale Late Palaeozoic (Permian) wrench faulting

(Allen et al. 1995; Allen and Vincent 1997; Laurent-Charvet
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et al. 2002, 2003). Some authors argued that continent

amalgamation was accomplished in the pre-Carboniferous

and that a post-collisional continental rifting occurred during

the Carboniferous to Permian (Che et al. 1996; Xia et al.

2004b). Others suggest that the collision in southwestern

Tianshan occurred as late as Late Permian-Triassic (Li et al.

2002, 2005; Zhang et al. 2007).

The magmatic affinities and emplacement ages provide

keys for understanding the geodynamic evolution of the

orogen, but in Chinese Tianshan, the coexistence of Car-

boniferous to Permian calc-alkaline and alkaline magmatic

rocks has inferred contrasting interpretations. It has been

widely accepted that the Carboniferous magmatism is

subduction-related and/or syncollisional, and the Permian

one is post-collisional. However, Carboniferous-Permian

volcanic rocks were also interpreted as a result of conti-

nental rifting (Che et al. 1996; Xia et al. 2004b); or parts of

a Large Igneous Province (Xia et al. 2004a, 2006) although

these views are not supported by compelling tectonic or

stratigraphic evidences.

Recent studies suggest that the genetic links may exist

between Permian wrench faulting and post-collision mag-

matism, and therefore could be a clue for understanding the

evolution of the Chinese Tianshan during this period. This

article presents our field observations, new zircon U–Pb

LA-ICPMS dating and geochemical data from Permian

igneous rocks of the western Chinese Tianshan. Combining

with previous data, we discuss the petrogenesis of Permian

igneous rocks and suggest that most petrologic features

were controlled by the location of wrench faults that

allowed local asthenosphere uplift and transition from

calc-alkaline to alkaline magmas to occur.

Geologic setting

The Late Palaeozoic evolution of the Chinese Tianshan is

characterized by polyphase deformation and transition

from continental active margin to intraplate tectonics. The

pre-Carboniferous subduction finally induced a continental
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Fig. 1 Simplified sketch map of the western Chinese Tianshan Belt

(modified from XBGMR 1993; insets after Zhang et al. 1993, Allen

and Vincent 1997), showing the occurrences of Carboniferous to

Permian igneous rocks and the main wrench faults. Numbers 1–4

correspond to the main faults, 1 North Tianshan Fault (NTF), 2 Main

Tianshan Shear Zone (MTSZ), 3 Qingbulak-Nalati Fault (QNF), 4
Sangshuyuanzi Fault (SF), W JG Western Junggar, N TS North

Tianshan, C-S TS Central-South Tianshan
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collision between the Yili Block and Tarim in Early Car-

boniferous (*345 Ma) along the HP/LT metamorphic

zone in SW of the Tianshan Belt (Fig. 1; Allen et al. 1993;

Gao et al. 1998; Gao and Klemd 2003; Wang et al. 2007c).

During the Carboniferous, massive limestone, pelitic

limestone and sandstone were deposited (XBGMR 1993).

Meanwhile, in the NW part, extensive volcanic rocks

(mainly andesite and rhyolite) erupted indicating a long-

term magmatic activity (Figs. 1, 2). Between the latest

Carboniferous and Early-Middle(?) Permian, in the North

Tianshan (Fig. 1), the formation of an ophiolitic mélange

including blocks of Late Carboniferous oceanic crustal

rocks and turbidites suggests that the amalgamation of

continental blocks came to the end (Windley et al. 1990,

2007; Allen et al. 1993; Wang et al. 2006a).

During the Permian, large-scale dextral ductile shearing

occurred along the North Tianshan Fault (Allen and Vincent

1997; or Dzhungarian Fault by Zhang et al. 1993) and Main

Tianshan Shear Zone (Laurent-Charvet et al. 2003), and

along the Qingbulak-Nalati Fault (Windley et al. 1990)

and Sangshuyuanzi Fault (Yin and Nie 1996) (faults 1, 2, 3

and 4 in Fig. 1, respectively). They are developed in a LP-HT

thermal regime as testified by the widespread development

of synkinematic andalusite (Wang et al. 2006a). The age of

ductile deformation is constrained at ca. 290–245 Ma by
40Ar/39Ar dating of synkinematic feldspar (Zhou et al.

2001) and biotite (Yin and Nie 1996; Laurent-Charvet et al.

2002, 2003; de Jong et al. 2008, this volume). In Central

Asia as a whole, a Permian transcurrent regime followed the

earlier N–S-directed convergence (Bazhenov et al. 1999,
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columns of Carboniferous-
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2003; Allen et al. 2006; Van der Voo et al. 2006; Wang

et al. 2007b). During this period, a major paleogeographic

change occurred in the Chinese Tianshan, and terrestrial

sediments associated with sub aerial volcanic rocks

deposited unconformably or disconformably over Carbon-

iferous sedimentary and volcanic rocks. In contrast, in

restricted areas such as the south of Bogda Mountain

(Fig. 1), deep water sediments accumulated in elongated

troughs where they overlie collapse breccia (olistoliths) and

pillow basalt (Shu et al. 2005).

A synthesis of previous data

Carboniferous and Permian igneous rocks are widespread

in the Chinese Tianshan Belt (Fig. 1). In order to get a

unified understanding on the geochemistry and chronology

of these magmatic rocks, the following paragraphs sum-

marise the previous data, except for undated or poorly

time-constrained rocks that will not be considered.

According to their geochemical features, three types of

magmatic rocks are defined, namely calc-alkaline (CA),

alkaline (A) and transitional series (TR, calc-alkaline rocks

with prominently high REE contents) (see Table 1).

Carboniferous magmatism

Carboniferous volcanic rocks consist of mafic, intermediate

and felsic rocks (XBGMR 1993) that are exposed in the

Borohoro, Awulale, Nalati and Wusun mountains (Figs. 1,

2). The Lower Carboniferous Dahalajunshan Formation

(C1d) is well known for its extensive distribution and

remarkable thickness. It is mainly composed of andesite,

rhyolite, felsite, tuff breccia and minor basalt, associated

with limestone and sandstone. The volcanic rocks show

significant depletion in Nb and Ta, moderate depletion of

Hf and Zr, and prominent enrichment in Rb and Th

(Li et al. 1998; Ma and Wang 2000; Yang et al. 2003;

Zhang and Li 2006; A et al. 2006; Guo and Zhu 2006;

Li et al. 2006b; Shao et al. 2006). The intermediate to

acidic volcanic rocks of the Lower Carboniferous

Akeshake Fm. (C1a) and Upper Carboniferous Tuergong

Fm. (C2t) in the Nalati range have similar geochemical

compositions (Wang et al. 2007a), they show positive

eNd(t) values (?0.32 to ?4.90), and variable 87Sr/86Sr(i)

ratios (0.7015–0.7068) (Zhu et al. 2005, 2006a; Guo and

Zhu 2006; Qian et al. 2006). Recent SHRIMP zircon

U-Pb dating provided consistent Carboniferous ages (363–

313 Ma, Zhu et al. 2005, 2006b; Zhai et al. 2006). These

volcanic rocks are defined as CA series in Table 1.

Carboniferous adakites were recognized in Alataw,

Borohoro and Baluntai areas (Fig. 1) and show high Sr, Eu

compositions, eNd(t) values (?1.5 to ?10.0), and low Y,

Yb contents and 37Sr/86Sr(i) ratios (\0.7070) (Wang et al.

2003, 2006b; Zhao et al. 2003b, 2006). The volcanic rocks

of the Upper Carboniferous Yishijilike Fm. (C2y) in the

Awulale range (Figs. 1, 2) display enrichment in incom-

patible elements and a moderate Ta and Nb negative

anomaly (Liu et al. 2006). The Lower Carboniferous

andesite and rhyolite of Borohoro and Wusun mountains

show high Ti/Y ([500), Ce/Y ([3) ratios, and relatively

low total Fe (5.8–7.8 ppm) (Che et al. 1996; Xia et al.

2004b); the Carboniferous basalt, andesite and rhyolite in

Baluntai and Bogda areas have lower Ti/Y (\500), Ce/Y

(\3), high Total Fe (6.4–11 ppm) (Xia et al. 2004b). These

‘‘rift-related’’ volcanic rocks are characterized with posi-

tive eNd(t) values (?4.1 to ?9.7) and consistent 87Sr/86Sr(i)

ratios (0.7034–0.7059) suggesting origin from a mantle

source and weak crustal contamination (Xia et al. 2004b).

These rocks are not directly dated, and therefore are not

listed in Table 1.

Carboniferous plutonic rocks in Wusun, Nalati and west

of Borohoro mountains (Fig. 1) were formed during 352–

308 Ma interval (zircon U–Pb TIMS by Xu et al. 2006 and

LA-ICP-MS by Wang et al. 2006a). Geochemistry indi-

cates that they are mainly I-type granites associated with

minor S-type granites (Wang et al. 1993; Li et al. 1995),

they display enrichment in Rb, Th and depletion in Nb, Ta,

Zr and Hf (Xu et al. 2006). In the east of Alataw area,

I-type granodiorite and K-granite at ca. 307–290 Ma

(40Ar/39Ar) display a weak LREE enrichment and strong

enrichment in K, Rb; the eNd(t) values (0 to ?7), and
87Sr/86Sr(i) ratios (0.7020–0.7110) (Chen et al. 1994, 2000;

Zhou et al. 1994, 1995, 1996) are characteristic of the calc-

alkaline series and therefore they are correlated to type CA

(Table 1).

Permian magmatism

The Permian of the western Chinese Tianshan is charac-

terized by plant-bearing conglomeratic red-beds that

unconformably overlie older strata (XBGMR 1993). The

relatively small-sized granitoids that are generally referred

to as ‘‘Late Hercynian plutons’’ on 1/200,000 maps (e.g.

XBGMR 1973) are distributed widely in the study area

(Fig. 1). On the basis of recent U–Pb zircon dating, they

predominantly belong to Permian with only a few Late

Carboniferous rocks. In the southern Tianshan, diorite and

porphyritic granite were formed during ca. 298–284 Ma

(U–Pb dating on zircon), they are rich in K, Rb, Th, and

depleted in Ta, Nb and Zr; alkali feldspar granite was

emplaced during 265–260 Ma, and shows enrichment in

Nb, Y, LREE, and lower Ti, Sr and Ba contents (Jiang et al.

1999). In Alataw area, the S-type K-granite and monzonite

were formed during 298–271 Ma (40Ar/39Ar and zircon

U–Pb La-ICPMS), they have flat REE distribution patterns,
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depletion in Ba, Nb, Sr and Ti, enrichment in Rb, K, U and

Th, and positive eNd(t) values (?2.1 to ?5.2) (Chen et al.

1994, 2000; Zhou et al. 1994, 1995, 1996; Liu et al. 2005).

Lower-Middle Permian volcanic rocks are locally dis-

tributed in Awulale, Nalati and Alataw areas (XBGMR

1993; Figs. 1, 2). The volcanic and hypabyssal rocks of

Awulale and Nalati areas were dated at 296–260 Ma

(40Ar/39Ar; Zhao et al. 2003b). The Wulang Fm. (P1w) that

develops in the Awulale and Altaw areas is composed of

tuffaceous breccia, crystal-bearing tuff, amygdaloidal

basalt, porphyritic augite-andesite, rhyolitic porphyrite and

dacitic porphyrite (Fig. 2). In Awulale range, Middle

Permian Hamist Fm. (P2h) consists of basalt, rhyolite,

sodic dacite, albitophyre and tuffaceous mudstone that

bears fish fossils (XBGMR 1993) (Fig. 2). The albitophyre

(260 ± 5 Ma, 40Ar/39Ar plateau age) show high Sr, low

Yb and Y contents, less variable Nd isotopic ratios

(143Nd/144Nd(i) = 0.5124–0.5125; eNd(t) = ? 1.57 to

?3.26), and low Sr isotopic ratios (87Sr/86Sr(i) = 0.7051–

0.7054) (Xiong et al. 2001). To the Northeast of Nalati

range, volcanic rocks develop within terrestrial red beds of

Aikendaban Fm. (P2a) (Fig. 2), felsite and trachyte yield

whole rock K–Ar age of ca. 270–260 Ma, associated

trachytic basalt show slight LREE enrichment depletion in

Zr, Hf, Nb, Ta and Ba; while trachyte andesite is signifi-

cantly rich in LREE and depleted in Sr (Chen et al. 2004a,

b). To the south of Bogda range, where collapse breccia

and deep-water sediments overlie alkaline pillow basalt,

a mafic feeding dyke yields Early Permian zircons

(289 ± 5 Ma, U–Pb) (Shu et al. 2005).

The above-mentioned magmatic rocks are diversely

correlated to CA, A and TR types (Table 1). Thus, they

could neither be simply related to an extensional intraplate

setting, nor to a subduction regime. It appears that the

complex geochemical features present in the study area can

not unambiguously constrain the geodynamic setting at a

given period. The Carboniferous magmatic rocks are

mostly of CA type, whereas diverse suites (CA, A and TR)

coexist during the Permian. Therefore, it is necessary to

take into account every field and structural features before

proposing an evolutionary model. In order to get more

constraints on the chronology and petrogenesis of the

Permian magmatism, several key sections across the main

wrench faults were investigated in the following sections.

The Borohoro plutons

The Borohoro plutons develop to the south of the North

Tianshan Fault (NTF) in a poorly accessible area. They

show a spindle shape extending parallel to the NTF

(Figs. 1, 3). They were previously correlated with the

Carboniferous on 1:1,500,000 and 1:200,000 geological

maps (XBGMR 1973, 1975, 1993), but remained undated

and their geochemical compositions were unknown.

Petrology

The Borohoro plutons are mainly composed of greyish-white

biotite granite and pink K-granite; both are characterized by

Bayingou
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Fig. 3 Structural sketch maps of Borohoro area (modified from

XBGMR 1973, 1975), showing the spatial relationship of granitic

plutons with ductile dextral North Tianshan Fault. For location, see

Fig. 1. The sampling localities are marked with open pentacles
followed by sample numbers, and their GPS coordinates are listed in

Table 2. 1 fault, 2 North Tianshan Fault zone, 3 foliation/bedding and

dip angle, 4 Meso-Cenozoic, 5 Permian pink granite, 6 Permian

dark granite, 7 Early Carboniferous volcaniclastic rocks, 8 weakly

deformed Carboniferous turbitite, 9 mylonitic and metamorphic

turbitite, 10 blocks of ultra-mafic rocks, 11 Silurian-Devonian

undeformed sedimentary rocks
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coarse grain texture, and typically consist of plagioclase,

K-feldspar, quartz, biotite and hornblende; Biotite often

occurs as euhedral grains and rarely as amphibole pseud-

omorphs. In K-granite, pyroxene relics are preserved in

poikilitic hornblende. Accessory minerals include apatite,

zircon and ilmenite.

Internal structure

A deformation fabric can be recognized in most rocks of

the Borohoro plutons, it comprises shallow linear and steep

planar textures. The lineation is defined by aligned biotite,

hornblende, and feldspar grains and elongated quartz

aggregates, the planar fabric is marked by ribbons of mafic

minerals (Fig. 4a). Micro-texture does not show significant

internal deformation in euhedral grains of plagioclase,

biotite, hornblende and interstitial ovoid quartz, although

locally quartz domains display minor sutured boundaries

and weak ondulose extinction, and occasional fracturing

and disaggregation of the grain corners (Fig. 4b). These are

typical high-temperature fabrics developed in condition of

pre-critical melt percentage (e.g. Tribe and D’Lemos 1996)

suggesting a still magmatic state deformation. Although no

systematic investigation has been undertaken, the planar

fabric strikes N120�–N130�, slightly oblique to the strike

of the NTF, but parallel to the intrusion margin.

Relationships with country rocks and the NTF

The Silurian-Devonian (?) and Early Carboniferous host

rocks of the Borohoro plutons (Fig. 3) display an unusual

kind of contact metamorphism. Spotted slate often devel-

ops within the contact zones while hornfels is rare. The

host rock is characterized by steeply dipping foliation that

bears a shallow dipping stretching lineation with andalusite

porphyroblasts. This foliation represents the effect of syn-

tectonic thermal metamorphism due to synkinematic

granite intrusion associated with a ductile shear zone

Fig. 4 a Photograph of hand specimen of Borohoro biotite K-granite

showing the linear fabric defined by alignment of biotite, hornblende,

feldspar and elongated quartz, and the planar fabric marked by

ribbons of mafic minerals; b microphotograph of Borohoro K-granite,

pale grains are mostly quartz, feldspar and brown minerals are biotite

and minor hornblende, dark grains are mainly extinct quartz and

feldspar; c, d field photographs in Kekesu section showing boudin-

aged or folded K-granite dykes (directed by white arrows) intruding

the mylonitic gabbro, black arrow in d shows the location of a

hammer for scale; e mylonitized K-granite in Gangou section, shallow

dipping lineation included in sub-vertical SE extending foliation
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(Wang et al. 2006a). Along the northern margin of the

plutons, metre- to decimetre-scale sheets of pink K-granite

dykes intrude Carboniferous turbidite. Although some are

randomly oriented, most of granitic dykes have an east-

west trend, sub-parallel to the NTF, suggesting a structural

control on magma emplacement as well.

Kekesu and Gangou sections

In order to make a comparison, two sections were also

investigated in the Qingbulak-Nalati and Sangshuyuanzi

shear zones, which are briefly described below. In the

Kekesu section (Fig. 5), massive pink granites are com-

posed of K-feldspar, plagioclase, quartz and minor mafic

minerals that are often chloritized and/or epidotized, they

intrude cataclastic or mylonitized gabbro of Devonian to

Carboniferous age and probable Proterozoic orthogneiss.

Locally, K-granite dykes are boudinaged or folded, show-

ing axial plane parallel to the SW–NE trending gabbro

foliation (Fig. 4c, d). Within this shear zone, Carboniferous

granite (313 ± 4 Ma, U–Pb age on zircon) underwent

ductile deformation and yield Middle Permian biotite

(263.4 ± 0.6 Ma, 40Ar/39Ar plateau age) related to Ar loss

during mylonitisation (Wang et al. 2007c). The boundaries

of the K-granite are generally parallel to the Qingbulak-

Nalati fault zone (Fig. 5), indicating a close relationship

between the emplacement of granite and the shear zone.

In Gangou area, the Sangshuyuanzi Fault extends par-

allel to the SE–NW Main Tianshan Shear Zone (MTSZ)

which is connected westwards with the NTF (Figs. 1, 6).

K-granite and synchronous dykes showing a SE–NW

elongated shape intrude Proterozoic orthogneiss and Silu-

rian-Carboniferous strata. Both K-granite and its country

rock display a well developed mylonitic foliation that

strikes N130�E (Fig. 4e), and typically bears a low dip

stretching lineation (15�–20� SE). Sigmoid K-feldspar and

asymmetrical biotite pressure shadow reveal a dextral

ductile deformation (Allen et al. 1995; Allen and Vin-

cent1997; Laurent-Charvet et al. 2002). Although the

granite underwent significant mylonitisation, a coarse to

medium grain texture can be recognized, K-feldspar,

quartz, plagioclase, minor biotite and sometimes amphi-

bole are the main minerals.

New geochronological and geochemical data

Two biotite granite and two K-granite samples were col-

lected from the Borohoro plutons, one K-granite and one

biotite K-granite samples were collected from the Kekesu

and the Gangou sections, respectively. Sampling locations

are shown in Figs. 3, 5, 6 and Table 2.

Analytical techniques

The selected samples were crushed and milled into rock

powder, zircon crystals are enriched using heavy liquids

and magnetic separator, and finally selected by handpick-

ing under binocular microscope. Euhedral and colorless

zircon grains were selected for laser ablation U–Pb dating

that was carried out at the University of Tasmania, Aus-

tralia, using a Hewlett Packard HP 4500 quadrupole

Inductively Coupled Plasma Mass Spectrometer (ICP-MS)

coupled with a 213 nm NewWave Merchantek UP213

Nd-YAG Laser. Preserved rock powder was used for whole

rock geochemical analyses by ICP-AES for major elements

and by ICPMS for incompatible and rare earth elements at

Centre de Recherches Pétrographiques et Géochimiques

(CRPG-CNRS, Nancy, France). The limit of determination

is less than 0.07% for major elements, and less than

0.5 ppm for most of trace elements, and up to 1.5–6 ppm

for Ba, Cr, Sr, Zn and Zr. Analytical uncertainties are given

as 2% for major elements, and 5 or 10% for trace element

concentrations around 20 ppm, and the precision for REE

is estimated at 5 or 10% depending on the chondrite-nor-

malised concentrations are[10 ppm or lower, respectively.
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Fig. 5 Structural sketch map of Kekesu River section (modified from

XBGMR 1979). For location, see Fig. 1. The sampling locality is

marked with open pentacles followed by sample numbers, and

reference Table 2 for the GPS coordinate. 1 Qingbulake-Nalati fault

zone, 2 foliation with dip angle and lineation with pitch angle, 3
Permian A-type K-granite, 4 Carboniferous undeformed I-type

granite, 5 Devonian?-Carboniferous strongly deformed granite and

gabbro, 6 mylonite, 7 greenschist facies meta-sedimentary rocks, 8
Proterozoic gneiss

1282 Int J Earth Sci (Geol Rundsch) (2009) 98:1275–1298

123



LA-ICPMS dating

Six granitoids samples were dated, and twelve zircon

single grains were analysed for each sample. The results

are shown in Table 2 and plotted on reversed Concordia

diagrams (Fig. 7). Although different in U and Th abso-

lute compositions, all zircons show consistently accordant

Th/U ratios of [0.2, indicating a magmatic origin (Vavra

et al. 1996). Four granitoids from Borohoro Mountain

were dated. The formation time of the granodiorite sam-

ple B101 can be constrained by nine zircons yielding a

concordant age of 294 ± 7 Ma (Fig. 7a), while the rest

three zircons provide older ages of 312–589 Ma that

probably represent inherited zircon derived from Palaeo-

zoic country rocks. Zircons of granodiorite sample B94

can be divided into two groups, wherein the uranium

contents of high U zircons are ten times more than those

of low U ones (Table 2). The first low U zircon was

rejected due to lots of common Pb, five low U zircons

and one high U zircon yield consistent apparent ages

defining a concordant age at 272.8 ± 6 Ma, and the last

low U zircon together with the other four high U zircons

yield a concordant age at 293 ± 0.5 Ma (Fig. 7b); The

latter one is consistent with the age of the sample B101 at

the uncertainty level, but the former one is significantly

younger, indicating that the granodorite was emplaced

during two distinct episodes. All zircons together give an

average age at 285.3 ± 7.3 Ma.

For the K-granite sample B95, the first zircon display

high common Pb content throughout the analysis inducing

young age and large analytical uncertainty (225 ± 10 Ma),

the second one also yield a rather younger age of

247 ± 4 Ma but shows no analytical anomaly, this is

probably due to statistical outlier. The last zircon yielding

an age of 340 ± 3 Ma is likely an inherited one mixed with

older core. The rest nine zircons provide accordant ages

ranging from 257–277 Ma that are used to calculate a

concordant age at 266 ± 6 Ma, indicative of the formation

time of the K-granite (Fig. 7c). On the Concordia diagram

(Fig. 7d) of the K-granite B102, except one point that was

rejected due to discordant apparent age, the other eleven

points were used in the calculation of concordant age at

280 ± 5 Ma.

Seven zircons from the Kekesu K-granite KKS5 yield

concordant apparent ages that are used to calculate a

weighted average U–Pb age at 277 ± 3 Ma. Older ages of

312–375 Ma are also obtained from two zircons that were

probably derived from foliated/mylonitized country rocks.

The other three points are discordant because of either Pb

loss in high U zircon (the first point), or high proportion of

common Pb (the last one) (Fig. 7e) and consequently

provide geologically meaningless ages.

From the Gangou K-granite KMX13, eight points con-

cordantly define a U–Pb age at 252 ± 4 Ma (Fig. 7f), and

can be interpreted as the intrusion time of the K-granite.

The last four zircons yield significantly older ages ranging

from 312 to 357 Ma (Table 2; Fig. 7f), which may reflect

the incorporation of zircon xenocrysts derived from

Carboniferous country rocks. The occurrence of Devonian-

Carboniferous strata and granitic rocks around the

K-granite (Fig. 6; XBGMR 1993; Xu et al. 2006) confirms

this interpretation.

Geochemical composition

Only four granitic rocks from Borohoro Range were ana-

lysed for whole rock geochemistry. Table 3 comprises the

already published geochemical data and our new results.

Borohoro granites are significantly rich in alkali (7–9.7

wt%) with relatively high content of K2O with respect to

Na2O. Relative low aluminum contents (13.8–14.1 wt%;

Aluminum Saturation Index & 1) indicate that they belong

to metaluminous or slightly aluminous I-type granitoid

series (Fig. 8).
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Fig. 6 Structural sketch map of Gangou section (modified from

XBGMR 1959). For location, see Fig. 1. The sampling locality is

marked with open pentacle followed by sample number, and the GPS

coordinate can be found in Table 2. 1 Early Palaeozoic thrust,

2 strike-slip faults, where MTSZ refers to the Mains Tianshan Shear

Zone, and SF represents the Sangshuyuanzi Fault, 3 unconformity,

4 foliation/bedding and dip angle, 5 Cenozoic, 6 Permian molassic

deposits, 7 Permian foliated K-granite, 8 Carboniferous sedimentary

rocks, 9 Carboniferous volcaniclastic rocks, 10 Early Palaeozoic

undeformed granite, 11 Early Palaeozoic foliated granite, 12
Ordovician-Devonian rocks, 13 ophiolitic melange, 14 Proterozoic

orthogneiss

Int J Earth Sci (Geol Rundsch) (2009) 98:1275–1298 1283

123



T
a

b
le

2
Z

ir
co

n
U

–
P

b
L

A
-I

C
P

M
S

an
al

y
si

s
re

su
lt

s
o

f
th

e
g

ra
n

it
o

id
s

fr
o

m
th

e
w

es
te

rn
C

h
in

es
e

T
ia

n
sh

an

N
o

C
o

m
p

o
si

ti
o

n
s

A
to

m
ic

ra
ti

o
s

A
p

p
ar

en
t

ag
es

(M
a)

D
is

c
(%

)

T
h

(
p

p
m

)
U

(p
p

m
)

T
h

/U
2
0
7
P

b
/

2
3
5
U

1
r

2
0
6
P

b
/

2
3
8
U

1
r

2
0
7
P

b
/

2
0
6
P

b

1
r

2
0
7
P

b
/

2
3
5
U

1
r

2
0
6
P

b
/

2
3
8
U

1
r

2
0
7
P

b
/

2
0
6
P

b

1
r

B
o

ro
h

o
ro

g
ra

n
o

d
io

ri
te

B
9

4
(G

P
S

:N
4

3
�5

0
.3

0
0 ,

E
8

3
�3

1
.5

5
0 )

1
2

6
2

4
2

4
0

.6
2

0
.3

2
0

.0
6

0
.0

3
9

0
.0

0
2

0
0

.0
6

8
0

.0
1

2
2

8
3

4
4

2
4

9
1

3
8

8
0

3
6

7
1

3

2
1

3
8

2
3

2
0

.6
0

0
.3

0
0

.0
2

0
.0

4
3

0
.0

0
0

6
0

.0
5

3
0

.0
0

3
2

6
6

1
4

2
6

8
4

3
1

7
1

3
6

4

3
2

0
7

4
0

2
0

.5
2

0
.3

1
0

.0
2

0
.0

4
3

0
.0

0
0

6
0

.0
5

4
0

.0
0

3
2

7
4

1
2

2
7

0
4

3
8

9
1

1
3

4

4
1

2
0

3
2

0
0

.3
8

0
.2

7
0

.0
2

0
.0

4
3

0
.0

0
0

7
0

.0
4

9
0

.0
0

4
2

4
7

1
4

2
6

8
4

1
5

6
1

7
5

4

5
7

3
1

6
3

0
.4

5
0

.3
0

0
.0

2
0

.0
4

4
0

.0
0

0
6

0
.0

5
0

0
.0

0
3

2
6

3
1

5
2

7
5

4
1

9
5

1
5

4
4

6
7

2
1

5
0

0
.4

8
0

.3
3

0
.0

2
0

.0
4

5
0

.0
0

0
8

0
.0

5
6

0
.0

0
5

2
8

6
1

9
2

8
2

5
4

5
3

1
8

2
5

7
6

2
1

2
6

0
.4

9
0

.3
3

0
.0

3
0

.0
4

7
0

.0
0

0
9

0
.0

5
6

0
.0

0
5

2
9

2
2

2
2

9
8

6
4

4
9

2
0

7
6

8
2

,6
7

1
5

,0
1

3
0

.5
3

0
.3

0
0

.0
1

0
.0

4
4

0
.0

0
0

3
0

.0
5

1
0

.0
0

1
2

7
0

6
2

7
6

2
2

4
8

5
8

2

9
1

,5
0

4
3

,3
3

9
0

.4
5

0
.3

2
0

.0
1

0
.0

4
6

0
.0

0
0

3
0

.0
5

2
0

.0
0

1
2

8
3

5
2

9
1

2
2

8
0

5
1

2

1
0

2
,4

8
0

5
,8

4
4

0
.4

2
0

.3
2

0
.0

1
0

.0
4

6
0

.0
0

0
4

0
.0

5
2

0
.0

0
1

2
8

4
5

2
9

3
2

2
6

7
4

4
3

1
1

3
,4

9
8

6
,4

1
8

0
.5

5
0

.3
3

0
.0

1
0

.0
4

7
0

.0
0

0
4

0
.0

5
3

0
.0

0
1

2
9

3
5

2
9

6
2

3
2

3
4

4
2

1
2

3
,0

3
5

5
,2

1
5

0
.5

8
0

.3
5

0
.0

1
0

.0
4

7
0

.0
0

0
7

0
.0

5
5

0
.0

0
2

3
0

3
1

1
2

9
7

4
4

1
9

9
7

4

B
o

ro
h

o
ro

K
-g

ra
n

it
e

B
9

5
(G

P
S

:N
4

3
�5

0
.3

0
0 ,

E
8

3
�3

1
.5

5
0 )

1
1

3
8

1
3

7
1

.0
1

2
.8

2
0

.1
6

0
.0

5
7

0
.0

0
1

7
0

.3
5

2
0

.0
1

4
1

,3
6

1
4

5
3

5
6

1
0

3
,7

1
4

6
2

1
0

2
7

9
1

7
8

0
.4

5
0

.3
3

0
.0

2
0

.0
4

0
0

.0
0

0
7

0
.0

6
3

0
.0

0
4

2
9

3
1

5
2

5
0

4
6

9
5

1
2

7
4

3
3

,0
9

8
5

,9
7

6
0

.5
2

0
.4

6
0

.0
1

0
.0

4
2

0
.0

0
0

3
0

.0
8

0
0

.0
0

2
3

8
7

6
2

6
6

2
1

,1
8

6
3

7
2

4
1

,6
9

1
3

,3
2

4
0

.5
1

0
.4

3
0

.0
1

0
.0

4
2

0
.0

0
0

5
0

.0
7

6
0

.0
0

3
3

6
5

1
1

2
6

6
3

1
,0

8
7

6
7

3

5
9

7
1

8
2

0
.5

3
0

.3
4

0
.0

2
0

.0
4

2
0

.0
0

0
6

0
.0

6
1

0
.0

0
4

2
9

6
1

7
2

6
4

4
6

3
4

1
5

3
4

6
1

2
4

2
7

9
0

.4
4

0
.3

4
0

.0
2

0
.0

4
2

0
.0

0
0

6
0

.0
5

8
0

.0
0

4
2

9
6

1
7

2
6

4
3

5
2

2
1

3
8

4

7
1

,2
7

0
2

,7
1

6
0

.4
7

0
.3

1
0

.0
1

0
.0

4
2

0
.0

0
0

3
0

.0
5

4
0

.0
0

1
2

7
4

6
2

6
6

2
3

5
4

5
2

2

8
1

1
8

1
8

1
0

.6
5

0
.3

1
0

.0
3

0
.0

4
2

0
.0

0
1

3
0

.0
5

8
0

.0
0

7
2

7
7

2
6

2
6

7
8

5
1

4
2

5
2

8

9
6

9
8

1
,9

9
8

0
.3

5
0

.3
5

0
.0

1
0

.0
4

3
0

.0
0

0
4

0
.0

6
0

0
.0

0
2

3
0

8
7

2
7

1
3

6
2

1
6

7
3

1
0

8
,2

7
1

1
0

,4
7

9
0

.7
9

0
.3

2
0

.0
1

0
.0

4
3

0
.0

0
0

2
0

.0
5

4
0

.0
0

1
2

8
2

5
2

7
0

2
3

8
1

4
2

2

1
1

1
,4

4
5

3
,7

9
8

0
.3

8
0

.3
2

0
.0

1
0

.0
4

4
0

.0
0

0
3

0
.0

5
3

0
.0

0
1

2
8

1
5

2
7

7
2

3
3

1
5

0
2

1
2

2
0

3
5

2
7

0
.3

8
0

.3
9

0
.0

1
0

.0
5

4
0

.0
0

0
5

0
.0

5
2

0
.0

0
2

3
3

1
1

1
3

3
9

3
2

7
6

9
5

3

B
o

ro
h

o
ro

g
ra

n
o

d
io

ri
te

B
1

0
1

(G
P

S
:N

4
3

�4
1

.3
4
0 ,

E
8

4
�2

4
.8

6
0 )

1
9

9
2

3
1

0
.4

3
0

.2
6

0
.0

2
0

.0
4

3
0

.0
0

1
0

.0
4

4
0

.0
0

4
2

3
4

1
7

2
7

4
6

-
8

6
2

1
8

6

2
3

1
7

7
1

7
0

.4
4

0
.4

0
0

.0
2

0
.0

4
6

0
.0

0
1

0
.0

6
1

0
.0

0
3

3
4

3
1

6
2

8
9

4
6

4
4

1
1

8
4

3
1

8
4

3
4

9
0

.5
3

0
.3

6
0

.0
2

0
.0

4
6

0
.0

0
1

0
.0

5
6

0
.0

0
4

3
0

8
1

9
2

8
9

5
4

5
1

1
7

1
6

4
1

4
0

2
7

0
0

.5
2

0
.3

7
0

.0
3

0
.0

4
6

0
.0

0
1

0
.0

5
9

0
.0

0
4

3
2

3
2

0
2

9
0

6
5

7
5

1
6

4
6

5
1

5
6

5
6

2
0

.2
8

0
.3

4
0

.0
2

0
.0

4
6

0
.0

0
1

0
.0

5
4

0
.0

0
4

2
9

4
1

8
2

8
9

5
3

6
3

1
6

5
5

6
6

0
1

1
2

0
.5

4
0

.3
4

0
.0

4
0

.0
4

7
0

.0
0

1
0

.0
5

4
0

.0
0

7
2

9
6

3
0

2
9

8
9

3
8

8
2

8
9

9

1284 Int J Earth Sci (Geol Rundsch) (2009) 98:1275–1298

123



T
a

b
le

2
co

n
ti

n
u

ed

N
o

C
o

m
p

o
si

ti
o

n
s

A
to

m
ic

ra
ti

o
s

A
p

p
ar

en
t

ag
es

(M
a)

D
is

c
(%

)

T
h

(
p

p
m

)
U

(p
p

m
)

T
h

/U
2
0
7
P

b
/

2
3
5
U

1
r

2
0
6
P

b
/

2
3
8
U

1
r

2
0
7
P

b
/

2
0
6
P

b

1
r

2
0
7
P

b
/

2
3
5
U

1
r

2
0
6
P

b
/

2
3
8
U

1
r

2
0
7
P

b
/

2
0
6
P

b

1
r

7
2

0
8

4
6

7
0

.4
5

0
.3

5
0

.0
2

0
.0

4
8

0
.0

0
1

0
.0

5
2

0
.0

0
3

3
0

7
1

5
3

0
1

5
2

7
4

1
3

6
5

8
3

1
9

1
,0

7
0

0
.3

0
0

.3
7

0
.0

1
0

.0
4

8
0

.0
0

1
0

.0
5

5
0

.0
0

2
3

2
2

1
1

3
0

3
3

4
1

6
9

1
3

9
3

3
2

1
,5

6
7

0
.2

1
0

.6
1

0
.0

2
0

.0
5

0
0

.0
0

1
0

.0
8

6
0

.0
0

3
4

8
6

1
3

3
1

7
5

1
,3

3
6

6
7

5

1
0

1
6

9
3

4
7

0
.4

9
0

.3
8

0
.0

2
0

.0
4

9
0

.0
0

1
0

.0
5

5
0

.0
0

4
3

2
6

1
8

3
1

1
5

3
9

2
1

4
9

5

1
1

2
8

4
5

6
4

0
.5

0
0

.3
8

0
.0

2
0

.0
5

0
0

.0
0

1
0

.0
5

4
0

.0
0

3
3

2
5

1
6

3
1

5
5

3
7

6
1

3
7

5

1
2

3
9

0
1

,1
1

1
0

.3
5

0
.8

1
0

.0
3

0
.0

9
6

0
.0

0
1

0
.0

6
0

0
.0

0
2

6
0

5
1

6
5

9
0

7
5

9
4

8
0

7

B
o

ro
h

o
ro

K
-g

ra
n

it
e

B
1

0
2

(G
P

S
:

N
4

3
�4

6
.1

0
0 ,

E
8

4
�2

6
.2
0 )

1
5

7
9

4
0

.6
0

0
.6

1
0

.0
4

0
.0

4
4

0
.0

0
1

0
.1

1
2

0
.0

0
8

4
8

3
2

7
2

7
9

6
1

,8
2

7
1

2
9

6

2
3

6
8

9
0

.4
1

0
.2

8
0

.0
2

0
.0

4
3

0
.0

0
1

0
.0

5
4

0
.0

0
5

2
4

9
2

0
2

7
0

6
3

7
7

2
1

0
6

3
4

2
8

1
0

.5
2

0
.3

5
0

.0
3

0
.0

4
4

0
.0

0
1

0
.0

6
5

0
.0

0
6

3
0

2
2

4
2

7
8

6
7

8
6

1
8

8
6

4
5

4
9

5
0

.5
7

0
.2

7
0

.0
3

0
.0

4
4

0
.0

0
1

0
.0

4
9

0
.0

0
5

2
4

5
2

3
2

7
5

6
1

6
6

2
4

5
6

5
3

8
7

2
0

.5
3

0
.3

3
0

.0
4

0
.0

4
5

0
.0

0
1

0
.0

6
2

0
.0

0
7

2
9

2
2

8
2

8
1

7
6

5
9

2
3

1
8

6
5

0
8

7
0

.5
8

0
.2

5
0

.0
3

0
.0

4
4

0
.0

0
1

0
.0

5
2

0
.0

0
6

2
2

3
2

5
2

7
9

6
3

0
7

2
7

5
6

7
4

4
7

2
0

.6
1

0
.2

8
0

.0
3

0
.0

4
5

0
.0

0
1

0
.0

5
2

0
.0

0
6

2
4

9
2

6
2

8
1

7
2

7
2

2
7

5
7

8
6

4
9

2
0

.7
0

0
.2

4
0

.0
3

0
.0

4
4

0
.0

0
1

0
.0

4
3

0
.0

0
6

2
2

0
2

7
2

8
0

7
-

1
5

3
3

4
2

7

9
9

0
1

2
8

0
.7

0
0

.3
0

0
.0

3
0

.0
4

5
0

.0
0

1
0

.0
5

4
0

.0
0

5
2

6
3

2
3

2
8

4
6

3
6

6
2

2
0

6

1
0

3
1

6
7

0
.4

7
0

.3
0

0
.0

4
0

.0
4

5
0

.0
0

1
0

.0
5

2
0

.0
0

7
2

6
7

2
9

2
8

5
7

3
0

5
2

9
5

7

1
1

5
8

9
5

0
.6

1
0

.3
4

0
.0

4
0

.0
4

6
0

.0
0

1
0

.0
6

1
0

.0
0

7
2

9
4

2
8

2
9

2
6

6
4

7
2

3
6

7

1
2

2
9

6
6

0
.4

4
0

.3
9

0
.0

4
0

.0
4

8
0

.0
0

1
0

.0
6

8
0

.0
0

6
3

3
5

2
6

3
0

1
7

8
5

7
1

9
4

8

K
ek

es
u

K
-g

ra
n

it
e

K
K

S
5

(G
P

S
:

N
4

2
�4

5
.9

8
0 ,

E
8

1
�5

5
.4

4
0 )

1
1

,6
9

4
3

,2
5

5
0

.5
2

0
.3

2
0

.0
1

0
.0

3
7

0
.0

0
0

3
0

.0
6

5
0

.0
0

2
2

7
9

6
2

3
5

2
7

7
8

5
0

2

2
1

,1
3

1
8

8
9

1
.2

7
0

.5
4

0
.0

2
0

.0
4

4
0

.0
0

0
5

0
.0

9
3

0
.0

0
3

4
4

1
1

3
2

8
0

3
1

,4
8

7
6

8
3

3
3

3
3

8
0

9
0

.4
1

0
.3

6
0

.0
1

0
.0

4
4

0
.0

0
0

4
0

.0
6

2
0

.0
0

3
3

1
1

1
0

2
7

8
2

6
7

4
8

7
3

4
1

,7
5

4
9

9
8

1
.7

6
0

.3
1

0
.0

1
0

.0
4

4
0

.0
0

0
4

0
.0

5
3

0
.0

0
2

2
7

1
9

2
7

5
2

3
4

1
8

3
2

5
5

3
6

7
1

8
0

.7
5

0
.4

6
0

.0
3

0
.0

4
5

0
.0

0
1

1
0

.0
8

0
0

.0
0

6
3

8
3

2
5

2
8

6
7

1
,2

0
9

1
4

5
7

6
7

4
6

6
9

1
1

.0
8

0
.4

3
0

.0
2

0
.0

4
5

0
.0

0
0

6
0

.0
7

2
0

.0
0

3
3

6
1

1
5

2
8

5
4

9
7

7
9

9
4

7
7

5
2

8
3

2
0

.9
0

0
.3

3
0

.0
1

0
.0

4
4

0
.0

0
0

4
0

.0
5

6
0

.0
0

2
2

9
0

1
1

2
8

0
3

4
6

8
9

4
3

8
6

1
6

1
,4

6
4

0
.4

2
0

.3
6

0
.0

1
0

.0
4

5
0

.0
0

0
4

0
.0

6
1

0
.0

0
2

3
1

1
7

2
8

3
2

6
4

9
5

6
2

9
4

5
8

7
5

8
0

.6
0

0
.4

5
0

.0
2

0
.0

4
6

0
.0

0
0

5
0

.0
7

4
0

.0
0

4
3

7
8

1
5

2
8

8
3

1
,0

4
8

9
5

3

1
0

5
0

3
4

3
4

1
.1

6
0

.3
7

0
.0

3
0

.0
5

0
0

.0
0

1
1

0
.0

5
9

0
.0

0
4

3
2

3
2

0
3

1
5

7
5

5
8

1
5

2
7

1
1

1
8

2
6

4
8

0
.2

8
0

.4
2

0
.0

2
0

.0
6

0
0

.0
0

0
6

0
.0

5
4

0
.0

0
2

3
5

8
1

1
3

7
5

4
3

7
2

8
1

4

1
2

7
4

6
5

0
1

1
.4

9
3

.4
9

0
.3

3
0

.0
7

4
0

.0
0

3
4

0
.3

6
2

0
.0

2
2

1
,5

2
6

7
6

4
5

8
2

0
3

,7
6

0
9

2
1

9

Int J Earth Sci (Geol Rundsch) (2009) 98:1275–1298 1285

123



The samples B101 and B102 are characterized by

enrichment in Rb, Th and K compared to REE, and low

contents of Nb and Ta (Table 3), indicative of calc-alkaline

series. However, the samples B94 and B95 show lower

Ba (125–134 ppm) and Sr (20–40 ppm), characteristic of

transitional type as defined above. A similar feature, e.g.

co-existence of both calc-alkaline and transitional series,

occurs for Alataw and southern Tianshan granitoids (Jiang

et al. 1999; Liu et al. 2005). This feature can be observed

on the expanded REE and trace elements spider diagram

normalized to the primitive mantle (Sun and McDonough

1989) (Fig. 9a), in which, all the granitic rocks of Boro-

horo, Alataw and southern Tianshan as well as Nalati

volcanitic rocks exhibit a regular decrease with increasing

compatibility for HFS elements. In addition, depletions of

Nb, Ta, Y and Yb can be observed for all these magmatic

rocks. Otherwise, the samples B94 and B95 exceptionally

show enrichments of Ce, Zr and Hf.

The samples B101 and B102 display total REE content

of 90–188 ppm, slight LREE enrichment (LaN/YbN = 5.7–

7.2), weak negative Eu anomaly (dEu = 0.6–0.88). They

have low Ce/Pb (1.7–3.7) and Nb/La (&0.4) ratios, and

Th/La ratio of 0.4–0.7 (Table 3). These features, consistent

with calc-alkaline granites, are similar to those of Alataw

granitoids, southern Tianshan two-mica granite and

potassium granite (Table 3). In contrast, the samples B94

and B95 have higher REE contents (231–236 ppm), higher

LaN/YbN (16.8–20.9) and Ce/Pb (7.7–6.9) ratios, and lower

Nb/La (&0.16) and Th/La (&0.15) ratios (Table 3). These

features are those of alkaline or transitional granites, and

are comparable to the characteristic of the trachytic

andesite from Nalati and granodiorite from southern

Tianshan (Table 3). On the Chondrite-normalized REE

patterns (Fig. 9b; Pearce 1982), samples B101 and B102 of

Borohoro plutons, and Alataw granitoids show lesser REE

fractionation by comparison with the samples B94 and B95

as well as the volcanic rocks of the Nalati and Bogda areas.

Discussion

Persistence and evolution of magmatism through

Carboniferous to Permian

On the basis of our study of the Borohoro plutons, the high-

K calc-alkaline granites formed during 294–280 Ma,

whereas the transitional plutonism occurred between 285

and 266 Ma, and continued until 250 Ma in other places.

Combining the previous results synthesized above, the

magmatic activity in western Chinese Tianshan was a

permanent process that started as early as the beginning of

Carboniferous and lasted up to the end of Permian. Geo-

chemical compositions suggest that the CarboniferousT
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magmatic rocks are mainly calc-alkaline although a few

transitional series may occasionally appear (Table 1); in

contrast, the Permian magmatic rocks are characterised by

the coexistence of calc-alkaline, alkaline and transitional

series, indicating a transition of magma chemistry from

calc-alkaline to alkaline.

Petrogenesis of Carboniferous-Permian magmatic rocks

and geodynamic implications

Some authors favor a continental rift (Che et al. 1996; Xia

et al. 2004b) or an intra-plate environment (Liu et al. 2006)

for the Carboniferous volcanic rocks, and a post-collision

setting for the Carboniferous granites (Xu et al. 2006).

Nevertheless, their geochemical and isotopic features

indicate that subduction play a prominent role, such as

suggested by the occurrence of adakite, high-Mg andesite,

and Nb-poor andesitic basalt (Wang et al. 2003, 2006b;

Zhao et al. 2003b, 2006). Moreover, stratigraphic features

of Carboniferous volcanic rocks and the shallow water

sedimentary association (Fig. 2) suggest a rather long

period of eruption on a continental margin. Elsewhere in

Central Asia, Carboniferous subduction-related and/or

syncollisional igneous rocks with calc-alkaline affinities

are reported in the South Tianshan belt of Kyrgyzstan

(Hamrabaev and Simon 1984; cited by Solomovich and

Trifonov 2002) and around the Tu-Ha basin of the Chinese

eastern Tianshan (Li et al. 2001, 2006a, b; Sun et al. 2006).

Therefore, Carboniferous magmatic rocks have most

probably been generated in an active margin setting.

Usually, the Permian high-K calc-alkaline and alkaline

igneous rocks were considered to be post-collisional, e.g. in

the South Tianshan of Kyrgyzstan (Solomovich and Tri-

fonov 2002; Solomovich 2007). Particularly, the Permian

high-K calc-alkaline and transitional granites of the Boro-

horo plutons also have subduction components according
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to the low Ce/Pb and Nb/La ratios (Table 3) indicating the

influence of subduction-derived fluids on the sub-conti-

nental mantle wedge (Hofmann et al. 1986); moreover, the

high Th/La ratios suggest influence of subducted sediments

(Plank 2005). It is also the cases for the volcanic rocks of

Aikedaban Fm., for Alataw granitoids except the granitic

dyke, and for the granodiorite and phorphyritic granite of

the southern Tianshan. However, it seems not necessary to

conclude that these magmatic rocks were produced in an

active margin since subduction components may be

inherited from the subcontinental mantle lithosphere in a

post-collisional setting. Thus, the high-K calc-alkaline and

transitional granites of Borohoro plutons show a compo-

sitional signature similar to either mature continental arcs

or post-collisional settings, but limited geochemical argu-

ments are not conclusive to discriminate between an active

margin and a post-collisional environment for these mag-

matic rocks.

The Permian magmatic rocks are also considered to

form during a continental rifting. However, In Awulale

area, Permian volcanic and intrusive rocks as well as red

molasses deposits are well developed, our structural

investigation reveals that neither normal faults nor strike-

slip faults predominate. Otherwise, considering the exten-

sive distribution of Permian and Carboniferous magmatic

rocks in northern Chinese Tianshan, the hypothesis of

Large Igneous Province was proposed by Xia et al. (2004a,

2006) and correlated with a mantle superplume. Using

geochemical and isotopic data, these authors suggest an

asthenospheric magma source similar to that of Hawaii and

Iceland. Nevertheless, the diversity of magma sources, the

predominance of Carboniferous calc-alkaline magmas and

the presence of ophiolitic mélanges do not fit this inter-

pretation. In addition, the extremely long duration of

magmatic activity ([110 Ma from 360 to 250 Ma) is rather

unusual for mantle plumes over the world that generally

result in continental break-up within less than 20–30 Ma.

Moreover, no other criteria for identifying ancient mantle

plume, such as crustal uplift prior to volcanism, radial

dyke swarms, volcanic chain or thick plateau basalt (e.g.

Campbell 2001), are documented in Tianshan, or even in

Central Asia. Thus, on the basis of field observation, lith-

ological features, geochemical and geochronological data,

another interpretation may be proposed for the generation

of Permian magmatism in Chinese Tianshan.

The Late Carboniferous to Permian magmatism of the

northwestern Chinese Tianshan displays a compositional

variation from highly fractionated calc-alkaline to alkaline,

indicating the contribution of multiple magma sources in a

transitional tectonic regime (Black and Liégeois 1993;

Liégeois et al. 1998; Bonin 2004). This feature often

occurs in large-scale shear zones in a post-collisional set-

ting where the previously metasomatised mantle wedge,T
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underplated mafic material, and uplifted asthenosphere, are

possible sources for magmas in a high regional heat flow

(Cluzel et al. 1991, 1994; D’lemos et al. 1992; Hutton and

Reavy 1992; Tommasi et al. 1994; Saint Blanquat et al.

1998; Steenken et al. 2000; Weinberg et al. 2004; Rosen-

berg 2004; Njanko et al. 2006; Oyhantçabal et al. 2007).

According to available geological maps and our field

observations, the Borohoro plutons and granites of Kekesu

and Gangou areas were emplaced within or at the margins

of transcurrent shear zones, some have an ‘‘en cornue’’

shape (Figs. 1, 3, 5, 6) developing high-temperature fab-

rics, and therefore may be considered as synkinematic. The

North Tianshan Fault, the Qingbulak-Nalati Fault and the

Sangshuyuanzi Fault are major ductile dextral strike-slip

faults (Allen et al. 1995; Allen and Vincent1997; Wang

et al. 2006a) that crosscut the lithosphere according to

seismic data (Zhao et al. 2003a; Wang et al. 2004). The

cooling age of these shear zones is constrained between

285 and 245 Ma on the basis of 40Ar/39Ar dating of biotite

from mylonites (Yin and Nie 1996; Zhou et al. 2001;

Laurent-Charvet et al. 2003; de Jong et al. 2008, this vol-

ume), confirming a close temporal relationship between

pluton intrusion and ductile wrench tectonics. Therefore,

Permian large-scale wrench faulting likely induced and

controlled the emplacement of synchronous magma with

diverse sources. This interpretation is supported by

numerical modeling by Weinberg et al. (2004), which

reveals that some fragile, dilatational spaces with low mean

pressure can be produced during crustal-scale transcurrent

shearing because of the changes in the rheological prop-

erties of rocks, favouring magmas ascent and pluton

emplacement. The prominent post-collisional fluid activity

and gold mineralization associated with transcurrent shear

zones in Chinese Tianshan and Central Asia as a whole

(Mao et al. 2004; Yakubchuk 2004; Han et al. 2006;

Xiao et al. 2006) are also consistent with syn-kinematic

magmatism.

Post-collisional evolution from calc-alkaline to alkaline

magmatism usually occurs during a gradual transition

between syn-orogenic convergence and post-orogenic
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intra-continental extension as observed in western Medi-

terranean area (Coulon et al. 2002; Duggen et al. 2005;

Lustrino et al. 2007), Pan-African Central Cameroon and

Uruguay (Njanko et al. 2006; Oyhantçabal et al. 2007).

This transition may be brought on after continental

collision or subduction extinction. Taking into account all

the available geological data (e.g. Windley et al. 1990;

Allen et al. 1993; Gao et al. 1998; Xiao et al. 2004;

Charvet et al. 2007), kinematic observations (Laurent-

Charvet et al. 2002, 2003; Wang et al. 2006a) and

paleomagnetic evidences (Van der Voo et al. 2006;

Wang et al. 2007b), the Carboniferous convergence was

followed by the Permian large-scale post-orogenic dextral

transcurrent tectonics. We propose that the transcurrent

tectonics at least partly induced the synkinematic mag-

matism and provoked the Early-Middle Permian transition

from high-K calc-alkaline to alkaline magmatism

(Fig. 10). The occurrence of Middle to Late Permian thick

red molasse (XBGMR 1993; Cui et al. 1996; Carroll et al.

1995) is a rather strong evidence for post-orogenic set-

ting; in contrast, the localised occurrence of Permian deep

seated sediments (turbidites) closely associated with

alkaline mafic rocks (e.g. southern Bogda area) infers that

Permian strike-slip tectonics generated narrow zones of

Junggar (?) Late Carboniferous

accretionnary complex

ili Block

shear zone
extinct active margin

Y

pull apart b
asin

North T ianshan Suture

Junggar (?)

accretionnary prism

ili Block

active margin

Y

(a) Late carboniferous

(b) Permian

Oceanic crust
Sea level

underplating

Fig. 10 Schematic model

showing a Late Carboniferous

subduction and active

continental margin; b Permian

post-orogenic dextral shearing,

uplifted asthenosphere and

thinned lithosphere, where

multi-originated magmatic

rocks and pull-apart basin

formed
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thinned lithosphere (pull-apart basins) in which volcanic

rocks were generated by the melting of uplifted

asthenosphere. Such lithospheric thinning could be cor-

related to an east-west extension as proposed by Wartes

et al. (2002). It is worth noting that the thinned area

partly involved the Carboniferous mantle wedge. In this

case, previously matasomatised mantle rocks coexist with

uplifted juvenile asthenosphere, and source or magma

mixing may easily occur. Within the Permian shear zones,

source mixing is likely to be lesser than on the boundaries

and ‘‘real’’ alkaline magmas may be generated; in con-

trast, away from the Permian shear zones, calc-alkaline

magmatism (the so-called post-collisional plutons) may

persist in the absence of juvenile asthenospheric mantle

(Fig. 10b). However, this proposition should be convinced

by further studies.

Conclusions

Geochemical and geochronological data indicate that

Borohoro high-K calc-alklaine granites formed between

294 and 280 Ma, while transitional and alkaline granites of

Borohoro plutons, Kekesu K-granite and Gangou K-granite

were produced during 285–252 Ma. Considering the pres-

ent study and previous data, it appears that igneous activity

during Carboniferous to Permian in western Chinese

Tianshan was a permanent process showing an evolution

from calc-alkaline to alkaline, the transition occurred

during the Early-Middle Permian.

Early to Middle Permian magmatic association of high-

K calc-alkaline, transitional and alkaline granites suggests

a post-collisional setting. Previously proposed continental

rift and supra mantle plume are unlikely for the genesis of

these magmatic rocks because the lack of field evidence

other than geochemistry. Conversely, distinctive spatial

and temporal relationships between pluton emplacement

and dextral strike-slip faulting are observed. Although

additional detailed studies are needed, it may be proposed

that the Early-Middle Permian magmatism, at least in part,

occurred during regional-scale transcurrent tectonics, as a

transitional event from Carboniferous convergence to

Middle-Late Permian anorogenic environment.
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Njanko T, Nédélec A, Affaton A (2006) Synkinematic high-K

calcalkaline plutons associated with the Pan-African Central

Cameroon shear zone (W-Tibati area): petrology and geody-

namic significance. J Afr Earth Sci 44:494–510
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