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Abstract The development of geothermal energy and

basin-scale simulations of fluid and heat flow both suffer

from uncertain physical rock properties at depth. For the

production of geothermal energy, a high risk of failure is

associated with this uncertainty. Invoking the usual con-

servative assumptions as a remedy results in unnecessarily

large drilling depths and increased exploration costs.

Therefore, building better prognostic models for geo-

thermal installations in the planning stage requires

improvement of this situation. To this end we analysed

systematically the hydraulic and thermal properties of the

major rock types in the Molasse Basin in Southern Ger-

many. On about 400 samples, thermal conductivity,

density, porosity, and sonic velocity were measured in the

laboratory. The size of both the study area and the this

data set require special attention with respect to the

analysis and the reporting of data, in particular in view of

making it useful and available for practitioners in the

field. Here, we propose a three-step procedure with

increasing complexity, accuracy, and insight into petro-

physical relationships: first, univariate descriptive

statistics provide a general understanding of the data

structure, possibly still with large uncertainty. Examples

show that the remaining uncertainty can be as high as

0.8 W (m K)-1 or as low as 0.1 W (m K)-1. This

depends on the possibility to subdivide the geologic units

into data sets that are also petrophysically similar. Then,

based on all measurements, cross-plot and quick-look

methods are used to gain more insight into petrophysical

relationships and to refine the analysis. Because these

measures usually imply an exactly determined system

they do not provide strict error bounds. The final, most

complex step comprises a full inversion of select subsets

of the data comprising both laboratory and borehole

measurements. The example presented shows the possi-

bility to refine the used mixing laws for petrophysical

properties and the estimation of mineral properties. These

can be estimated to an accuracy of 0.3 W (m K)-1. The

predictive errors for the measurements are 0.07 W

(m K)-1, 70 m s-1, and 8 kg m-3 for thermal conduc-

tivity, sonic velocity, and bulk density, respectively. The

combination of these three approaches provides a com-

prehensive understanding of petrophysical properties and

their interrelations, allowing to select an optimum

approach with respect to both the desired data accuracy

and the required effort.
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Introduction

Thermal and hydraulic properties of the subsurface play an

important role in the modelling of heat and fluid transport,

be it for the planning of geothermal installations or regional

scale modelling of basins. In general, the ranges of these

properties given in compilations of rock properties (e.g.

Birch 1966; Čermák and Rybach 1982; Haenel et al. 1988;

Clauser and Huenges 1995; Clauser 2006) are too wide to

be useful to constrain properties at a specific site. To

improve this situation, we performed a systematic study of

hydraulic and thermal properties of major rock types in the

Molasse Basin in Southern Germany combining a statisti-

cal approach based on a large number of laboratory

measurements with the inversion of suitable combinations

of geophysical borehole logs. When used in prognostic

design calculations for new geothermal installations this

new database will help to reduce the risk of failure. In view

of geodynamic applications, this data provides much

improved constraints for basin-scale numerical simulations

of heat and fluid flow.

To characterise the relevant petrophysical properties, we

measured thermal and hydraulic properties on rock samples

in the laboratory. In particular, thermal conductivity, heat

capacity, porosity, density, and permeability were mea-

sured. In such an approach, the sample collection needs to

be representative of the stratigraphic units studied. More

often than not, this cannot be accomplished completely

because core from boreholes is generally rare. Thus,

additional data are required to ensure that the statistical

results are representative. Particularly useful data derive

from wireline logging of hydrocarbon exploration wells.

These geophysical downhole measurements can be used to

complement the laboratory measurements. To this end, a

specific petrophysical model is derived for a lithologic unit

from the laboratory data. This model is then applied to the

well log data to derive the desired properties. This way, not

only the spatial coverage is increased but also the vertical

lithologic profile is completed with data for a given

geology.

The next section will describe the study area and its

geologic units, followed by a summary of the used data and

applied methods. Finally, examples of the petrophysical

analysis of the data set are used to illustrate both the

opportunities and the limitations of the aspired general-

isation of petrophysical properties on a regional scale.

Description of study area, data, and methods

The study is focused on the Western Molasse region in

southern Germany and the Jurassic and Triassic landscapes

north of the Molasse basin (Fig. 1). This region is partic-

ularly suited for a detailed due to its large technical

potential for geothermal use (Erbas 1999) and high degree

of geological exploration. The subsurface of the Molasse

Fig. 1 Map of the study area

(brown box) in southern

Germany. Triangles and

squares indicate locations for

core sampling from boreholes

and outcrops, respectively.

Circles show locations of

hydrocarbon wells
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basin is well known due to the past and intense exploration

for hydrocarbons. The northern part of the study area is

characterized by a sequence of southward dipping Meso-

zoic rocks (Fig. 2). Thus, moving to the north,

progressively older rocks can be sampled at the surface.

Comparisons of Mesozoic samples taken from outcrops or

shallow boreholes with those taken from the Molasse

region enable to study PT-dependence and possible facies

changes of the rocks.

This study comprises a total of about 400 core samples.

About two-thirds were obtained from core archives of the

Geological Survey of Baden-Württemberg, the University

of Tübingen, and Wintershall AG, Kassel. These samples

were taken in boreholes for water or hydrocarbon explo-

ration. The borehole samples were complemented by cores

taken from outcrops. The sampled geologic sequence

ranges from Lower Triassic (Bunter) to Miocene rocks. On

all samples routine measurements were performed in the

laboratory to determine thermal conductivity, density,

porosity, and compressional wave velocity. The use of core

scanning devices allowed rapid and accurate measurement

of a large number of samples. Thermal conductivity was

determined at ambient temperature using the optical

scanning method. A detailed description of the technique

can be found in Popov et al. (1999). The optical scanning

lines were oriented parallel to the core vertical axis. The

measurements were performed on dry and saturated rocks.

The thermal conductivity along the core surface was

recorded in 1 or 2 mm steps. An inhomogeneity factor b ¼
kmax � kminð Þ

�
kavg was defined for each sample, computed

from the maximum, minimum and average thermal con-

ductivity of the scan line. Bulk density, grain density and
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Fig. 2 Simplified geological cross section of the study area and the standard stratigraphic profiles of the two selected stratigraphic units Lower

Triassic (Bunter) and Upper Jurassic (Malm) (after Geyer and Gwinner 1991)
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porosity were determined from measurements of wet and

dry sample mass and sample volume using Archimedes

principle. By this way an average value for porosity, grain

and bulk density was generated for each core sample. In

addition gamma-density scans were performed by a multi

sensor core logger (MSCL), providing bulk density values

along the core axis. With the MSCL, bulk density was

computed by measuring the attenuation of gamma rays that

have passed through the cores, with the degree of attenu-

ation being proportional to density (Boyce 1976; Blum

1997). Sonic velocity was measured on dry and saturated

cores using the acoustic logging sensor of the MSCL. The

device records the travel time of a 500 kHz pulse sent

through the core. The sensors are aligned to measure the

compressional wave speed perpendicular to the core axis.

The sampling distance for all MSCL measurements ranged

from 0.2 to 2 cm, the exact choice being a compromise

between required resolution and available time.

Mineral content was derived by XRD-analysis per-

formed on plugs (2 cm diameter) taken from of the core

samples. This allowed more detailed analysis of petro-

physical and mineralogical relationships. Prior to XRD

analysis, grain density and porosity of the plug samples

were derived with a helium pycnometer. For a detailed

analysis of all data the reader is referred to Clauser et al.

(2007).

The following analysis of petrophysical data will ignore

the PT-dependence and focus mainly on two lithologies:

Upper Jurassic (Malm) and Lower Triassic (Bunter). In

addition, inversion methods will be discussed on a sample

from the middle Triassic. The Upper Jurassic consists

primarily of limestones with interspersed beds of marl-

stone, classified into sub-units alpha to zeta. Using gamma-

ray logs, the sub-units Malm alpha to Malm delta can be

correlated laterally. These show only minor variations in

thickness and appearance. However, the Malm units zeta

and epsilon show considerable variability due to changes

between reef and massive facies. Also, the topmost sub-

units are eroded in boreholes in the north. The Lower

Triassic (Bunter) formation of the study area is dominated

by reddish sandstones deposited on a flat fluviatile plain

under semi-arid conditions. Coarse-grained deposits pre-

dominate in the southern branch of the Bunter basin in

Germany. Clayey sediments only occur at the base of the

Bunter and at the Röt formation, marking the marine

transgression at the end of the Upper Bunter. The Bunter is

subdivided into several sedimentary cycles. The grain-size

variations are caused by the development of the fluviatile

systems under changing relief energy. The thickness of the

Bunter strongly changes within the study area. From the

boundary of the southeastern extension of the Bunter, the

thickness rapidly increases up to 500 m in the northwest-

erly direction.

Analysis of petrophysical data

The large data set as well as the distribution of the sam-

pling points over a large area makes a sensible analysis

challenging. Several methods were employed, all with

specific advantages and disadvantages. The methods of

analysis will be detailed in the following sections.

Univariate descriptive statistics

The simplest method to analyse a large data set is to study

its distribution. This yields mean values and uncertainties,

which can be used directly as input in design calculations

for geothermal installations or in basin-scale simulations of

heat and fluid flow. However, several aspects of this

method may be undesirable: It must be ensured that the

analysed sample is representative of the complete distri-

bution. Further, the ensemble of samples needs to be both

sufficiently large and uniform. These requirements are

difficult to satisfy when considering a large area with

variable geology.

As an example Table 1 shows the quartiles of thermal

conductivity derived from measurements in this study. The

top row contains all samples obtained from boreholes in the

main study area (brown box in Fig. 1). The bottom row

shows the statistics of a large data set from a previous study

of the thermal properties of the Bunter near the town of

Ettlingen in the Rhine Graben near Karlsruhe (Kleiner

2003; Clauser et al. 2003). Although both data sets sample

the same stratigraphy, their median values differ consid-

erably from each other, due to different facies types within

the same stratigraphy. In this particular case it is well

understood that different locations with different facies of

one stratigraphy were sampled. In general it might be more

difficult to decide whether a particular data set is truly

representative of a larger region.

Assuming that the Bunter data set is representative, a

mean value of 4.3 W (m K)-1 ± 0.7 W (m K)-1 results

for the Lower Triassic. If this value were to be used in

modelling, assuming a 2r-probability, the corresponding

Table 1 Statistics of core scanning measurements on Lower Triassic

samples

Upper Bunter Middle Bunter

25% 50% 75% N 25% 50% 75% N

This study 3.74 3.84 3.94 133 4.16 4.49 4.91 748

Kleiner (2003) 4.04 4.25 4.61 30 4.98 5.23 5.43 92

Compared are quartiles of thermal conductivity [in W (m K)-1] for

the Upper and Middle Bunter from two studies. Top row: data mea-

sured in this study. Bottom row: data from a previous field campaign

(Kleiner 2003; Clauser et al. 2003)
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95% confidence interval would be 2.9 W (m K)-1 to

5.7 W (m K)-1. In the lower Triassic, this large range

results from the superposition of two effects: (1) the vari-

able matrix conductivity due to the varying amounts of

quartz, feldspars and micas within the Bunter sandstones;

(2) the variable rock porosity of up to of 25%. Obviously, it

is desirable to narrow down this range.

Dividing an entire formation into sub-units may help to

increase the accuracy of the predicted thermal conductiv-

ity. Figure 3 shows the histogram of thermal conductivity

for the Upper Jurassic. The shape of the distribution is not

truly Gaussian, nevertheless, using quartiles of the distri-

bution, the 50% confidence interval about the median is

2.30 W (m K)-1 to 2.48 W (m K)-1. By dividing the data

set into stratigraphic sub-units the 50% confidence interval

(indicated by the blue boxes) can be narrowed down to

roughly 0.1 W (m K)-1 (Fig. 4).

It is interesting to note that the largest values of thermal

conductivity are found for the Malm zeta formation with

values between 2.6 W (m K)-1 and 2.8 W (m K)-1. The

XRD analysis shows the samples to be a very clean lime-

stone, consisting sometimes of up to 99% calcite and with

porosities as low as 4%. The thermal conductivity of single

mineral calcite aggregates is tabulated as 3.6 W (m K)-1

(Clauser 2006). Based on this value, the conductivity of a

clean, low porosity limestone can be estimated as 3.3 W

(m K)-1. This is 0.5 W (m K)-1 larger than the measured

values. Thus, estimating rock properties based on tabulated

values may result in large errors. This emphasises the

importance of characterizing thermal rock properties on a

regional, statistically firm base.

Quick look methods using petrophysical models

So far, our univariate analysis was based on thermal con-

ductivity measurements only. Now, we include other

standard measurements in order to derive thermal con-

ductivity from petrophysical models. In contrast to the

statistical method, which is based directly on measured

values, this enables to determine thermal conductivity from

secondary data which may be readily available.

To utilise these other data, it is necessary to develop or

adapt petrophysical models, to jointly describe the mea-

sured properties of the sample. Generally, a mixing law is

used which weighs the contributions of pore fluid and rock

matrix by porosity /. Pore fluid and matrix properties are

denoted by indices f and m, respectively. An often-used

empirical law for acoustic slowness Dt is given by (Wyllie

1956):

Dt ¼ / Dtf þ 1� /ð ÞDtm: ð1Þ

Density q is described as:

q ¼ / qf þ 1� /ð Þqm: ð2Þ

Finally, thermal conductivity k can be described by the

empirical geometric mixing law (Woodside and Messmer

1961):

k ¼ k/
f kð1�/Þ

m : ð3Þ

While this two-phase approach used allows for the rock

matrix and the pore fluid, the solid rock phase itself may be

composed of different mineral phases. The Upper Jurassic

rocks, for instance, consist of calcite as the main phase and

variable amounts of shale. Extending the mixing laws (1)

and (3) for acoustic slowness and thermal conductivity,

respectively, to this case yields:

Dt ¼ /Dtf þ 1� /ð Þ VSHDtSH þ 1� VSHð ÞDtLSð Þ; ð4Þ

k ¼ k/
f kVSH

SH � k
1�VSHð Þ

LS

� �ð1�/Þ
; ð5Þ

where, subscripts LS and SH denote limestone (i.e.

calcite) and shale, respectively, and VSH is the shale

volume fraction of the solid phase. Figure 5 shows a plot of

thermal conductivity k versus slowness Dt for the Upper

Jurassic data set together with the theoretical values for the

three end-members water, shale, and calcite connected by

the grey triangle. All measured data should plot within this

triangle, and thus a rock’s volumetric composition can be

read directly from this plot. Vice versa, a rock’s thermal

conductivity can be inferred from this plot if its volumetric

composition is known or can be estimated, for instance

from its natural gamma activity which is sensitive to the

shale volume.

In practice, values for the end member points cannot be

simply adopted from numerical tables. Rather, the end
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Fig. 3 Histogram of laboratory measurements of thermal conductiv-

ity for samples from the Upper Jurassic. Mean and standard deviation

are 2.40 W (m K)-1 ± 0.12 W (m K)-1. Median, 25% quantile, and

75% quantile are 2.39 W (m K)-1, 2.30 W (m K)-1, and 2.48 W

(m K)-1, respectively. Total number of data points is 1,590
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member points need to be placed at reasonable positions as

part of the interpretation. In particular, the shale point is

generally poorly defined and needs to be adjusted to match

the data. In the case shown in Fig. 5, shale slowness at

220 ls m-1 is very low and the limestone matrix thermal

conductivity has a value of only 3.1 W (m K)-1. But these

choices for the end member points are suggested by the

location of the plotted data.

The direct cross-plot of two measured properties is only

possible in a system with three components, in this case

calcite, shale, and pore fluid. If the number of components

is larger than that, more measurements need to be taken

into account and the analysis method needs to be changed.

Burke et al. (1969) developed the M–N plot, a method to

analyse the mineral composition of a three-phase system.

The original method uses sonic, neutron porosity, and

density logs to compute two parameters M and N which are

independent of porosity and can be used to identify the

occurring minerals:

M ¼ Dtf � Dt

q� qf

; ð6Þ

N ¼ 1� /
q� qf

; ð7Þ

where the subscript f denotes fluid properties. Inserting

Eq. (1) and (2) for Dt and q, respectively, removes porosity

from Eq. (6) and (7). Thus, a cross-plot of these two

parameters is determined only by the matrix composition.

A neutron porosity measurement is not possible for the

samples, but the method can be adapted. We define a

parameter O that uses the logarithm of the thermal

conductivity in the same manner as the neutron porosity

does:

O ¼ log10 kf � log10 k
q� qf

: ð8Þ

Taking the logarithm of the thermal conductivity

measurement ensures that the value scales linearly with

porosity in the same manner as density and slowness do. As

an example, the Lower Triassic data set is analysed using

this method. In Fig. 6, O is plotted versus M together with

expected (M, O)-pairs. In addition to the (M, O) values

derived from the petrophysical measurements, the mineral

compositions from XRD-analysis on a sub-set of samples

are shown in Fig. 6 as circles. The general appearance is

satisfactory, but it is also obvious that a number of points

plot outside the triangle defined by the range of possible

values. There are a number of possible explanations for

this. The scatter of the measurements can be quite high.

Another reason might lie in the choice of a wrong mixing

law for thermal conductivity. Figure 7 shows the same data

set, but based on an arithmetic law for thermal

conductivity:

O ¼ kf � k
q� qf

: ð9Þ

This way, the data points plot much better within the

triangle defined by the mineral end members. However, the

data are now less consistent with the compositional infor-

mation, which suggests higher a quartz content.
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An advantage of this model over the univariate statis-

tical analysis is that it can be applied to wireline logs run in

boreholes. These comprise an additional important source

of information. It serves two purposes: (1) the variability of

the in situ petrophysical properties can be assessed better

from wireline data compared to core data which might be

subject to preferential sampling; (2) the large number of

boreholes allows a better spatial characterization of

changes in facies and corresponding changes in petro-

physical properties.

Readings of wireline logs respond to the composition of

the probed rock, its structure, and environmental condi-

tions. For the analysis of borehole geophysical data with

respect to quantifying rock composition the assumption is

made that a log reading responds mainly to the composition

of the rock. Then, given some appropriate mixing law and

using standard procedures (e.g. Doveton 1979; Hartmann

et al. 2005), the lithologic composition can be computed.

For the Upper Jurassic formation, thermal conductivity

can be inferred from two geophysical logs which respond

to porosity and shale volume, such as, for instance, acoustic

slowness (DT) and natural gamma radiation (GR). To

analyse logs from the lower Triassic, one additional log is

needed. Bulk density may be used, for instance. Special

care has to be taken because potassium contained in feld-

spars might influence the gamma ray log.

A disadvantage of cross-plot methods is that they lack

any measure of uncertainty. The problem is usually posed

in such a way that it is exactly determined. Uncertainties

can be visually estimated by the coherence of the cross-

plots but a strictly quantitative measure is lacking. This

limitation can be overcome by using a full inversion pro-

cedure. This is discussed in the next section.

Advanced data inversion

The following example illustrates the use of an inversion

algorithm for the analysis of laboratory measurements

performed on a core sample with clearly visible variations

in physical properties. The algorithm is described in detail

in Hartmann (2007). The inversion uses the mixing laws in

order to compute a model data set. The misfit between

modelled and measured data is minimised using a Gauss–

Newton iterative scheme together with a Bayesian regu-

larisation (e.g. Tarantola 2005). The forward model can be

adapted to a particular set of measurements and mixing

laws to be used. Usually Eqs. 1–3 are used when sonic

velocity, density, and thermal conductivity are considered.

This example is particularly suited because of the good

control on the quality of measurements and because

detailed analyses were easy to perform and can be com-

pared to the actual geology of the rock. The core (Fig. 8d)

was recovered at a depth of about 1,300 m in a borehole in

the southern German Molasse Basin (Figs. 1, 2) from the

middle Triassic period just above the boundary to the lower

Triassic. The lowermost part of the middle Triassic in

southern Germany is characterised by occurrence of mas-

sive sulphates (anhydrite or gypsum) with a thickness of up

to 5 m. Thin layers of shaly dolomites are spread

throughout this sequence. The structure corresponds to a
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ments using Eq. 6 and 8. Red circles mark the (M, O) points expected

from the volumetric composition derived from XRD-analysis. Grey
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mixture. Grid lines are plotted at 20% intervals

0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

O

M

Quartz

Calcite

Dolomite

Orthoclase

KaoliniteIllite

Fig. 7 M–O plot of the Bunter data set using an arithmetic mixing

law for thermal conductivity. Blue points are computed from

measurements using Eq. 6 and 8. Red circles mark the (M, O) points

expected from the volumetric composition derived from XRD-

analysis. Grey lines represent a ternary triangle, spanning the
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successive evaporation sequence with temporary decrease

of the salt concentration with concurrent enhancement of

wave action (Geyer and Gwinner 1991). This structure is

reflected in the sample with its dark bands of dolomite

embedded in the brighter anhydrite.

To analyse the sample, thermal conductivity, acoustic

velocity, and bulk density were measured on the dry sample

along the core axis (Fig. 8a, b). In addition, matrix density

and bulk density were determined on three plugs using a

pycnometer (Fig. 8b, c). Porosity is computed along the

core using the bulk density measurement (Eq. 2) assuming

pure dolomite (q = 2,870 kg m-3) and pure anhydrite

(q = 2,960 kg m-3). In comparison with the pycnometer-

derived porosity, Fig. 8c shows discrepancies suggesting

that the sample consists of a mixture of the two minerals.

This is confirmed by a mineralogical analysis of two plugs

(Table 2). The bright bands are composed mainly of

anhydrite whereas the dark bands contain a mixture of both

dolomite and anhydrite. The mineral ankerite is chemically

and structurally similar to dolomite, with magnesium lar-

gely replaced by iron. Thus for volumetric analysis, ankerite

will be added to the volume fraction of dolomite because of

its similarity and small volume fraction.

Using the same techniques developed in the last section,

an M–O plot is constructed for the core scanning data

(Fig. 9). The plot shows that the measurements are con-

sistent in a qualitative manner with a mixture composed

primarily of anhydrite and dolomite. However, the M–O

plot suggests large amounts of dolomite for some mea-

surements, whereas the mineralogical results imply that the

grey bands contain only about 50% dolomite.

There are two possible explanations for these observa-

tions that are studied by modifying the inverse model: (1) the

particular mixing laws used for sonic velocity and thermal

conductivity may be inadequate for low-porosity chemical

sediments. To study this uncertainty, a general mixing

law that accounts for structural effects is implemented

(Korvin 1978), described in detail below. It introduces an

additional parameter to deal with sample of varying struc-

ture. (2) The uncertainty of mineral thermal conductivities is

quite large, in particular for kaolinite. Values for shales and

clays are poorly defined and usually assumed around

2.0 W (m K)-1 (Brigaud and Vasseur 1989). However,

Waples and Tirsgaard (2002), for instance, found in their

study of clay thermal conductivities a systematic change

with depth, which they interpreted as due to increasing ori-

entation of clay minerals with overburden pressure. The

thermal conductivity decreased from 2.5 W (m K)-1 to

1 W (m K)-1 and the anisotropy factor (the ratio of thermal

conductivities parallel over perpendicular to the direction

of maximum thermal conductivity) increased from 1 to 2.

Both of these effects increase the uncertainty about the

rock properties of the pure minerals. To address this,

the physical properties of the mineral are incorporated in the

inversion with a priori variances assigned.

The inverse model consists of five volume fractions with

a priori values and corresponding standard deviations

derived from the chemical analysis: quartz (0.02 ± 0.01),

Table 2 Results of the mineralogical analysis and pycnometer measurements on samples taken from the core

X Quartz Anhydrite Dolomite Kaolinite Ankerite qm,c qm f

Plug 1 60 0.52 89.84 2.44 5.62 1.58 2,942 2,944 2.7

Plug 2 175 2,866 2.0

Plug 3 215 3.09 43.92 48.83 4.16 2,896 2,895 3.3

Position X of the plugs along the axis is given in mm. Composition is reported in weight percent. qm,c is the matrix density (kg m-3),

computed from the mineral composition and tabulated mineral densities (see e.g. Wohlenberg 1982). Pycnometer measurements: matrix density

qm (kg m-3) and porosity / (%)
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a Thermal conductivity k (black) and acoustic velocity vp (grey); b
bulk density q measured by gamma-absorption (black) on a core

logger (Cl) device and with a powder pycnometer (grey); c porosity /
assuming anhydrite (solid black) and dolomite (dashed black) as the

matrix compared to pycnometer derived porosity; d core photograph

showing the layering. Bright bands consist mainly of anhydrite; dark
bands are composed mainly of dolomite. Arrows denote downward

direction in the borehole
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anhydrite (0.45 ± 1.0), dolomite (0.45 ± 1.0), kaolinite

(0.05 ± 0.01), and air filling the pore space (0.03 ± 0.02).

Values for physical properties are taken from the litera-

ture (Hearst et al. 2000; Čermák and Rybach 1982). The

data are assumed to be uncorrelated with standard devi-

ations of the measurements of 0.05 W (m K)-1 for

thermal conductivity, 50 m s-1 for sonic velocity, and

5 kg m-3 for density. A set of different models was run

in order to test several hypotheses. Results are summa-

rised in Table 3.

The most simple model (Table 3, model 1) employs the

time-average formula for sonic velocity vp (Wyllie et al.

1956), and the geometric mixing law for thermal conduc-

tivity k. It can be considered a benchmark as it is closest to

both the direct transformation shown in the M–O plot

(Fig. 9) and results that may be obtained from a more

conventional inversion approach. The result (Fig. 10, top)

confirms the interpretation of the M–O plot, which suggests

that the model is inconsistent with the data. No possible

volumetric composition within this model can fit the data.

Table 3 Summary of inverted mineral compositions and physical properties for different petrophysical models

Data Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

vp model Wyllie Joint tth
order mean

Single tth
order mean

Wyllie Joint tth
order mean

single tth
order mean

k model Geometric Single tth
order mean

Geometric single tth
order mean

Normalised RMS error 2.29 1.96 1.95 1.62 0.85 0.86

tk
0.99 ± 0.38

0.97 ± 0.38
0.90 ± 0.37

0.62 ± 0.36

tvp 0.80 ± 0.36 0.89 ± 0.38

Plug 1 volumes (%) Vanhydrite 89.8 86.3 88.5 88.5 85.9 87.2 87.1

Vdolomite 4.0 7.1 4.5 4.7 6.7 3.8 3.8

Vkaolinite 5.6 4.6 2.8 2.8 5.4 4.8 4.9

/ 2.7 0.3 2.4 2.4 0.3 2.6 2.6

Plug 3 volumes (%) Vanhydrite 43.9 43.8 44.1 44.0 42.9 43.0 43.1

Vdolomite 48.8 48.8 48.7 48.8 48.3 48.2 48.1

Vkaolinite 4.2 5.6 2.8 2.8 7.0 4.4 4.4

/ 3.3 0.1 2.7 2.7 0.1 2.8 2.8

Mean volumes (%) Vanhydrite 39.0 64.3 62.8 16.9 58.0 58.5

Vdolomite 55.6 29.0 30.7 76.0 33.0 32.4

Vkaolinite 3.1 2.1 2.1 4.7 4.7 4.7

/ 0.5 2.8 2.7 0.7 2.7 2.7

Mean sample values k 4.99 4.84 4.77 4.77 5.04 4.98 4.99

vp 5864 5869 5875 5869 5802 5853 5843

q 2826 2875 2835 2836 2846 2827 2827

Estimated mineral values kanhydrite 6.20 ± 0.22 6.03 ± 0.17 6.12 ± 0.20

kdolomite 5.97 ± 0.20 5.31 ± 0.14 5.38 ± 0.20

kkaolinite 0.29 ± 0.20 1.21 ± 0.28 1.23 ± 0.28

The ‘‘data’’ column shows measured values (vp in m s-1, k in W (m K)-1; q in kg m-3). These are compared to inverted parameters for models

1–6. See text for a more detailed discussion
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Fig. 9 M–O plot of the analysed sample. Black dots denote data

computed from the measurements on the sample. Gray squares mark

expected points for pure minerals. Slowness and density values are

taken from Hearst et al. (2000), thermal conductivity from Čermák

and Rybach (1982)
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To refine the model, the tth-order mean model by Kor-

vin (1978) is introduced (see also Hartmann 2007). This is

a general mixing law yielding an effective value M based

on fluid properties Mf, matrix properties Mm, and a struc-

tural parameter t.

M ¼ / Mt
f þ ð1� /Þ Mt

m

h i1=t

, with � 1� t� 1: ð10Þ

The special cases t = -1, 0, +1 correspond to the

harmonic, geometric, and arithmetic mixing laws,

respectively. To test the hypothesis that a single

parameter t can be used to explain the data, two models

are designed (Table 3 models 2 and 3), one with a single t

and one with two independent t values for vp and k. Values

for t in the range of 0.8–1.0 yield the best data fit, strongly

indicating that standard mixing laws are invalid for well-

lithified chemical sediments. Model 3 yields slightly

different t-values for vp and k but the difference is

insignificant within the error bounds. Both models reduce

the misfit. However, the fit is still inconsistent with the

data, suggesting that uncertainty about the appropriate

mixing law cannot be the only cause.

Therefore, the same set of models is modified to

include variable mineral thermal conductivities in the

inversion (Table 3 models 4–6). Thermal conductivity

values of the minerals are assigned a priori standard

deviations of 0.1 W (m K)-1. Only anhydrite, dolomite,

and kaolinite are included in the inversion. Using the

geometric and Wyllie’s average (Wyllie et al. 1956)

(model 4) yields an improved but still large misfit of 1.62.

In addition, the thermal conductivity value returned for

kaolinite is unrealistically low.

The best results are obtained for models 5 and 6, which

use the general mixing law both for sonic velocity and

thermal conductivity, together with an inversion of the

mineral properties. The result for model 6 is shown in

Fig. 10, bottom. The RMS error for both models is below

1, indicating a slight over-fitting of the data because the

RMS error is normalised by the measurement error. A

value lower than 1 indicates that noise in the data is fitted.

It can be noted that an inverse correlation exists between

the value of t and the matrix thermal conductivities for

models 4–6. The mineral thermal conductivities of anhy-

drite and dolomite are large but plausible, given the range

of values in the literature (Clauser and Huenges 1995;

Clauser 2006). The clay mineral value is quite low. It is

most strongly affected by the choice of model, and due to

the generally low content of kaolinite the least trustworthy.

Models 5 and 6 show that t values larger than 0.6 are

required to fit the measured data. Note that a value of 0.5

corresponds to the square root average sometimes used for

thermal conductivity (Korvin 1978; Beardsmore and Cull

2001). The geometric mean has been confirmed in many

studies to be adequate for the analysis of sedimentary rocks

(e.g. Sass et al. 1971; Brigaud et al. 1990; Hartmann et al.

2005). However, it can be reasoned that the structure of the

well-lithified chemical sediment studied here is quite dif-

ferent from that of granular sediments. The RMS misfit

between modelled and measured data can be estimated to

be the predictive error of the method. The RMS values are

0.07 W (m K)-1, 70 m s-1, and 8 kg m-3 for thermal

conductivity, sonic velocity, and bulk density, respectively.

Expressed as percentages of the average measured value,

these correspond to relative errors of 1.3, 1.2, and 0.3% for

thermal conductivity, sonic velocity, and bulk density,

respectively.

There is no conclusive answer to the question whether

the same mixing law might be used for both thermal con-

ductivity and sonic velocity. Both display large t values,

the effect apparently being stronger for sonic velocity than

for thermal conductivity. However, some ambiguity

remains because of the inverse relationship between matrix

thermal conductivity and t value noted above. This corre-

lation makes the high t values less reliable. A second point

is the large standard deviation of the t value, making

inferences about their differences in t difficult.

This example demonstrates that a sophisticated inver-

sion yields a very detailed description and understanding of

the petrophysical relationships. Using a Bayesian frame-

work, a-posteriori uncertainties can be specified which are

based both on the uncertainty in the input data and on the

uncertain information on property values or even mixing

laws. In conclusion, this type of analysis provides the best

possible characterisation of a given petrophysical data set.

Clearly, it is also the most complex method and is usually

performed only on selected subsets of the data.

Conclusion

From the discussion of the methods it is clear that all of

them have certain advantages but also suffer from specific

disadvantages. Univariate descriptive statistics have the

major advantage of being easy to understand and use. This

is particularly important when results are used in envi-

ronments with restricted time and resources. The major

drawback is that for some lithologies the uncertainty of the

derived estimates may be quite large. Also, information on

the local geology may be difficult to use, since there is no

formal way to include this type of information in univariate

descriptive statistics. This can be somewhat allowed for by

dividing the data set into sub-units of similar lithology.

However, stratigraphic units cannot always be identified

with lithologic units. For the studied stratigraphic units,

uncertainty of thermal conductivity predictions range from

0.8 to 0.1 W (m K)-1. The lower uncertainties can be
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Fig. 10 Results of the inversion

of high-resolution

measurements for the anhydrite/

dolomite sample. Index d refers

to measured data; index m refers

to modelled data. Top results for

model 1. Bottom results for

model 6. a–c Measured data and

computed values for thermal

conductivity, acoustic velocity,

and bulk density; d mineral

composition of the sample
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achieved for the Upper Jurassic data sets, where lithology

is relatively uniform and porosity is not a dominant factor.

On the other hand the Lower Triassic data have a wider

range of composition and porosity values, leading to much

larger error margins.

Cross-plot methods partly overcome this limitation since

they can be used to display the petrophysical relationships.

In ternary diagrams, petrophysical properties can be read

directly from the chart if the lithology can be estimated.

Here, the applicability of the geometric mixing law was

verified by comparing petrophysical measurements and

mineralogical data in the same ternary diagram. However,

they only yield a single estimate without uncertainty, a

significant drawback when simulating technical or natural

systems. This can be circumvented to some extent by

estimating the most likely ranges although this is not an

uncertainty estimate in the strict sense.

Inversion methods are capable of providing strict

uncertainty estimates as well as incorporating multiple

sources of information. Within a Bayesian framework, data

and their covariance as well as a priori information are used

to estimate the maximum a-posteriori estimate jointly with

its covariance. The example presented illustrates that very

detailed analyses can be applied including several types of

measurements. Predictive errors in the low percentage

range are possible for a detailed analysis, restricted mostly

by the accuracy of measurement equipment in the labora-

tory. Mineral thermal conductivities can be modelled to an

accuracy of 0.2 W (m K)-1. Of course, this type of

application is rather complex and possibly restricted to

specialised studies.

In summary, a combined approach seems to be most

reasonable, providing the analyst with a choice for the most

suitable model for his specific data set. Specifically, the

methods discussed provide a means to introduce data

uncertainty into the analysis of both studies of basin-scale

heat and fluid flow and prognostic design calculations of

technical installations for geothermal energy use.
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