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Abstract. A region-based approach to shape representation
and similarity measure is presented. The shape representa-
tion is invariant to translation, scale and rotation. The simi-
larity measure conforms to human similarity perception, i.e.,
perceptually similar shapes have high similarity measure. An
experimental shape retrieval system has been developed and
its performance has been studied. The shape retrieval per-
formance of the proposed approach is better than that of the
more established Fourier descriptor method.
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1 Introduction

With advances in computing and communication technology,
more and more images are being captured, stored and used
in many areas such as medicine, the press, entertainment, ed-
ucation and manufacturing. In order to make effective and
efficient use of information captured in these images, tech-
niques for rapid image retrieval from a large image collection
are required. Much research and development attention has
been directed to these techniques in the past few years [1–7].

One important approach to image retrieval is based on
contents of images such as color, shape and texture. This pa-
per focuses on shape-based image retrieval techniques. We
present a new approach to shape representation and similar-
ity measure, called region-based approach, which is suitable
for content-based image retrieval. Its retrieval performance
is compared with that of the more established method based
on Fourier descriptor (FD).

A suitable shape representation and similarity measure
for content-based image retrieval should meet the following
criteria.

– The representation of a shape should be invariant to
scale, translation and rotation.
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– The similarity measure between shape representations
should conform to human perception, i.e., perceptually
similar shapes should have high similarity measure.

– The shape representation should be compact and easy to
derive, and the calculation of similarity measure should
be efficient.

In the following section, we summarize work in content-
based image retrieval related to this paper. In Sect. 3, we
describe a region-based approach to shape representation and
similarity measure which meets the above criteria. Section
4 presents our experiments and results. Section 5 concludes
the paper with a discussion.

2 Related work

There are many papers in the area of content-based image
retrieval. In this section, we only summarize the work in
which shape feature is used for indexing and retrieval. A
detailed comparison between the proposed region-based ap-
proach and closely related approaches will be presented in
the final section of the paper.

Shape description or representation is an important issue
both in image analysis for object recognition and classifica-
tion and in image synthesis for graphics applications. Many
techniques, including chain code, polygonal approximations,
curvature, Fourier descriptors and moment descriptors, have
been proposed and used in various applications [8, 9].

Recently, content-based image retrieval became impor-
tant. As object shape is one of the important features of
images, a number of shape representations have been used
in content based image retrieval systems. Note that in almost
all work, techniques integrating a number of features, such
as colour, shape and texture, are used. But in this paper,
we are only interested in shape representation and similar-
ity measure. In QBIC [10], moment invariants and other
simple features such as area are used for shape representa-
tion and similarity measure. Mohamad et al. also used mo-
ment invariants for trademark matching [11]. But it is found
that similar moment invariants do not guarantee perceptually
similar shapes. Cortelazzo et al. described a trademark shape
description based on chain-coding and string-matching tech-
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nique [12]. Chain codes are not normalized and shape dis-
tance is measured using string matching, so it is not invari-
ant to shape scale. In STAR [13, 14], both contour Fourier
descriptors and moment invariants are used for shape repre-
sentation and similarity measure. Jain and Vailaya proposed
a shape representation based on a histogram of the edge di-
rections [15]. But the scale normalization with respect to the
number of edge points in the image is questionable, as the
number of edge points is not directly proportional to scale.
Also, the similarity measure is computationally expensive, as
it requires to calculate all possible histogram shifts in order
to achieve rotation normalization. Mehrotra and Gary used
coordinates of significant points on the boundary as shape
representation [16]. The representation is not compact and
similarity measure is computationally expensive, as these co-
ordinates must be rotated to achieve rotation normalization.
In the retrieval techniques proposed by Jagadish [17], shapes
are decomposed into a number of rectangles and two pairs of
coordinates for each rectangle are used as the representation
of the shape. The representation is not invariant to rotation.
Recently, Kauppinen compared autoregressive and Fourier
descriptors for 2D shape classification and found the latter
is better [18]. Sajjanhar et al. compared moment invariants
and Fourier descriptors for image retrieval and found their
performance is not significantly different [19]. Scassellati et
al. studied image retrieval by 2D shape representations, in-
cluding algebraic moments, spline curve distances, cumula-
tive turning angle, sign of curvature and Hausdorff distance
[20]. Their study results are not conclusive and performance
based on these measures is generally poor judged by human
perception.

The above review indicates that there is a need for a bet-
ter shape representation and similarity measure. This paper
proposes an alternative shape representation and similarity
measure, and compare its performance with one of the most
popular methods, namely the FD-based method.

3 Region-based shape representation
and similarity measure

3.1 Definitions of common terms

The following are some important terms associated with
shape description which we will use in the following dis-
cussion.

Major axis: it is the straight line segment joining the two
points on the boundary farthest away from each other.

Minor axis: it is perpendicular to the major axis and of such
length that a rectangle with sides parallel to major and minor
axes that just encloses the boundary can be formed using the
lengths of the major and minor axes.

Basic rectangle:the above rectangle formed with major and
minor axes as its two sides is called basic rectangle.

Eccentricity: the ratio of the major to the minor axis is
called eccentricity of the boundary.

Centroid or Center of gravity: a single point of an object
towards which other objects are gravitationally attracted. For

Fig. 1. Generation of binary sequence for a shape

two-dimensional shape, the coordinates (Xc, Yc) of the cen-
troid are defined as
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where (x, y) are pixel coordinates andf (x, y) is set to 1 for
points within or on the shape and set to 0 elsewhere.

3.2 Basic idea of region-based shape representation

Given a shape, we overlay a grid space over it (see Fig. 1).
The grid space, which consists of fixed-size square cells, is
just big enough to completely cover the shape. Some grid
cells are fully or partially covered by the shape and some
are not. We assign a 1 to thecell with at least 15% of
pixels covered by the shape, and a 0 to each of the other
cells. We then read these 1s and 0s from left to right and
top to bottom to obtain a binary sequence for the shape.
For example, the shape in Fig. 1 can be represented by a
binary sequence 11100000 11111000 01111110 01111111.
This binary sequence can be stored as a four-byte integer.

It can be seen that the smaller the cell size, the more
accurate the shape representation and the more the storage
and computation requirements. A good compromise of the
cell size is around 10× 10 to 20× 20 pixels. Cell sizes of
12×12 and 24×24 pixels are used in our work and retrieval
performances based on these two cell sizes are compared.

The above representation is compact, easy to obtain, and
translation invariant, but it is not invariant to scale and rota-
tion. Thus before deriving the binary sequence for a shape,
we have to do scale and rotation normalization.

3.3 Rotation normalization

The purpose of rotation normalization is to place shapes in a
unique common orientation. We decided to rotate the shape
so that its major axis is parallel with the x-axis. There are
still two possibilities for the shape placement: one of the
farthest points can be on the left or on the right. This is
caused by 180◦ rotation. For example, the shape in Fig. 1
can be placed in one of the two orientations as shown in
Fig. 2.

Two different binary sequences are needed to represent
these two orientations. As the binary sequence is used as
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Fig. 2a,b. Two possible orientations with the major axis along the x-
direction

index of the shape in our retrieval system, storing two for
each shape needs twice the storage space. To save storage
space, we obtain and store only one of the binary sequences.
Which one to use is not important and is determined by im-
plementation. The two orientations are accounted for during
retrieval time by representing the query shape using two
binary sequences which are compared to each shape index
stored in the database.

3.4 Scale normalization

To achieve scale normalization, we proportionally scale all
shapes so that their major axes have the same fixed length.
In our study, the fixed length used is 192 pixels.

3.5 Unique shape representation – shape index

After rotation and scale normalization and selection of a
grid cell size, we can obtain a unique binary sequence for
each shape. This binary sequence is used as the represen-
tation or index of the shape. For example, the index of
shape in Fig. 1 (normalized into shapes in Fig. 2) is either
111111110111111000011000 or 001111101111111111111
111.

As we use a grid just large enough to cover the normal-
ized shape, when cell size is decided, the number of grid cells
in x-direction is fixed. The number of cells in y-direction de-
pends on the eccentricity of the shape, the maximum number
being the same as that in x-direction. For example, when grid
cell size is 24×24 pixels, the number of cells in x-direction
is 8 and the number of cells in y-direction can range from 1
to 8, depending on shape eccentricity.

3.6 Similarity measure

The next issue is how to measure similarity between shapes
based on their indexes. As the index indicates the cell posi-
tions covered by a shape, it is natural to define the distance
between two shapes as the number of cell positions not com-
monly covered by these two shapes. Note that 180◦ rotation
and other shape operations will be considered later. Based on
the shape eccentricities, there are the following three cases
for similarity calculation.

– If two normalized shapes have the same basic rectangle,
we can bitwise compare the indexes of these two shapes,
and the distance between them is equal to the number of
positions having different values. For example, if shapes
A and B have the same eccentricity of 4 and binary
sequences 11111111 11100000 and 111111111111100,
respectively, then the distance between A and B is 3.

– If two normalized shapes have very different basic rect-
angles, i.e., they have very different minor-axis lengths,
there is no need to calculate their similarity, as we can
safely assume that these two shapes are very different.
For example, if the eccentricities of shapes A and B are
8 and 2, respectively, i.e., the lengths of minor axes are 1
and 4 cells, then we can assume that these two shapes are
quite different and there is no value to retrieve the shape.
The difference threshold between minor axes depends on
applications and cell size. Normally, if the lengths of mi-
nor axes of two shapes differ more than 3 cells, these
two shapes should be considered quite different.

– If two normalized shapes have slightly different basic
rectangles, it is still possible these two shapes are per-
ceptually similar. We add 0s at the end of the index of
the shape with shorter minor axis so that the extended
index is of the same length as that of the other shape.
The distance between these two shapes is calculated as
in the first case. For example, if the length of the minor
axis and binary sequence of shape A are 2 and 11111111
11110000 and the length of the minor axis and binary
sequence of shape B are 3 and 11111111 111111000
11100000, respectively, then we should extend the binary
number for shape A to 11111111 11110000 00000000.
The distance between A and B is 4.

To facilitate the above similarity calculation during re-
trieval, shape eccentricity is stored together with the unique
binary sequence. They together form the index of a shape.

3.7 Other shape operations

In addition to the 180◦ rotation of shapes, the other two
operations which will result in perceptually similar shapes
are horizontal and vertical flips. Figure 3 shows two shapes
resulted from these two operations on the shape in Fig. 2a.
These two shapes are perceptually similar to the shape in
Fig. 1.

To take into account of these two operations and yet to
save storage space, we still store one index for each shape,
but we generate four binary sequences for each query shape
during retrieval. In this case, perceptually similar shapes re-
sulted from 180◦ rotation and horizontal and vertical flips
can be retrieved.



168

Fig. 3a,b. Horizontal and vertical flips

3.8 Handling multiple major axes

In the above discussion, we assumed that each shape has
only one major axis. In practice, a shape may have multiple
major axes of equal length. The same shape may result in
different binary numbers depending on which major axis is
used for rotation normalization.

To solve this problem, rotation normalization is done
along each major axis and binary numbers for each normal-
ization are used as shape index. The distance between two
shapes is the minimum distance between each pair of binary
numbers of these two shapes.

3.9 Summary of index and retrieval processes

In the above, we have described the region-based shape rep-
resentation which is invariant to translation, scale, rotation
and mirror operations, and similarity measure. In this subsec-
tion, we summarize the shape-indexing and retrieval process.
In a retrieval system, all shapes in the database are indexed.
During retrieval, the query shape is also indexed. Then the
query index is compared with shape indexes in the database
to retrieve similar shapes.

Each shape in the database is processed and indexed as
follows (assuming each shape has only one major axis).

1. The major and minor axes and eccentricity of each shape
are found.

2. The shape is rotated to place the major axis along the
x-direction, and the shape is scaled so that the major axis
is of a standard fixed length.

3. A grid space with fixed cell size is overlayed on top of
the normalized shape.

4. 1s are assigned to cells covered by the shape and 0s to
other cells. By reading these 1s and 0s from left to right
and top to bottom, we obtain a binary sequence for the
shape.

5. The binary sequence and the length of the minor axis are
stored as the index of the shape.

During retrieval, the following steps are used to represent
the query shape and carry out similarity comparison.

1. The query shape is represented by its minor-axis length
and binary sequences using the same procedure as in the
above index process. But note there are four binary se-
quences for each query to take into account 180◦ rotation
and horizontal and vertical flip operations.

2. For efficiency reason, these four binary sequences are
only compared with binary sequences of shapes in the
database with the same or similar eccentricities.

3. The distance between the query and a shape in the
database is calculated as the number of positions with
different values in their binary sequences.

4. The similar shapes are displayed or retrieved in the in-
creasing order of shape distance.

The above-outlined approach is simple and similar to the
way we normally compare shapes. To compare two shapes,
we prefer that they are of same or similar size (scale nor-
malization). Then we will rotate one of the shapes over the
other so that they are in the similar orientation (rotation nor-
malization). Finally, we determine how much they differ,
based on how much they do not overlap. The region-based
approach incorporates all these steps.

4 Performance study

To study the retrieval performance of the above-described
region-based shape representation and similarity measure,
we implemented a prototype shape retrieval system. To com-
pare its retrieval performance with the more established FD-
based method, we also implemented an FD-based method
[18]. In the following, we first briefly describe the imple-
mentation of the FD-based method. We then describe the ex-
perimental setup, the method of performance measurement,
and various experimental results.

4.1 FD-based shape representation and similarity measure

In FD-based method, a shape is first represented by a feature
function called shape signature. A discrete Fourier transform
is applied to the signature to obtain FDs of the shape. These
FDs are used as index of the shape and for shape similarity
calculation.

The discrete Fourier transformation of a shape signature
f (k) is given by

Fu = 1/N
N−1∑

k=0

f (k) exp[−j2πuk/N ]

for u = 0 to N − 1, whereN is the number of samples of
f (k).
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Fig. 4. Twenty sample shapes in the database

There are a number of types of shape signatures. The
commonly used signatures are curvature based, radius based,
and boundary coordinates based. It was found that shape
classification performances based on these three signatures
do not differ significantly [18]. In our experiment, we used
radius-based signature, as it is simplest to implement.

Radius-based signature consists of a number of ordered
distances from the shape centroid to boundary points (called
radii). In our experiment, 64 uniformly sampled boundary
points and thus 64 ordered radii are used as shape signature.
The boundary points are sampled such that the number of
pixels along the boundary between each two neighbouring
points is the same. Shape radii, thus their transformations,
are translation invariant. Note that shapes are not orientation
normalized before the shape radii are used. The normaliza-
tion is achieved by ignoring the phase values of FDs. Shape
rotation is reflected in the phase information ofFu and the
magnitude ofFu, i.e., |Fu|, is invariant to rotation.|F0|
reflects the energy of the shape radii, thus|Fu|/|F0| will
be scale invariant. So we use the following feature vector,
which is invariant to translation, rotation and scale, to index
the shape:

V = [|F1|/|F0||F2|/|F0| . . . . . . |FN |/|F0|]T
The distance between shapes is calculated as the Euclidean
distance between their feature vectors.

One may wonder why we should use FDs as shape in-
dex instead of radii directly. The main reason is that the
direct representation is very sensitive to small changes and
noise, leading to very poor retrieval performance. If 64 ra-
dius lengths are directly used as index, it would be very diffi-
cult to do scale and rotation normalization. It appears that we

can achieve rotation normalization by identifying the shortest
(or longest) radius and achieve scale normalization by fixing
the length of the shortest radius. But this normalization is
not stable, as small change on the boundary may affect the
position of shortest radius and positions of sample points,
leading to very different indexes and large distance between
shapes due to the small change. The purpose of using FD
is to convert the sensitive radius lengths into frequency do-
main, where the data is more robust to small changes and
noise. This is because FDs capture the general feature and
trend of the shape instead of each individual detail. We will
experimentally compare the performance of using radii as
index and FD-based method in Sect. 4.3.

4.2 Experiment setup and performance measurement

Our experimental image database have 160 two-dimensional
planar shapes. Figure 4 shows some sample shapes in the
database.

Each shape in the database is indexed. Four index files,
corresponding to the region-based indexes with cell size of
12×12, and 24×24 pixels, index directly based on radii, and
FD-based index, are created. For each query, four types of
indexes are also calculated and they are used to compare with
indexes in their corresponding index files to obtain shape
distances. Note that, for each of the region-based methods,
four indexes are obtained. Shapes are retrieved (shape name
are returned) in increasing order of distances.

The retrieval performance is measured using recall and
precision, as commonly used in information retrieval liter-
ature [21, 22]. Recall measures the ability of retrieving all
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Fig. 5. Seven query shapes

relevant or similar information items in the database. It is
defined as the ratio between the number of relevant or per-
ceptually similar items retrieved and the total relevant items
in the database. Precision measures the retrieval accuracy
and is defined as the ratio between the number of relevant
or perceptually similar items retrieved and the total num-
ber of items retrieved. For example, if there are 20 relevant
items to a query in the database and the system returns 10
items, of which 8 are relevant, then the recall value is equal
to 40% and the precision value is equal to 80%. Recall and
precision are used together to measure the retrieval effec-
tiveness, as precision varies depending on required recall.
So we normally use a precision-recall curve to show a re-
trieval system’s performance by varying the number of items
returned.

For each query, the relevant items in the database are
the shapes which are perceptually similar to the query. To
calculate recall and precision, we have to know relevant
items for each query.

4.3 Experimental results

We present four sets of results. The first set shows generally
how the proposed method performs as judged by human per-
ception. The second set compares the performance between
the method of using radii as index and the FD-based method.
The third set result compares the performance between the
region-based method (with two different cell sizes) and the
FD-based method. The fourth set result compares the perfor-
mance between the region-based method and the FD-based
method when Gaussian noise is added to all shape bound-
aries.

We summarize the results obtained by issuing seven
queries. These seven shapes, shown in Fig. 5, are randomly
chosen from the database (this is a query-by-example ap-
proach).

4.3.1 General performance

The aim of this experiment is to determine whether the dis-
tance measure of our proposed method conforms with hu-
man perception. Table 1 shows the distance among seven
queries in Fig. 5 (labeled as a to g) and 20 shapes in Fig. 4
(numbered as 1 to 20). In general, the results obtained con-
form with human perception. Of course, human perception
of shape similarity among some shapes is sometimes sub-
jective and application dependent.

Table 1. Distances between the seven queries in Fig. 5 and 20 shapes in
Fig. 4

a b c d e f g

1 0 104 46 76 37 44 65
2 33 65 69 80 38 61 56
3 17 81 33 96 48 37 60
4 104 0 87 76 71 100 37
5 72 62 75 41 53 78 61
6 98 55 104 50 110 103 77
7 46 87 0 86 79 44 60
8 54 88 32 117 89 40 69
9 32 84 34 101 55 52 65

10 76 76 86 0 72 93 76
11 40 76 50 89 47 64 59
12 105 68 121 65 69 90 80
13 37 71 79 72 0 71 66
14 108 55 116 64 74 91 69
15 123 71 132 62 88 137 62
16 44 100 44 93 71 0 63
17 54 92 71 109 49 50 91
18 54 51 52 54 62 69 36
19 65 37 60 76 66 63 0
20 91 38 109 65 81 86 70

4.3.2 Performance comparison between the method
of using radii as index and the FD-based method

When using the FD method, it is necessary to obtain radii
for shapes and then derive the Fourier coefficients for the
shape signature. It is interesting to compare the performance
between the method of using radii directly as index and the
FD-based method.

For the radii-based method, 64 equispaced points along
the perimeter of the shape boundary were sampled. The cen-
troid of the shape boundary was obtained and the centroidal
distances of each of the sample points was computed. The
centroidal distance at each sample point was scaled by a
factor equal to the minimum centroidal distance. The se-
quence of the scale normalized centroidal distances at the
sample points along the shape boundary are used to index
the shapes. The distance between a query shape and shapes
in the database is obtained as the global minimum of the
sum of differences between the centroidal distances.

In the FD-based method, the feature vector is obtained
from the above 64 radii before normalization. The results
for the seven query shapes are averaged to obtain the graph
shown in Fig. 6.

From Fig. 6, it is observed that the FD-based method
performs better than the radii-based method. The superior
performance of the FD method is explained by the fact that
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Fig. 6. Values of Recall and Precision for FD-
based method (DFT) and radii-based method
(RAD) averaged over seven queries

the Fourier coefficients which are used for deriving the fea-
ture vectors for the FD method represent the global features
of shapes, reflecting relationships and variation patterns of
these radii. On the other hand, the radii represent individ-
ual sample points along the shape boundary. Consider two
shapes which are perceptually similar, one having an extra
convex hull on the shape boundary. The two shapes would
have a large difference when computing the difference be-
tween their radii. This is because the length of the perimeter
of the two shapes is different and so the spacing between
sample points on the two shape boundaries would be dif-
ferent. Hence, when the global best match method is used
to compute the difference, only a few sample points on the
shape boundaries would coincide and the others would be
progressively further apart from the coinciding points. In
FD-based method, there will be changes to FDs due to the
minor changes to the boundary, but the change is not dra-
matic.

4.3.3 Performance comparison between the proposed
method and the FD-based method

In this experiment, we compare the retrieval performance
between the proposed method and the FD-based method.
For the proposed method, two cell sizes (12× 12 pixels
and 24× 24 pixels per cell) are used to determine the ef-
fects of different cell size on retrieval performance. Figure 7
shows the retrieval performances of the proposed method
and FD-based method averaged over the seven queries. We
can make the following observations. First, the smaller the
cell size, the better the retrieval performance. This is ex-
pected, as the binary sequences based on smaller cell size
are more accurate in representing shapes. Second, in general,
the region-based approach has better retrieval performance
than the FD-based approach. The region-based method (with
both cell sizes) has higher precision value at each recall value
than FD-based method.

4.3.4 Performance comparison between the proposed
method and the FD-based method when Gaussian noise
is added to shape boundaries

In order to evaluate the proposed method when noise is in-
troduced on the shape boundaries, we indexed the shapes in
the database for each method after adding Gaussian noise

Fig. 7. Retrieval performance averaged over seven queries for FD and
region-based method with cell sizes of 24× 24 and 12× 12 pixels

on the shape boundaries [18]. Noise was also added to the
query shapes. The noisy coordinates (x′

i, y
′
i) on the shape

boundary are given by

x′
i = xi + drc sin(ti),

y′
i = yi + drc cos(ti)

where (xi, yi) are the original coordinates,d is the distance
between the successive boundary points,r is a sample from
the Gaussian distributionN (0, 1), c is a parameter between
0.1 and 0.9 which controls the amount of noise (set to 0.5)
and ti is the tangent angle at the boundary pointi.

The performance for the region-based (with cell size of
12× 12 pixels) and FD-based methods for a noisy database
and noisy queries is shown in Fig. 8.

Figure 8 shows that proposed region-based method still
performs favorably compared with the FD-based method
when noise is added. This result shows that the proposed
method is not very sensitive to noise and perturbations on
the shape boundary.

4.4 Comparison of computation cost

We have compared retrieval effectiveness based on recall
and precision between the region-based and FD-based ap-
proaches. We now compare their efficiency in terms of stor-
age requirement for indexes and computation requirement
during retrieval.
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Fig. 8. Retrieval performance of the Fourier descriptors method (FD) and the proposed method (12× 12) when noise is added

Table 2. Computation cost of indexing a shape for the region-base method,
whereN is the number of coordinates used (typically around 20) to obtain
the polygonal approximation of the shape boundary andP is the number
of pixels (192× 192) of the grid used

Operation Computation cost

Finding major axis O(N2)
Finding minor axis O(N)
Rotating and scaling O(N)
Deriving binary number O(P)

Table 3. Computation cost of indexing a shape for the FD-based method,
where R is the number of radii (normally 64) used

Operation Computation cost

Finding centroid O(R)
Finding all radii O(R)
Finding all Fds O(R2)
Deriving feature vector O(R)

For the region-based approach with cell size of 12× 12
pixels, a maximum of 33 bytes (32 bytes for binary sequence
and 1 byte for minor axis) is required for storing the index
of each shape. With a cell size of 24× 24, a maximum of
9 bytes (8 bytes for binary sequence and 1 byte for minor
axis) is required for storing the index of each shape. In the
FD-based approach, 64 real numbers must be stored as index
(feature vector) for each shape if all 64 Fourier components
are used. This number can be reduced to 16 or 32, with some
performance degradation [18]. Since one real number needs
at least 4 bytes, the FD-based approach needs much more
storage space than the region-based approach.

During retrieval, both FD-based and region-based meth-
ods need to first derive the index for the query and then
compare similarity between the query and shapes in the
database. For the region-based method, the major operations
and required computation cost for indexing each shape are
summarized in Table 2.

For the FD-based method, the major operations and re-
quired computation cost for indexing each shape are sum-
marized in Table 3.

Comparing Table 2 and Table 3 and considering that
complex numbers are involved in FD-based method, the

computation costs in indexing for the region-based and FD-
based methods are not significantly different. In addition,
we should note that only query indexing is done on-line,
indexing of shapes in the database is done off-line.

To compare similarity between the query and shapes in
the database, the region-based approach uses two steps. The
first is to identify the shapes with similar eccentricities to
the query and the second is to calculate the similarity or dis-
tance between the query and these shapes. Because of the
first step, the number of similarity comparisons is reduced
significantly. For each similarity calculation, all that is re-
quired is to carry out an exclusive OR between the query
binary sequence and the stored-shape binary sequence and
count the number of ones in the result.

In the FD-based approach, similarity must be calculated
between the query and feature vectors of all stored shapes.
For each similarity calculation, 64 real-number subtractions
and 63 real-number additions are required. So the FD-based
method requires slightly more computation power for simi-
larity calculation than the region-based method.

Therefore, we can conclude that the region-based method
has a similar computation cost as the FD-based method, but
has lower storage requirements than the FD-based method.

5 Discussion

We have compared retrieval performance (including effec-
tiveness and efficiency) between the region-based and FD-
based methods. In this section, we look at the relationships
between the region-based method and other closely related
shape representations and similarity measure, and comment
on which applications the proposed method is most suited
for.

The region-based approach originated from the work to
normalize chain code representation [23]. Using a similar
normalization procedure as described in this paper, normal-
ized chain code which is invariant to shape scale, translation
and rotation can be obtained.

A closely related work is reported by Jagadish [17].
In his method, shapes are decomposed into a number of
variable-size rectangles, and two pairs of coordinates for
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each rectangle are used as the representation of the shape.
The major differences between his method and our method
are as follows. First, our representation is invariant to shape
scale, translation, rotation and mirror operations, whereas his
method is not invariant to rotation and mirror operations.
Second, we decompose a shape into a number of fixed-size
squares (cells), whereas variable-size rectangles are used in
Jagadish’s work. Thus, it is difficult to do decomposition,
and more data are required for representing these rectan-
gles for most shapes in his technique. Third, it is easier to
compute shape similarity in our approach.

Compared to methods based on curvature, significant
edges and points [15, 16], our method has the following
advantages. First, our normalization is more natural and ac-
curate. Second, it is easier to calculate shape similarity in
our approach.

Our proposed rotation normalization can be applied to
other shape representation methods proposed by Jain and
Vailaya [15], Mehrotra and Gary [17] and Jagadish [17] to
reduce the computation cost during retrieval. For example, if
the rotation normlization is applied to the method proposed
by Mehrotra and Gary, the significant points coordinates may
not need to be rotated during the similarity comparison.

The reason why the region-based method performs well
is that the binary representation is quite stable: minor changes
or noise on the boundary will change very few bits in the bi-
nary number, provided that the major axis does not change. It
initially appears that the retrieval performance of the region-
based approach is sensitive to noise on shape boundaries,
because noise may change the position of the major axis
and thus change the binary sequence dramatically. But it
may not be a serious problem, considering the following.
It is likely that the chance that noise affects the major axis
is very low. If the noise does not affect the major axis,
our method may actually perform better than other methods.
This is because slight noise may not change the binary se-
quence much, but may change the boundary properties such
as curvature, significant edge and points. So overall, the re-
trieval performance of the proposed approach under noise
may be still comparable or better than other methods. Our
experimental results confirmed this observation.

The performance of the region-based method relies on
the stability of the major axis. It is thus better suited for
non-occluded shapes. For occluded shapes, it may work if
the major axes remain unchanged. This is equivalent to the
case where noise is added to the boundary. We have shown
that the region-based method still performs well when Gaus-
sian noise is added to shape boundaries. However, when the
major axis changes due to occlusion or other operations, the
region-based method will not perform well.

In conclusion, the proposed region-based method com-
pares favorably with FD-based method in both retrieval
effectiveness and efficiency. It is thus envisaged that this
method can be integrated with other content-based image
retrieval techniques to improve retrieval performance.
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