
Multimedia Systems 6: 349–358 (1998) Multimedia Systems
c© Springer-Verlag 1998

Personalized, interactive news on the Web

Krishna Bharat 1,
?

, Tomonari Kamba1,
??

, Michael Albers2,
???

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract. We presentKrakatoa Chronicle, an interactive,
personalized newspaper on the World Wide Web imple-
mented as a Java applet. The newspaper is similar in appear-
ance to newspapers in the real world, with a multi-column
layout and justified text. At the same time, it provides various
interaction techniques for browsing the content of articles,
giving relevance feedback, and dynamically changing layout.
As users interact with the system, individual ‘user profiles’
are built up at the webserver site. These are used to tailor
the newspaper’s content and layout to each user’s declared
and inferred preferences. The system allows for a balancing
of personal and community interests, allowing the user to
navigate through a space of newspapers corresponding to a
range of viewpoints.

Key words: On-line newspapers – Automatic layout – Com-
munity interest – Relevance feedback – Customization – Per-
sonalization

1 Introduction

The World Wide Web has become a powerful means of
disseminating information to an audience of unprecedented
size. Numerous information-gathering and -classifying robots
or ‘infobots’ are at work, dedicated to the task of bringing
the right information to interested people. Not surprisingly,
various newspapers and publishing houses have started to
look upon the web as a viable publishing medium, and have
started placing some of their material on-line in a hyper-
text format. The site, [7], lists several hundreds worldwide.
Once the infrastructure for electronic commerce is in place,

? Present address: Digital Equipment Corporation, Systems Research
Center, 130 Lytton Avenue, Palo Alto CA 94031, USA;
e-mail: bharat@pa.dec.com

?? Present address: C&C Research Laboratory, NEC Corporation, 1-1
Miyazaki 4-Chome Miyamae-Ku, Kawasaki Kanagawa 216, Japan;
e-mail: kamba@mmp.cl.nec.co.jp
??? Present address: 2550 Garcia Avenue, MS UMTV21-228, Mountain
View, CA 94043-1100, USA; e-mail: mca@eng.sun.com
Correspondence to: K. Bharat

both the supply and demand for organized information can
be expected to grow.

On-line newspapers are arguably harder on the eyes and
ergonomically less appealing than their hard-copy counter-
parts. Some studies [15] seem to indicate that raster dis-
plays of text compare favorably with printed text in reading
tasks. However, on-line publications do have some advan-
tages. They are well suited for dynamic news streams that
evolve over time, and for the presentation of multimedia
information. Electronic text affords browsing, querying and
flexible reuse. Also, since the structure of electronic news-
papers can be easily changed, it is possible to dynamically
personalize the layout and composition of the newspaper.
This can be done interactively by the end-user, and also by
the system, based on a prediction of user’s interests. Since
electronic newspapers are not subject to the economies of
scale of newsprint, it is feasible to give each reader his or
her own personal newspaper. Bogart observes in [1] that
readers find the idea of a personalized newspaper appeal-
ing, but practical considerations have prevented this from
being realized under the conventional, hard-copy publishing
framework.

There are many advantages to placing a newspaper on the
web: universal access, the presence of infobots which direct
users to the service, and a commonly available presentation
infrastructure. Unfortunately HTML is not rich enough to
support custom user interfaces such as the one needed in an
interactive newspaper. Although ‘frames’ and ‘tables’ can
be used to partition the page into articles, HTML still lacks
the support to display multi-column, justified text within in-
dividual articles (e.g., the Chicago Tribune [4] has a tabular
layout without multi-column text). Hence, web-based news-
papers have not bothered to reproduce the look of real-world
newspapers. We felt this was an important part of the experi-
ence of reading news. The visual appearance of a document
has a big influence on the manner in which it is perceived
and the degree to which it is accepted. The format of present
day newspapers has evolved over a long period of time with
layout conventions that have a high degree of social accep-
tance.

While we wished to emulate real-world newspapers in
matters of appearance, we wished to provide more in terms



350

of interaction. Currently web-clients send all their input to
the server, incurring a large time penalty due to synchronous
network communication. This large response time stifles in-
teraction, limiting the set of interfaces that can be supported
in this fashion. A richer drawing model and the ability to ex-
ecute computations at the client are vital to providing quick
semantic feedback and for implementing the custom widgets
needed in a newspaper interface.

We present theKrakatoa Chronicle[8], an interactive,
personalized newspaper on the WWW, which overcomes
these limitations. The newspaper may be viewed using Java-
compliant web-browsers, i.e., browsers which can display
HTML documents containing executable Java byte-code. In
this model of computation, a document such as our newspa-
per, will bring with it code to be executed within the user’s
browser. In our case the code renders a realistic newspa-
per on the user’s screen and does input handling, behaving
like a regular user interface application. Unlike in previous
web-based newspapers, this allows for interactive person-
alization, browsing and layout control. It provides an open
architecture for experimenting with various interaction, dis-
play and personalization strategies, and for embedding other
interactive features within the framework of a newspaper.

2 Overview

In this section, we present an overview of our newspaper.
This corresponds to the user’s view of the system.

2.1 Connecting to the service

The Krakatoa Chronicle has a client-server architecture. Ar-
ticles are collected and indexed at the server site, and orga-
nized into newspapers for a community of registered users.
This happens off-line on a periodic basis. The server site is
usually the same as the host running the web-server. Users
connect to the system via the web and access their personal
newspaper. This causes a web-document containing an em-
bedded Java applet to be downloaded to the client-browser.
The applet then displays the newspaper and handles input
from the user.

2.2 The newspaper

Figure 1 shows a typical screen of the Chronicle, viewed in
Sun’sHotJavaweb-browser. The page displayed is the first
of 13 pages. It is partitioned into a mosaic of articles. Each
article is an interactive widget, containing a title in bold
font, a scrollable text region containing the article’s text in
justified Times Roman font, and other widgets to support
browsing and feedback.

In hard-copy newspapers, text which cannot be displayed
in the main article is placed in a continuation on another
page. In an electronic newspaper it makes more sense to al-
low the user to browse the article in place, without losing
context by having to move to another part of the newspa-
per. For this purpose, single column articles have vertical
scrollbars and multi-column articles have horizontal scroll-
bars. Scrolling causes the article’s text alone to scroll without

displacing the title and other widgets. In addition, thePeek
Button(labelled ‘P’), allows articles to be temporarily max-
imized over the entire page, while the mouse button is held
down. If necessary, the maximized article can be scrolled
by a horizontal drag. Clicking on theSave Button(labelled
‘S’), causes the article to be saved to the user’sScrapbook,
which is a web-page containing links to various articles the
user wished to preserve.

The Score Bar, shown immediately below the title, is a
custom widget that displays the importance of the article to
the user and to the community. This is in fact a slider.

It was our intention to make widgets as unobtrusive as
possible, receding into the background when not in use, to
avoid distracting the user from the task of reading the news-
paper. Figure 2 illustrates this behavior in the case of a Score
Bar. The importance of the article to the user (orpersonal
importance) is shown quantitatively by the location of the
Score Bar’s thumb, and qualitatively as a textual rating (at a
coarser granularity). Ratings range from ‘Totally Irrelevant’
to ‘Very Interesting’ through ‘No Comment.’ The vertical
line shows the importance of the article to the community
(or community importance) on the same scale. This cannot
be manipulated by the user. Later, we discuss how these
scores are computed.

Initially, personal importance is the system’s estimate
of the user’s interest in an article, based on feedback given
during the browsing of previous editions. If the rating seems
incorrect, the user can change the article’s score on the Score
Bar. This feedback has two effects: (a) it could alter the rank
of the article in the current newspaper, and (b) it causes the
server to be notified of the updated score. Users have indi-
vidual ‘interest profiles’ which track their interest in various
topics. As we shall explore in more detail, once users have
provided feedback on the articles they have read, their pro-
files are automatically updated.

The newspaper’s content and layout are based on the
importance of each of the articles to the user and to the
community. The manner in which these values are com-
bined in deciding the article’s importance can be controlled
dynamically using theTendency Bar. Figure 1 shows this
slider in its passive state. Thetendencyfactor ranges from
‘Very Personal’ (where only personal importance is consid-
ered) to ‘Fully General’ (where only community importance
is considered) through ‘Average’ (where the scores are av-
eraged). Articles of high importance will appear earlier in
the newspaper, have titles with larger font, and be allocated
more space than articles of lesser importance. Also, within
a given page, the more important articles will be closer to
the top-left corner than other articles. These layout consid-
erations are similar to those employed in the typesetting of
hard-copy newspapers.

Two other controls are provided to manipulate the lay-
out. TheDensity Barcontrols the density of articles within
a page, and hence the number of pages in the newspaper.
The amount of screen real-estate allocated to each article is
a function of both the article’s importance and the amount
of text in the article. The Sensitivity Bar controls the de-
gree to which these parameters affect space allocation. In
the ‘Totally Insensitive’ state the space in the page is di-
vided evenly among the articles it contains. As sensitivity is



351

Fig. 1. View of an edition of the Krakatoa Chronicle (6 articles,sensitivity: high, tendency: very personal). The animated logo at the top representsKrakatoa,
an active volcano in the Java sea

increased, articles of greater importance or size will tend to
expand at the expense of smaller, less important articles.

The user can customize the layout by changing article
scores and manipulating global layout parameters such as
packing density, variance in size allocation, and the ratio in
which the personal and community importance factors are
combined to decide the ranking of articles. Since relayout
often causes global reorganization, it is both time consum-
ing and potentially confusing to the user. Hence, users are
given aReLayout Buttonto explicitly initiate relayout, and
are expected to batch changes to layout parameters and ar-
ticle scores between invocations of the command. Our ini-
tial implementation performed automatic relayout after each
change, which proved to be distracting.

Figures 1, 3 and 4 illustrate the effect of varying tendency
on a given edition. The articles in Fig. 1 (Very Personal) have
high personal ratings, while articles in Fig. 3 (Fully General)
tend to have low personal ratings, but are displayed because
they are relevant to the community (i.e., their community
ratings are high). Figure 4 illustrates the average case and
it can be seen that there is a mix of articles drawn from
the two previous cases. In Figs. 1 and 3 sensitivity is high,
showing a fair amount of variance in the space allocated to

Fig. 2. When not in use, widgets recede into the background to avoid
distracting the user. They ‘wake up’ when the mouse is within ‘sense range’

articles. In Fig. 4, since sensitivity is low, article sizes are
approximately the same.

The button labelled ‘B’ is used to switchbold modeon
and off. In bold mode (shown in Fig. 5) the article currently
under the cursor is rendered in bold font causing the text to
expand at the expense of the margins of neighboring articles.
This is a preliminary attempt to provide focus within the
newspaper page. A better option would be to use a fish-
eye (focus+context) technique such as the ‘Document Lens’
[16]. We have an additional motive for wanting users to



352

Fig. 3. Another view of the same edition
(three articles, sensitivity: high, tendency:
fully general)

Fig. 4. Third view of the same edition (eight
articles, sensitivity: none, tendency: average)



353

Fig. 5. ‘Bold’ mode to provide focus

explicitly indicate their point of focus within the newspaper.
We track interaction events to allow us to correlate them with
the user’s explicit relevance feedback. The hope is that, if
a good correlation is detected, we may be able to estimate
the user’s interest in articles largely by observation, reducing
the need for explicit positive feedback. They may still need
to provide negative feedback where applicable. Preliminary
studies [17] show this to be a worthwhile approach. A focus-
oriented interaction technique would be an excellent source
of ‘interest events.’

2.3 Maintaining user profiles

In addition to the part of the user profile which is implicitly
maintained by the system based on user feedback, there is
an explicit part which the user creates and maintains. This
consists of two lists of keywords – a list of keywords the user
is interested in and another containing keywords they wish to
avoid. When users connect to the system they are given three
options: ‘Create New Newspaper’, ‘Read Last Newspaper’
(if applicable) and ‘Edit User Profile.’ The last option takes
them to a form where the explicit keywords lists can be
edited. When the user selects ‘Create New Newspaper’ (and
also every time the document set changes), the feedback log
since the last session is used to update the implicit portion of
the profile. In creating a newspaper, the keywords explicitly
specified by the user are given precedence over any other
keywords the system may have added to the profile on its
own accord.

3 System architecture

In this section, we describe salient features of the Kraka-
toa Chronicle’s architecture. Figure 6 illustrates the various
activities involved and the entities responsible for each.

3.1 Server site processing

3.1.1 Gathering articles

We download articles on a periodic basis from theNews and
Observernewspaper (NandO [14] based in Raleigh, NC)
with their permission. Most of the information available on-
line (such as Usenet news) is not suitable for inclusion in a
newspaper, because it is either lacking in newsworthy con-
tent or lacks the objective, professional style of newspaper
articles. Our focus was not on finding information on the
Internet to compose a newspaper. Rather, we wished to de-
velop a mechanism that would allow publishing houses and
commercial newspapers to present their articles to a discern-
ing audience. Hence, one of the assumptions we make is that
there is a readily available collection of quality articles, pos-
sibly classified into sections. In practice, such a newspaper
could combine articles from various news sources.

3.1.2 Indexing and formatting

Perl scripts translate the source documents to plain text (in
our case from HTML). The text of the articles is indexed
by the SMARTdocument indexing engine [2] to produce a
set of document feature vectors. In the process, the engine



354

Fig. 6. System architecture of the
Krakatoa Chronicle

eliminates common words (such as ‘a’ and ‘an’), eliminates
suffixes by stemming and generates a set of document fea-
ture vectors, one for each document. Eachdocument vector
contains a list of keywords which were found to be highly
representative of the document within the document set, and
corresponding weights. The weight of a keyword is pro-
portional to its merit as a representative of the document.
Keywords that occur frequently in a document and occur
in few documents within the document set are considered
good discriminants. Specifically, weights are computed us-
ing the ‘term frequency times inverse document frequency’
(or TFIDF) metric. Salton et al. ([18] p. 105) note that TFIDF
is quite effective in keyword-based information filtering.

Next, a Perl script separates the title, credits and con-
tent portion of each of the articles, and formats the content
into justified Times Roman using the UNIX utility,troff.
We needed to tailor our scripts to the source format. This
is the only component of the system that is source specific.
Preformatting the text saves the client code the burden of
formatting text in the client at run time.

3.1.3 Interaction with users

User interaction at an administrative level is handled by CGI
scripts. These are invoked when a user interacts with one of
the newspaper’s web-pages to create their account, launch
their newspaper or update their explicit profile. A script is
involved also when feedback from a user updates their pro-
file. Each user’suser profile is a vector of keywords and
weights similar to document vectors. Indeed, it is derived
from document vectors by a process of weighted averaging.
Explicitly specified keywords are also a part of the user pro-
file and receive the maximum positive or negative weight
as the case may be. When users provide feedback on the
relevance of articles, the scores they supply are transmitted
to the server and logged. At a subsequent point in time, the
final scores assigned to each article are used to update the
profile.

If dS is the change in the relevance score due to user
feedback for an article with normalized document vector,d,
the implicit part of the user profile,ui, is updated as follows:

ui = ui + d · dS · mutability,

wheremutability is a scalar in the range [0..1] which decides
the degree to which the incoming feedback will affect the
profile. We used amutability value of 0.75.

3.1.4 Creating newspapers

When articles are first indexed, a newspaper is created for
each of the users. Subsequently, users may ask for fresh
newspapers to be created at any time when there is outstand-
ing feedback. The process of creating a newspaper involves
computing the goodness of the match between the user pro-
file and each of the documents in the document set. This
is computed in each case as the scalar product of the user
profile and the document vector, normalized by document
size. This quantity is scaled to the range [−1000...1000] and
represents the document’s personal importance for the user.

In the absence of a good measure of community impor-
tance, we chose to average the personal importance of each
of the users in the community. Unfortunately, this produced
uniformly low scores for all articles, since, given any article,
a large fraction of the users will not have a strong opinion
about it. Later, we decided to average the scores of users who
have ‘significant’ opinions about the article (in the system’s
estimation), determined using a pair of significance thresh-
olds. This was more effective. This is still not as effective
as having a human editor rate the importance of the articles
to the community. Often, there are developments that do not
match anyone’s list of favorite topics, but are still important
enough to be on the front page of the community newspa-
per. The ranking used by the source of the articles (e.g., the
location of the article in NandO’s newspaper) could also be
used for this purpose.



355

The newspaper is transmitted as an HTML document
containing a Java newspaper applet, with the titles, scores
and the number of lines in the various articles as parameters.
The contents of the articles are not transmitted until neces-
sary. The initial parameters enable the applet to compute an
initial layout before beginning to download the formatted
contents of articles.

3.2 Client side processing

The applet consists of three logical parts: the Interaction
Manager, the Article Manager and the Layout Manager. The
Interaction Managerbuilds and manages the user interface
of the newspaper. In the process, it uses theLayout Manager
to: (a) compute the allocation of articles to pages, and (b)
compute the layout of each page in the newspaper. It then
builds the user interface by embedding article widgets within
page widgets. Since the layout is subject to constant change,
the Layout Manager is invoked frequently to reorganize the
user interface.

TheArticle Manageris given the task of asynchronously
downloading the formatted text of the articles from the
server. This is done asynchronously to avoid freezing the
user’s screen until all the articles are loaded, since it may
take a while. For example, the size of formatted text for 92
articles (a sample document set) is about 2 MB. The order
in which articles are fetched from the server is driven by the
current layout criteria. As the tendency of article selection is
changed or article scores change due to feedback, the order-
ing of articles within the document will change. Every time
this happens the Article Manager thread is halted, while the
new order is computed. This involves sorting the article set
based on the weights of articles, where an article’s weight
is computed thus:

weight = personal score · β + community score · (1 − β),

whereβ (0 ≤ β ≤ 1) is the tendency factor,
Then, the Article Manager thread starts once more from

the beginning, but only downloads articles that have yet to
be loaded.

3.2.1 Computing layout

Layout computation is completely independent of article
downloading and is based solely on the initial information
received about each article (namely title, number of lines,
and scores). The layout process involves the following two
steps: (i) assignment of articles to pages, and (ii) structuring
of articles within a given page.

First, based on the user-controlled density factor, the av-
erage number of articles per page is computed. We use the
number of lines in each article to partition the sorted list of
articles into segments corresponding to each page. Articles
lengths (subject to a threshold) are used to decide how many
articles should go on a given page. Pages containing small
articles may have more than the average number, and pages
with large articles may have less.

Then, to lay out articles within a given page, we employ
a randomized algorithm to recursively partition the page real-
estate using vertical and horizontal splits. With each split,

Fig. 7. Anatagonomy

the sorted list of articles under the split is partitioned into
two halves of approximately equal cumulative weight. The
decision to split vertically or horizontally is based on a ran-
dom number weighted by (i) the availability of columns, (ii)
the lengths of the title lines, (iii) the dimensions of the space
available. The ratio in which the split partitions the space is
based on (i) the sensitivity factor (user controlled), (ii) the
cumulative weights of the articles on either side of the split,
(iii) the number of lines on either side of the split.

This creates a partition of the page into rectangular re-
gions. Each region embeds an article widget. Although hard-
copy newspapers sometimes use non-rectangular embedding,
we found this to be quite adequate. The use ofin situ brows-
ing techniques simplifies our task by reducing the need for
more elaborate embedding schemes. For instance, newspaper
typesetters are careful not to make continuations too small
because the reader would be forced to turn to a new page
for very little compensation. This does not affect us, since
we use scrollbars. Indeed, the need to scroll very little can
be a blessing.

4 Discussion and related work

4.1 Performance

A typical batch of articles would contain about 75–100 ar-
ticles. Extracting feature vectors took about 8 min on aHy-
perSparcand was done off-line. The web-server ran on a
SparcStation 20and took about 5 s to compute the newspa-
per for each user. This tends to be a function of the size
of the user profile. We limited the growth of user profiles
by keeping only the top 5000 significant keywords. One
could also employ a decay scheme to progressively weaken
weights unless reinforced by feedback. This would help cope
with the changing interests of users.

The time taken to download an article from the web-
server was about 8 s over our Ethernet LAN. The first page
took about a minute to come up (for a six-article page).
Thereafter, the user was able to interact with the page while
articles were downloaded in the background. Random access
to a page later in the newspaper or a change in tendency



356

could cause the newspaper to block while the relevant arti-
cles are fetched.

4.2 Personalization

Fishwrap [3] maintains a user profile which keeps track
of the user’s personal interests and community affiliations.
They also generate a front page consisting of frequently
accessed articles. However this does not necessarily mean
the users liked those articles; nor is there a means of mix-
ing community and personal articles in varying proportions.
Ours is the first newspaper to attempt a realistic, multi-
column rendering with personalization of layout based on
predictions of user interest. We believe that a totally per-
sonalized newspaper is inadequate, since it fails to expose
the user to important developments and does not encourage
the growth of new interests. Our experience shows that av-
eraging the opinions of other users to compute community
importance is not as good as having an editor’s viewpoint,
but is a reasonable substitute. In the future, we hope to help
users benefit from the ratings of others with similar tastes
using collaborative filteringstrategies, as in [6, 19]. This
helps effectively bootstrap a user’s profile, and allows users
to benefit from the feedback given by others who read the
newspaper earlier (e.g., those in an earlier time zone).

4.3 Computing user profiles

Many schemes have been employed for this purpose. The
simplest is to let users maintain the profiles themselves [20].
Besides being tedious, this method fails to track the subcon-
scious and transient interests of the user. Users sometimes
cannot find appropriate words to express their interests. In
Newsweeder[10], the user assigns a score to each article via
a score bar, as in our case. This is effective, but still a bit
burdensome. Morita et al. [11] tried predicting the interest
of users based on the time spent in reading Usenet news
articles and got promising results. They required users not
to be engaged in other activities while reading news. This
may not be reasonable requirement.

In an interactive system such as ours, there is plenty of
opportunity to record events as the user interacts with the
newspaper. Scrolling, peeking at, and saving an article to
scrapbook are reliable indications of interest. One alternative
would be to have the user’s Score Bar incremented automat-
ically when the number of interest events within an article
crosses a certain threshold. This will allow the newspaper to
periodically revise its prediction of the user’s interest. Such
changes to the predicted score would also transmit feedback
to the server, in the same way as explicit feedback. This ap-
proach has been studied in a reimplementation of Krakatoa
Chronicle called Anatagonomy, discussed in the next sec-
tion.

5 Recent work

Things move quickly on the Internet. Since this paper was
written, our newspaper has been reimplemented by the au-
thors at their respective companies, namely DEC and NEC.

The chief motivation for reimplementing was to move from
Java(alpha) to JDK 1.0, to allow the applet to run on all
Java-compliant browsers. The newer implementations are
more efficient. They use the same architecture as Krakatoa
Chronicle and inherit most of its features.

The NEC implementation, known asAnatagonomy[9]
(Japanese for “As you like it”), is shown below (Fig. 7).
Anatagonomy uses a better matching and learning engine
than the Chronicle, based on the work of Nakamura et al.
(described in [12]). Global layout controls for density, sensi-
tivity, etc. have been removed; instead, the user is given the
option of a set of predefined layouts. In addition to display-
ing articles in a newspaper format, they can also be presented
with a magazine-like appearance, as a passive scrolling dis-
play, and as an index view (called “banzke”). One of the
goals of implementing Anatagonomy was to explore the pos-
sibility of using implicit feedback (based on actions on the
user interface) to compute a relevance score for articles. In a
user study [17], it was discovered that there is an apprecia-
ble correlation between scrolling and enlarging articles and
the user’s perception of the article’s relevance. Not perform-
ing these actions was taken as a sign of lack of interest and
interpreted as negative feedback.

X-Press-O[13], a commercial realization of this system
by NEC andThe Yomiuri Shimbunnewspaper, is publicly
accessible.

EachNewsis a port of Krakatoa Chronicle to JDK 1.0
within DEC, and preserves most of its features. The rele-
vance feedback mechanism was improved to make the user
profile update mechanism a closer approximation to the true
inverse of the matching function. In the equation presented
earlier for updating the user profile,ui = ui + d · dS, errors
due to the cumulative effect of terms occurring in multi-
ple documents were ignored. Such terms are relatively in-
frequent in the set of significant keywords (typically less
than 10%), because the TFIDF metric tends to reduce their
weights. However, when they do occur in the document ma-
trix, their scores tend to be updated in the profile for each
of the documents they occur in. EachNews compensates for
this by computing user profile scores for multiply occurring
terms first, and then adjusting the scores of the singly occur-
ring terms, based on the remaining portion of the relevance
feedback.

EachNews also provides the notion of sections. The
newspaper’s administrator provides a set of sections, and
articles drawn from the various sources are assigned to the
sections based on a set of mapping rules. The user is pro-
vided with a selection dialog for choosing sections to view
(see Fig. 8). Only articles in the selected sections get dis-
played in the resulting view. This allows the user to browse
a slimmer newspaper, leading to a lightweight and more re-
sponsive applet.

6 Conclusions

We have described our experiences with Krakatoa Chronicle,
the first newspaper on the World Wide Web to provide a
layout similar to that of real-world newspapers. Unlike other
newspapers on the web, it is interactive and supports end
user customization article layout. Also, the user is allowed



357

Fig. 8.EachNews, with a mix of articles
on information technology and world
news

to control the extent to which public and personal interests
are mixed in composing the newspaper. We are grateful to
the News and Observer for allowing us to use their on-line
articles for our newspaper.

In the future, we expect to include dynamic components
into the newspaper framework, such as a shared whiteboard,
crossword puzzles, animated comic strips, etc. These are
starting to appear in on-line publications. For example, the
Editor and Publisher Newssite [5] includes on-line discus-
sions on current events. Embedded interactive features are
easily implemented in the Java framework and seem nat-
ural in a newspaper setting and could use a similar scor-
ing/personalization mechanism for layout. This would allow
an electronic newspaper such as ours to play a more useful
role on the desktop.

References

1. Bogart L (1989) Press and Public: Who Reads What, When, Where,
And Why In American Newspapers. Lawrence Erlbaum Associates,
Hillsdale, New Jersey

2. Buckley C (1985) Implementation of the SMART Information Re-
trieval System. Cornell University, CS Department Technical Report:
TR85-686

3. Chesnais PR, Mucklo MJ, Sheena JA (1995) The Fishwrap Personal-
ized News System with Mathew Mucklo and Jonathan Sheena. Pro-
ceedings of the 1995 2nd International Workshop on Community Net-
working. Princeton, NJ, June 1995, pp 275–282

4. Chicago Tribune (1995)<http://www.tribune.com/>
5. Editor and Publisher News (1995)

<http://www.mediainfo.com/ephome/news/newshtm/news.htm>
6. Goldberg D, Nichols D, Oki B, Terry D (1992) Using Collaborative

Filtering to Weave an Information Tapestry. CACM 35(12):61–70

7. Intercom News Index (1995)
<http://www.intercom.com.au/intercom/newsprs/index.htm>

8. Kamba T, Bharat K, Albers M (1995) The Krakatoa Chronicle: An In-
teractive, Personalized Newspaper on the Web. In: Fourth International
WWW Conference, Boston, Mass.

9. Kamba T, Sakagami H, Koseki Y (1997) ANATAGONOMY: A Per-
sonalized Newspaper on the WWW. Int J Human-Comput Stud (Spe-
cial Issue on Innovative Applications on the World Wide Web) 46 (6):
789–803

10. Lang K (1995) NewsWeeder: Learning to Filter Netnews. In: Proc. of
the 12th International Conference on Machine Learning, pp 331–339.
San Francisco, CA, Morgan Kaufman

11. Morita M, Shinoda Y (1994) Information Filtering Based on User Be-
havior Analysis and Best Match Text Retrieval. In: Proc. of SIGIR’94,
Dublin, Ireland, pp 272–281

12. Nakamura A, Mamizuka H, Toba H, Abe N (1995) Learning Personal
Preference Functions using Boolean-Variable, Real-Valued, Multivari-
ate Polynomials. In: Proc. of the 52nd National Convention of the
Information Processing Society of Japan (in Japanese),

13. NEC and The Yomiuri Shimbun (1996) X-Press-O. Tokyo, Japan.
<http://pnews.cplaza.or.jp/startpnewse.html>

14. News and Observer (1996) The NandO Times
<http://www.nando.net/newsroom/nt/nando.html>

15. Osborne DJ, Holton D (1988) Reading from Screen versus Paper: there
is no difference. Int J Man-Mach Stud 28: 1–9

16. Robertson GG, Mackinlay JG (1993) The Document Lens. In: Proc.
of UIST ‘93, pp 101–108, Atlanta, Georgia

17. Sakagumi H, Kamba T (1997) Learning Personal Preferences On On-
line Newspaper Articles From User Behaviors. In: Proc. of the Sixth
International WWW Conference, Santa Clara, Calif,

18. Salton G, McGill MJ (1983) Introduction to Modern Information Re-
trieval, McGraw-Hill, New York

19. Shardanand U, Maes P (1995) Social Information Filtering: Algorithms
for Automating “Word of Mouth”. In: Proc. of SIGCHI‘95, Denver,
Colorado

20. Yan TW, Garcia-Molina H (1995) SIFT – A Tool for Wide-Area Infor-
mation Dissemination. In: USENIX Technical Conference, pp 177–186,
New Orleans, Louisiana



358

Krishna Bharat received his B.Tech
from the Indian Institute of Technology,
Madras in 1991 and his Phd in Computer
Science from Georgia Institute of Tech-
nology in 1996. At present he is a soft-
ware engineer at DEC Systems Research
Center in Palo Alto. His research inter-
ests include user interface toolkits, dis-
tributing computing, online information
services, and data mining on the web.

Tomonari Kamba received his B.E.
and M.E. in Electronics from the Uni-
versity of Tokyo in 1984 and 1986, re-
spectively, and joined NEC Corporation.
He was a visiting scientist at the Graph-
ics, Visualization & Usability Center at
the College of Computing, Georgia In-
stitute of Technology from 1994 to 1995.
Currently, he is an assistant research
manager of C&C Research Laboratories,
NEC Corporation. His research interests
include multimedia user interfaces, mo-
bile computing, and online information
services.

Michael C. Albers is a User Inter-
face Designer at JavaSoft. His interests
include human-computer interaction, the
use of sound in the interface, and cogni-
tive science. Michael can be reached at
michael.albers@sun.com.


