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Abstract. For a video-on-demand computer system, we pro-read-only in nature, and basically predictable in length: cus-
pose a scheme which balances the load on the disks, therelbhgmers are typically entitled to pause and then resume [22],
helping to solve a performance problem crucial to achievingbut, generally speaking, they watch the videos without inter-
maximal video throughput. Our load-balancing scheme confuption for long stretches at a time. Video on disks is typi-
sists of two components. The static component determinesally stored in MPEG-compressed format [25], and different
good assignments of videos to groups of striped disks. Theideos require similar megabits-per-second rates. Thus, al-
dynamic component uses these assignments, and featureghough a disk has a very well-defined maximum acceptable
“DASD dancing” algorithm which performs real-time disk 1/O bandwidth, that limit can be achieved in a manner largely
scheduling in an effective manner. Our scheme works synindependent of which videos are actually being played.
ergistically with disk striping. We examine the performance  The disk-scheduling problem is made more complicated
of the proposed algorithm via simulation experiments. by the fact that some videos are vastly more popular than
others at any given time. Furthermore, this highly skewed
distribution varies on a weekly, daily, and even hourly basis,
due to changing video popularity and customer mix. In fact,
) the popularity of the hottest videos can often be so great that
1 Introduction storing them on a single disk may not be feasible from a per-
, i formance standpoint. Playing them from a single disk may
Consider avideo-on-deman@vOD) computer system con- g e that disk to be overloaded. A partial solution to this is
sisting of a central processor and a collectlon_of shared diskgq usestriped disksAs defined in [3], striping transparently
sometimes known atirect access storage devicl3ASDS). jstributes data over multiple disks to give the appearance
VOD computer systems must be able to “play” multiple ot 5 single large and fast disk. By combining, for example,
streams of many different videos simultaneously, based oR5qh group of eight disks into an eight-walsk-striping
customer dem_and. Most videos will be stored most cost ef—group (DSG), the load generated by each video stream can
fectively on disk. (A few videos may be popular enough he ¢yt correspondingly, and the overall load across each of
to justify their being stored in main memory. Conversely, ihe gight disks essentially balanced. Nevertheless, striping
lower levels of the storage hierarchy, such as tape, may bgges have its disadvantages, for example availability in the
appropriate for infrequently played videos. In this paper Wegyent of disk failures. These tradeoffs imply that the degree
will consider only those vidgos which are stored on disk.) ¢ striping should be limited to some extent. Thus, depend-
Because the I/O subsystem is generally the performance andg on the required throughput, it will still typically be nec-
cost bottleneck of a VOD server, the challenge is to balancggsary to create multiple copies of some videos. Likewise,
the load on the existing disks effectively, so as to maximizegiyena fixed striped-disk configuration and a fixed number

the throughput the system can achieve. Overutilization ofyf vigeos to be offered, there may actually be spare disk

disks can cause either video service interruptions to curren,:t‘pace available for replicating certain videos.

customers or rejection of new customer demands, neither | inis paper, we propose to takelvantageof multiple

of which is desirable. On the other hand, underutilization is;jqeq copies on disk to solve the VOD load-balancing prob-

wasteful. Said differently, VOD systems present a real-timeie yery effectively. Our algorithm works synergistically

disk-scheduling problem which is non-trivial but must be yth gisk striping, and is more effective than disk striping

solved satisfactorily almost all of the time. alone. The load-balancing algorithm consists of two com-
On the positive side, video streams, once demanded, réRsonents. One is static, and creates the assignment of videos

resent a logically defined unit of load to the disks. They are;y psGs. The other is dynamic, and performs the real-time
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— The static component consists of two stages. A sample DASD dance will help to illustrate our technique.
— First, based on video demand forecasts, we em-Consider a scenario in which the static component of the
ploy an optimization technique for solving the so- algorithm has assigned video Ad#énces with Wolvgsto
called apportionment problento determine the op- DSGs 1 and 2, video BY( Can't Cheat an Honest Man
timal number of copies per video. This technique to DSGs 2 and 3, video CA(Shachnai Phobijato DSGs 3
is borrowed from the theory of resource allocation and 4, and a less popular video Difty Dancing) to DSG
problems [5]. 1 alone. Suppose a new request to play video D arrives.
— Second, we design an algorithm which makes goodThe greedy algorithm must schedule video D on DSG 1,
quality assignments of these optimal number of videothus increasing the load on that DSG by one. Suppose that
copies to DSGs. This algorithm can be run eitherthis action overloads DSG 1 past the predefined threshold,
in initial or incrementalmode. The initial mode relative to optimal. If DSG 4 is relatively underloaded, the
is appropriate when configuring a new VOD sys- DASD dancing algorithm might change a currently playing
tem. Those videos with multiple copies are assignedstream of video A from DSG 1 to 2, a currently playing
first, using a graph-theoretic scheme based on a constream of video B from DSG 2 to 3, and a currently playing
struct calledclique trees Then single-copy videos stream of video C from DSG 3 to 4. The directed graph
are assigned, usingl@ast loaded firs{LLF) scheme.
The overall scheme is called CLLF. The incremental; A, » B 2 C ,
mode allows for constraints which limit the number
of copy and assignment changes, and is thus pracrepresents this neatly, with the nodes corresponding to DSGs
tical for maintaining high-quality video-to-DSG as- and the directed arcs corresponding to videos. The effect of
signments. Aneighborhood escape heuristitO] is  this three-step “dance” is to lower the load on DSG 1 by
employed. The incremental mode is meant to be runone and raise the load on DSG 4 by one. There is no net
periodically, perhaps once per day or once per weekeffect on DSGs 2 and 3. (The actual transfer of plays can
The exact frequency will depend on the volatility of be achieved via a simpleaton-passingrimitive.)
the video demand forecasts. For simplicity, we will refer to our overall dynamic phase
— The dynamic component handles the real-time schedulalgorithm as DASD dancing, and our overall static-phase
ing of videos streams to DSGs, based on the output oklgorithm as CLLF.
the static component and on fluctuating video customer In this paper, we shall examine the performance of our
demands. These fluctuations occur because videos stastoposed disk-load-balancing algorithm via simulation ex-
and complete, and also because customers may paugeriments. In particular, we will show that DASD dancing
and resume in-progress videos. There are two stages teombined with CLLF works well at more or less any degree
this component as well. of striping, and does better than striping alone. In many sce-
— The first stage of the algorithm uses an optimiza-narios our scheme performs load-balancing equally well at
tion technique for solving so-callediscrete class- lower striping degrees, albeit at a cost of additional dancing.
constrained resource allocation problerfs 18] to  We will also compare DASD dancing / CLLF with a vari-
determine optimal load-balancing goals at any givenety of other load balancing schemes. For example, we con-
moment, given the assignments of videos to DSGssider a dynamic phase scheme which employs only a greedy
Specifically, the output of this stage is the optimal scheduling algorithm in the dynamic component. (This can
number of video streams on each DSG. This prob-be regarded as a trivial special case of DASD dancing in
lem will need to be solved again whenever the overallwhich the threshold is set to infinity, and is certainly a rea-
load on the VOD system increases, namely when-sonable strategy in its own right.) Similarly we consider a
ever a new video request arrives, or a paused videgtatic phase scheme employing LLF alone, instead of the
resumes. Fortunately, the algorithm is incremental inmore elaborate CLLF. Our experiments show that DASD
nature. dancing / CLLF does better than either of three possible vari-
— The second stage attempts to achieve these loadant schemes, namely DASD dancing / LLF, Greedy / CLLF
balancing goals. Much of the time, the schedulingand Greedy / LLF. (These variants are in order of decreas-
decision on which DSG should handle a new videoing performance.) Finally, we consider a baseline scheme
request or resumed video can be performed on avhich assigns only single DSG copies of each video, so
greedybasis: Specifically, we play the video on that that the real-time scheduling algorithm becomes trivial. The
DSG which is relatively most underloaded among static component is LLF. DASD dancing with CLLF per-
those DSGs which have a copy. However, periodi-forms dramatically better than this approach.
cally load-balancing using the greedy approach alone  We briefly comment on some related work to support
may degrade relative to the optimal goal. When theother aspects of VOD. Significant results were presented
quality of the DSG load-balancing differs from the in [15] regarding admission control techniques and the
goal by more than a predefined threshold, B%8SD  choice of service size to support multimedia applications.
dancingalgorithm is initiated. This algorithm is also The issue of collocational storage of multiple media seg-
graph-theoretic, and has the effect of shifting load ments on a disk is examined in [16]. In [23], a new for-
from relatively overloaded to relatively underloaded mulation for disk-arm-scheduling schemes called grouped
DSGs. sweeping scheduling is proposed and analyzed. The goal
is to minimize the buffer requirement. A similar concept
is also considered in [11]. Furthermore, [19] studies stor-
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age management and disk access algorithms in a disk afaP!e 1. Glossary of key DASD dancing variables

ray environment using this grouping approach. In [4], a Variable Section Definition

cost/performance analysis of a video server with hierarchi-M Number of distinct videos stored on disk

cal storage is presented. Batching policies are considered n@ gg”‘r‘;‘;‘roﬁfdﬁ’sskifn o

[2], while adaptive piggybacking schemes are discussed ir”, v dgeo P assig‘:]mgem atrix

[1, 12]. . . . . L; Maximum stream capacity for DS&G

The remainder of this paper is organized as follows: In Fj Penalty function for DSG

Sect. 2 we present the dynamic component of our algorithm,; ; Actual number of videa streams playing on DSG
and in Sect. 3 we present the static component. We ordep. Total number of videa streams playing

the sections in this way because the load-balancing tech4 Total number of videos streams playing

nique motivates the approach we take for the video-to-DSG"?” 8":;22: Ir:)‘;rgboenr gfs‘é';e@ streams playing on DSG
assignments. In Sect. 4 we present the results of our simulaz,’ Nﬁmber of relatively overloaded DSGs

tion experiments. Section 5 contains conclusions, includingp,

some discussion of a VOD configuration planning problem, B

Number of relatively underloaded DSGs
Badness norm
essentially dual to the load-balancing problem which is ourT

Badness threshold

focus. G Directed DASD dancing graph
bi Forecast demand for video
b Total forecast demand
K Total allowable number of video copies

2 Dynamic load balancing scheme K; Number of copies of video
H Undirected DASD dancing graph

P - S, Storage capacity of DS@

2.1 Preliminaries Sif Size of videoi

U Maximal number of new video copies allowed

Zipf-like distribution skew parameter
Correlation coefficient

A D WWWWWWWWNNNNNNNNNNNNNNDDNDDN

In this section we describe the dynamic disk-load-balancingé
scheme called DASD dancing. The algorithm assumes thes
DSG assignments of videos as given. It then reacts dynam-
ically to fluctuating video play demands, making decisions " ) )
on which DSGs should handle the streams of each new oAl =_,-; A; denote the total number of all video streams in
resumed video, as well as possibly changing decisions oRrogress.
which DSGs should handle currently playing videos. This
transfering is accomplished via a baton-passing synchroniza-
tion primitive, and gives the algorithm its name. 2.2 Optimal load balancing

First, we fix some notation. (For the reader’'s conve-
nience, we summarize the key notation employed in thisThe disk loads can be regarded as optimally balanced given
paper in Table 1.) Lefi/ denote the number of videos, and the current load and video-to-DSG assignments when the
D denote the number of DSGs. (If we Iét” denote the  objective function
degree of striping employed, therf D is the number of ac- ,
tual disks.) Let 2 = (a; ;) denote the assignments of video D M
copies to DSGs. We make the reasonable assumption thaiv_: FJ‘(Z i,j)
any DSG will have at most one copy of any one video. /=1 =1

Thus,. 2 is a{0,1} MxD matrix defined by is minimized subject to the constraints
- _ J 1if acopy of videoi exists on DSGj, z;; €40,...,L;},
%.5 =\ 0 otherwise. D

Associated with each DS@is a maximum acceptable num- le” A

ber L; of concurrent video streams. This number depends orﬁ_, =0 ifa =0

the performance characteristics of the disks, and is chosen"”’ "

to ensure that the real-time scheduling problem of reading Here,z; ; is a decision variable representing the hypo-
the videos within a required fixed deadline can be solvedhetical number of streams of vidéevhich might be playing
successfully. To avoid reaching this threshold and balanc@n DSGj. The first constraint limits the acceptable values
the load on the disks, we shall employ a functiéh for of z; ;. The second constraint ensures that the total number
each DSG;j which progressively penalizes loads approach-of videoi streams equals the actual number of such streams
ing L;. Thus, F; can be any convex increasing function in progress. The third constraint ensures that the video-to-
on the set{0,...,L;} satisfying F;(0) = 0. (The func- DSG assignments are respected. Note that, for the optimal
tion Fy(z) = 2/(L;(L; + 1 — z)) is one such. A function solution,X; = Zj‘fl x; ; represents the desired load on DSG
which measures disk access times based on load would also Our ultimate goal in DASD dancing will be to ensure that

be an appropriate choice.) Assume at a given moment thahe optimal loadX; and the actual loa" ", ), ; are always
there are); streams of vided in progress. We break these close to each other for each DSG

down further into)\; ; streams playing on DSG. Thus, Now the optimization problem described above is a
Ai = 2321 Aij, and ), ; = 0 whenever; ; = 0. (One can-  special case of the so-calletiscrete class-constrained re-

not play a video from a DSG which has no copy.) We let source allocation problem(The classes here correspond to
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the videos. The problem is discrete because of the first con2.3 DASD dancing

straint, a resource allocation problem because of the second,

and class-constrained because of the third.) As shown in- _ _

dependently in [6, 18], discrete class constrained resourc€iven these optimal DSG loads, we are now ready to discuss

allocation problems can be solved exactly and efficientlythe real-time scheduling algorithm itself. Clearly, stream de-

using a graph-theoretic optimization algorithm. mands are increased by one when a customer starts a new
We now present an overview of the algorithm in [18] video or resumes a currently paused video. (S|m|IarIy,_sftream

as it applies to the special case above. There are actualffemands are decreased by one when a customer finishes a

two reasons to do so. First, of course, the algorithm will beVideo or pauses a currently playing video; the scheduling

called as part of the dynamic component scheme, in orde@lgorithm does not react directly to these, however, since

to set the target DSG loads. But second, the graph technigu&ductions in stream demand will not, by themselves, result

of the original algorithm is mimicked in the next component in disk overloading.) Normally, handling demand increases

of the dynamic component scheme, namely in the DASDCan be accomplished by employing the obvigueedyal-

dancing algorithm itself. Assuming a feasible solution exists,dorithm. In other words, if a new stream of videois to be

the algorithm proceeds in steps. A directed graph is created added, that DSG satisfyinga;, ; = 1 whose first difference

and maintained throughout the course of the algorithm. The

nodes of the graph are the DSGs..1 D, plus a dummy M M

node, which we label as node 0. We also create and modif;Fj(Z Aij+1) - FJ(Z Aiij)

a partial feasible solution{z; ;|i = 1,...M,j = 0,...,D}. =1 i=1

Initially, this partial feasible solution is set for eachto

havex;o = A;, andz; ; =0 for all j = 1,..., D. Thus, all

resources reside at the dummy node. The directed graph

any step has a directed arc from a nogdec {O,...,D}

to a nodej, € {1,..., D} if there is at least one videfy

is minimal is chosen. However, periodically this approach
may degrade. To check this, we solve the discrete class-
@bnstrained resource allocation problem of the previous sub-
section to obtain optimal DSG loadings given the current
video demands. Reindexing these DSGs according to de-

satisfying creasing values OEffl Ai,j — X; puts them in order of
(1) a5, = aipj = 1, most overloaded to most underloaded, relative to optimal.
(2) x5 >0, (To fix notation, suppose that the fir&; DSGs are rela-
(3) Zgl i j, < Lj,. tively overloaded, and the lagd, DSGs are relatively un-

derloaded. The middI® — D; — D, DSGs must therefore be
(Note that there may be directed afasm node 0, but there  optimally loaded.) If the value§ ", \; ; — X; differ from
are no directed arcto node 0.) The general step of the zero by more than some fixed threshdldaccording to any
algorithm finds, among all nodese {1, ..., D} for which  reasonable norm, the DASD dancing component of the dy-
there is a directed path from O o the node for which the namic component algorithm will be initiated. (Examples of

first difference reasonable norms include the valugd”, \; 1 — X; of the rel-
M M atively most overloaded DSG, the s@ﬁj(iffl Aij—X;)
FJ(Z 2+ 1) — FJ(Z i ;) of SII th(]awrelatlvely overloaded DSGs,. thel sum of squares
=1 =1 > 5210 im1 Xij — X;5)?, and so on. For simplicity we choose

the first of these in our implementation. We Igtdenote the
is minimal. If no such node exists, the algorithm terminatesyalue of this norm, an indicator of load-balancing badness.)
with an infeasible solution. Otherwise, an acyclic directed The DASD dancing component is also graph-theoretic,
path is chosen from O to the optimal node. For each directegnaintaining at all times a directed graghdefined as fol-
arc (ji, j2) in this path, the value aof;, ;, is decremented by |ows. The nodes correspond to the DSGs. (There is no
1 and the value of of;, j, is incremented by 1 for an appro- dummy node.) For each paji and j, of distinct nodes,
priate videoi;. Performing this step over all directed arcs there is a directed arc from to j» provided there exists at
has the effect of removing one unit of load from the dummy |east one videad; for which
node, and adding one unit of load to the optimal node. There
is clearly no net effect on the load of the intermediate nodeg(1) a;, j, = a;, ;, = 1,
Thus, the dummy node serves as a staging area for the re2) )\, ; >0,
sources, one of which is released in each step into the DS@) Zl_v_f Nio < L.
nodes. Bookkeeping is then performed on the graph, which =L 72

may modify some directed arcs and potentially disconnecias pefore, the existence of a directed arc signifies the poten-
certain nodes, and the step is repeated. Aftesteps the tial for reducing the load on one DSG, increasing the load
algorithm terminates with an optimal solution to the original on another without exceeding the load capacity, and leaving
discrete class-constrained resource allocation problem. Feghe |oads on other DSGs unaffected. We try, of course, to
sibility is guaranteed because of the conditions on the arcenove load from relatively overloaded to relatively under-

in the directed graph. The complexity of this algorithm is |paded DSGs. The algorithm has a main routine and one
O(D(AD + D? + AM)). See [18] for further details. subroutine:
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Procedure: MAIN Table 2. Sample video to DSG assignments
While B > T Video Name DSGs
Call DANCE The Thin Man 1,2,3
If DANCE returns (0) then stop Dashing Through 2,5
Perform bookkeeping o3, G, D1, D, Thick as Thieves 3,4
End Polka Dot Puss 5,6
End MAIN
Procedure: DANCE
Do for j;=1to D; DSG2
Doforj,=DtoD—D,+1by —1 O

If there exists a directed path & from j; to j, then |
transfer videos along the shortest such directed path
using baton passing and return (1)

End DSG 10 |
End ¥
Return (0) ¥

End DANCE

O DsG3

The DASD dance corresponds to a successful call of the
DANCE routine (a call which returns the value 1). The while
loop in the MAIN routine continues to call the DANCE rou-
tine until either the threshold is no longer exceeded, or the ¥
call is not successful (no DASD dance is identified, and theDSG 60 ' ODSG4
value O is returned). The order of the nested do loops in the H
DANCE routine causes shifts of load from the most rela-
tively overloaded DSGs to the most relatively underloaded S
DSGs to occur as early as possible. Note that the require- O
ment to proceed along a shortest directed path keeps the DSG 5
dance lengths as small as possible, and implies that each di-
rected arc involves the baton-passing transfer difierent
video. For a single arc, baton passing can be accomplished DSG 2
using a synchronization primitive. This is not difficult to im- O
plement, but the details are not important to the main thrust ‘
of the paper. For a directed path of length greater than 1, the
dance should be performed in forward order — from the first
arc through the last: This will fix the overloading problem e : O
as quickly as possible, without overloading the other DSGsPSG 1 ; DSG 3
even temporarily. The DASD dancing scheme will have the
effect of balancing the load to a larger degree than would
be possible without transfering videos dynamically.

An example will help illustrate the DASD dancing al-
gorithm. Consider a six DSG configuration supporting four
videos, with video-to-DSG assignments listed in Table 2.
Suppose the following scenario: DSG 1 is loaded to capacity
with video streams, and is thus relatively overloaded. DSG
is relatively underloaded. DSGs 1, 2 and 3 are each playin
The Thin ManDSGs 2 and 5 are playingashing Through
Thick as Thievess not currently playingPolka Dot Puss
is playing on DSG 6, but not on DSG 5. Consider Fig. 1,
which shows the directed graph at this moment. There O
are thin directed arcs from DSG 1 to DSGs 2 and 3, and 2 DSG 5
in both directions between DSGs 2 and 3 themselves. Thergig. 1. The directed grapi@
are no thin arcs directed towards DSG 1, because DSG 1 igig. 2. The graphH#
at capacity. There amashedlirected arcs in both directions
between DSGs 2 and 5. There arethixk directed arcs in
either direction between DSGs 3 and 4, because of the lack
of current plays of that video. There isdatteddirected arc
from DSG 5 to DSG 6, but none in the opposite direction. The shortest directed path between DSGs 1 and 6 happens
Under these conditions, a DASD dance from DSG 1 to 2to also be the only such directed path. As a result of this
to 5 to 6 would occur, transferring the plays of 3 videos. dance, the overall disk load-balancing would be improved.

SG 60, O DSG 4
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2.4 Algorithmic shortcuts real-time scheduler of Sect. 2. Using the notation of that
section, the output of this stage is simply tf& 1} assign-

We should observe that successive calls to find optimallyment matrix. 4 = (a; ;). The static algorithm proceeds in

balanced DSG loadings (Sect. 2.2) will involve substantiallytwo stages.

similar problem instances. Fortunately, there exist natural In the first stage, we decide how many copies of each

incremental variants of the described solution technique, s@ideo to create, given the forecast demands for each video

that the computational complexity can be kept within reasonand the total number of video copies allowed in the system.

Actually, it is also possible to shorten the execution time Thus, we determine the row sums of the matri.

of the dynamic component scheme by replacing the calls Specifically, assume we have indexed thievideos in

to the discrete class-constrained resource allocation probleterms of decreasing forecast demargg. Therefore ¢, >

algorithm with calls to a simpler algorithm, at the expense... ... > ¢,,. (The issue of providing good-quality forecasts

of some accuracy in setting the DSG optimal loading goalsis orthogonal to the main thrust of the paper. We assume

Specifically, consider the corresponding resource allocatiorthese forecasts as given.) LEtdenote the acceptable num-

problem in which the classes have been removed (or moréer of video DSG copies in the system. The goal is to com-

precisely, conglomerated into a single class). Thus, we wishpute the numbef; > 1 of required copies for each video

to minimize the objective function . Making eachK; roughly proportional tap; with the con-
straint that

D
> Fily) M
=1 K=} K
subject to the constraints =
0 I is a resource allocation problem known as @épportionment
2j €40, Ly}, problem The problem arises natually in the context of gov-

D ernment representation. In the 435-member United States
Zl'j = A House of Representatives, for example, it is necessary to
J=1 choose the size of the congressional delegation from each
By definition, the value of the objective function for this Of the 50 states in proportion to its population. New York
problem is less than or equal to the corresponding value foptate has 31 representatives, for instance. Many schemes
the class-constrained problem, since we have relaxed ond@ve been proposed for this apportionment problem, and
constraint. Of course, relaxing this constraint also means tha® adoptWebster's monotone divisor methq@lternative
the solution obtained may not be actually implementable Schemes are due, for example, to Hamilton, Adams and Jef-
But if the video-to-DSG assignment algorithm described inférson, all figures from the American revolution.) We de-
the next section is done well, the optimistic assumption thacribé Webster's method in Sect. 3.2. Other details may be
the valuesz; and X, will be close is generally justified. found in [5]. _ _ _

Thus, we can use each valug as a surrogate fok;, even | Next, we assign the numbers of video copies computed
though it may not correspond exactly to a truly feasible so-in the first stage to DSGs. This second stage has two pos-
lution. The point is that this new optimization problem is Sible modes. The “initial” mode is used to configure a new
solvable by a fast algorithm [7] with computational com- System from scratch, one for which no videos have yet been
plexity O(D + Alog D). Because of its incremental nature, a@s&gned to DSGs. This que is described in Sect. 3.3. The
this algorithm computes the optimal solution for all values ‘incremental” mode, described in Sect. 3.4, is used on a
between 1 and! as it proceeds. Thus, these can be storedPeriodic ba5|§ to agijust existing video-to-DSG assignments
and simply looked up as needed, rather than being computetaase,d on rewseq video demanq forecasts.. In ordgar to ensure
each time. (There exist even faster algorithms [8, 9] for thisthat implementation of these adjustments is practical, we al-
resource allocation problem, but they are not incremental if®W for @ constraint on the number of new video copies
nature. See also [5] for further details.) which can be assigned to DSGs. _ _

If all the disks are homogeneous in the sense that they The primary goal in both modes is to achieve high con-
have identical performance, we reduce complexity furthef€ctivity of the undirected grapH defined as follows. The
still. In this case, we can drop the subscripts and defind0des correspond to the DSGs. For each paiand j, of
L = L; and F = F; for each DSGj, and then the re- distinct rjodes, there is an arc betwe'ﬁnand]z, provided
source allocation problem solves trivially (modulo integral- there exists at least one videpfor which
ity considerations), with each; = A/D. We will make this
assumption and adopt this shortcut in our experimental sec-
tion. This condition mimics condition (1) in the definition for the

directed graph given in Sect. 2.3. The notion is thaf
serves as an effective surrogate €érsince a good dynamic

i1 = Qig,gp = 1.

3 Efficient static assignment of videos to DSGs component scheme will typically ensure that conditions (2)
and (3) in the definition oy will be satisfied whenever (1)
3.1 Preliminaries is. We attempt to increase connectivity by minimizing the

diameterof the graphH, which is the maximum distance
In this section, we describe the static scheme which assignisetween any pair of nodes. Figure 2 shows the gplor
videos to DSGs, the goal being to facilitate the job of thethe example described in Sect. 2.3. Note the similarities to
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the directed graplz shown in Fig. 1. There is, however, and initial graph, then use the greeflipD scheme to reduce
a thick arc in Fig. 2 between DSGs 3 and 4, even thoughthe diameter of the graph, and finally assign single copies,
Fig. 1 has no comparable directed arc. using a scheme we callLF. The first two schemes will

A secondary goal will be to keep the forecast load onhandlemulticopy(MC) videos, in other words videaos for
each DSG roughly proportional to its maximum stream ca-which K; > 1. The last scheme will handle the remaining
pacity. To this end, approximate the per-copy forecast loadingle-copy(SC) videos. We describe each of these steps in

on each videa by turn.
&; Each node of thelique treewill consist of a set of DSGs
6; = Kl . such that each has a copy of a common video. (These are the
o _ cligues) Each DSG will be contained in at most one node
We will attempt to equalize the values of in the tree. However, aside from the root node, one copy of
M this common video will also be placed on another preexisting
Zai,j& node in the tree, and an edge will thereby be created. More
py specifically, we proceed as follows. All copies of the most
L; popular MC video are first assigned to different DSGs and

these DSGs form the root node of the clique tree. We then
consider the next hottest MC video. Each copy except one
Yis assigned different empty DSGs, and these DSGs form
a branch node in the clique tree. The remaining copy is

assigned to the relatively least loaded DSG with sufficient
té"{orage capacity in the root node. This copy is called the
connection copybecause it creates an edge in the clique tree.

for each DSG;.

Finally, we will need to ensure that the storage capacit
of each DSG is not exceeded. Denote By the storage
capacity of DSGj, and lets; denote the size of videb(in
the same units). Then the storage capacity test amounts
checking that

M We continue in this manner to create new clique tree nodes,
Zai,jsi <5; assigning the connection copy to the node closest to the root
i=1 which has a DSG with sufficient storage capacity. Within
for each DSG;. that node, the relatively least loaded DSG with sufficient

storage capacity is chosen. The process is repeated until we

run out of empty DSGs or we run out of MC videos. The
3.2 Apportionment problem leaf nodes represent less popular videos with replications.

During the final step of the tree building, the video may
Define® = Zf\fl ¢; to be the sum of all the video demand have more copies (excluding the connection copy) than the
forecasts. We wish to keef§; nearly proportional tap; for number of DSGs remaining unassigned. The assignment of
each videa, and there aré( = Z?fl K; videos in all. Thus, those excess copies will be addressed in the next step.
we want to maintain the proportions’;/¢; ~ K /. Said The ADD algorithm handles the remaining MC videos
differently, in our context, the goal in solving the appor- in two stages. Each stage is greedy in nature. For each MC
tionment problem is to give each vidé@ number of DSG  video with copies left to be assigned, we can pair off all
copiesK; as close as possible to gsiotak ¢; /@, while cre-  but at most one copy. We treat the paired copies in the first
ating K = Zf\fl K; DSG copies altogether. Unfortunately, stage, in order of chreaging popL.lIariFy. In the second stage,
the quota for any given video need not be integral, &hd  We treat the remaining single copies in the same order.
must be. There are rounding algorithms which ensureihat
always falls between the floor and ceiling of its quota. For
example, Hamilton's scheme is one of these. But it turns
out that there are interesting and subtle paradoxes which
any such scheme must suffer. The Webster monotone divi-
sor method avoids these paradoxes, and may be described
as follows. Initialize eachk; = 1. The general step is to
find the videoi* for which ¢, /(K; +.5) is maximized, and

(i) For eachpair of remaining video copies, we choose from
the set of DSGs with sufficient capacity that pair, (2)
with maximal distance. Ties are adjudicated by picking a
pair which is theleast connecteéh the following sense.
Let M(j;) denote the number of distinct copies of MC
videos assigned to DSg. Then the connectivity of the
pair (j1, j2) is defined as

incrementk;. by 1. If K = Y. K;, stop. Otherwise re- C(j1, j2) = M(j1) + M(j2).
peat the general step. Webster's method is basically a greedy N o
algorithm, and the denominatdt; + 0.5 is one of several Intuitively, we measure the connectivity of the graph by

possible so-calledlivisors which can be used as criteria in counting the number of potential DASD dancing paths

selecting the next video to increment. (There are divisors due ~ Originating from a given DSG;.

to Hamilton and Adams as well.) An excellent description(i) Any remainingsinglecopy of an MC video is placed on

of these algorithms and the various paradoxes which they @ DSG so as to maximally decrease the diameter of the

avoid appears in [5]. graph. Ties are adjudicated in a manner similar to that
described in (i).

3.3 Initial assignment algorithm The remaining SC videos have no effect on the diameter
of H. We assign them to balance the load only. The scheme

In the initial mode we achieve high connectivity of the graphis greedy, and called.east Loaded FirstLLF). In other

H from scratch in three steps. We first producdigue tree  words, we assign the next single copy of a video to that
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Table 3. Sample video forecast demand and number of copies

Video ID Name Forecast (%) Copies
A After the Dance 16 4
B Bolero 13 3
C Charleston 11 3
D Dance Fever 10 3
E Emperor Waltz 9 2
F Flashdance 9 2
G Go Into Your Dance 9 2
H Hustle 8 2
| | am a Dancer 8 2
J Jo Jo Dancer, Your Life is Calling 4 1
K Kickin' the Conga 'Round 3 1

DSG with sufficient capacity for which the ratio of forecast
load to maximum stream capacity is minimal.

We now illustrate the above construction by an example.
We first produce a clique tree and initial graph, then use th%
greedy ADD scheme to reduce the diameter of the graph, and
finally assign single copies using the LLF scheme. Assume

a system ofl) = 13 DSGs andV/ = 11 videos. For simplic- o aining videos to the root node. Therefore, one copy of
ity, assume all \(ldeo_s are (.)f equal size, and t_hat the I;)SG§ideo F is assigned to DSG 5 and another is assigned to
themselves are identical, with a storage capacity of 2 videogygg 12 Similarly, one copy of video G is assigned to DSG
per DSG and a stream capacity of 10. Assume that the alg 504 another to DSG 13. The clique tree is now complete.
lowable number of copies i& = 25. The forecast demands Now the ADD phase begins. The two copies of video H

and numbers of required copies of each video are presenteg assigned to DSGs 7 and 12. We note that these DSGs

in Table 3. (Note that the forecasts are normalized, and thge onq 19 different nodes in the clique tree. The assignments

n_ur_nber of copies are computed using Webster's monotong, e the graph diameter, previously determined by the dis-
divisor method.)

. . . L tance between these DSGs. The two copies of video | are
The ultimate assignment of videos to DSGs is given bysgigned to DSGs 9 and 13. There are no SC MC videos to

ig. 3. Initial assignment of videos to DSGs

the matrix deal with, so the ADD phase is now complete. The graph
111100000000 at this stage is illustrated in Fig. 3. (Again, the clique tree
100011000000 can also be seen in the top of this figure; the effect of the
010000110000 ADD phase is shown in the bottom.)
001000001100 Finally, SC videos J and K are assigned to DSGs 10 and
000100000010 8, repectively, by LLF.

.4=1000010000001
000001000000

000000100001 3.4 Incremental assignment algorithm
000000001000

8 8 8 8 8 8 8 2 8 é 8 8 The incremental algorithm will be used to retain high con-
nectivity in the graphH on a day-by-day or week-by-week
The graphH obtained after the greedy phase is illus- basis. The idea is that periodic revisions to the video de-
trated in the top portion of Fig. 3. The four copies of the mand forecasts will, in turn, cause changes in the solution
most popular video A are assigned to DSGs 1, 2, 3 and 4to the apportionment problem. Thus, some videos will need
These four DSGs form the root node of the clique tree. Theto lose DSG copies, some will gain DSG copies, and some
next most popular video is B, which has 3 copies. One ofof the existing video copies may be moved from one DSG
these is assigned to one of the DSGs in the root node, DS® another. The three steps of the algorithm are performed
1, as the connection copy of the video. The other two copiesn this order. We keep track of the net number of new video
of the video B are assigned to DSGs 5 and 6, respectivelycopies on DSGs, which is forced to be bounded by some
These two DSGs form a branch node of the clique treefixed thresholdU. This threshold is designed to avoid ex-
Video C also has three copies, one of which is assigned ta@essive revisions to the video-to-DSG assignments. This, in
DSG 2 as a connection copy to the branch node consistingurn, is intended to make the incremental mode scheme prac-
of DSGs 7 and 8. Similarly, there are three copies of videotical from the standpoint of implementation.
D, one of which is assigned to DSG 3 as a connection copy In step 1, we greedily remove DSG copies from net-loss
to the branch node consisting of DSGs 9 and 10. There argideos using a scheme we cBIELETE In other words, we
two copies of video E. The connection copy is assigned toalways remove that video copy which increases the diameter
DSG 4, while the other is assigned to branch node DSG 11of the graphH least. Again there is a scheme for adjudi-
At this point in the assignment process, the storage capackating ties, which we omit. In step 2, we greedily add DSG
ties of DSGs in the root node have been reached, and thusopies to net-gain videos, using the algorithm ADD. We then
it is no longer possible to assign connection copies of thecompute the number of new video copies. If this number is
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greater than or equal t, we stop. Otherwise, we perform to a uniform distribution.) The most busy hour is fixed to be
step 3, aneighborhood escape heuris{it0] on the entire set 9 pm, followed by 10 pm, 11 pm, 8 pm, and, so on down to
of video copies. (Briefly, a neighborhood escape heuristic ighe least busy hour, which is fixed to be 4 am. Multiplying
an iterative improvement scheme which attempts to avoida variable overall daily throughput against this distribution
being trapped in local minima, while achieving low compu- determines the arrival rate of videos per hour. The relative
tational costs. Assuming a predefined metric on the searchopularity of each of thel/ = 200 videos varies hour by
space of feasible solutions, plus an existing initial feasiblehour, and is chosen as the weighted average of four reason-
solution, the algorithm successively searches the neighborably well-correlated Zipf-like distributions wittv = M and
hoods of distance 1, 2, and, so on about that solution. Ifandomly chosen values 6f (We model thecorrelation be-
no improvement is found within a predetermined number oftween two distributions by using a single parametethat
neighborhoods, the algorithm stops. Otherwise, the improvedan take on any integer value between 1 ddd First, the
solution is adopted as the new solution, and the process renost popular video in distribution 1 is made to correspond
peats.) For our problem, one can impose a natural metric ino therith most popular video in distribution 2, wherg is
which the distance between two sets of video-to-DSG as€hosen randomly from between 1 ardThen, the second
signments 4, and. Z, is the number of matrix entries on most popular video in distribution 1 is made to correspond
which they are not equal. Thus, modifying an assignment byto ther,th most popular video in distribution 2, wherg is
moving a single video copy results in a new assignment ahosen randomly from between 1 amdn (M, x+1), except
distance of 1 away. Swaps of video copies are of distance 2hatr; is not allowed, and so on. Thus,= 1 corresponds
and so on. The feasibility constraints are on load-balancindgo perfect correlation, and = M to the random case. In our
and DSG storage capacity. If either case, we choose random values fomhich are less than
or equal to 10. See [21] for details on a similar correlation
scheme.) These four distributions are meant to correspond
to the hours of 3 am, 9 am, 3 pm and 9 pm, respectively.
] . The weightings for any other given hour are chosen to be
we stop. In the latter case, we abort the final move decisioninyersely proportional to the time difference between that
We call this scheme ESCAPE. Details on a similar neigh-hoyr and these four. The idea is to provide different cus-
borhood escape heuristic may be found in [20]. tomer mixes throughout the day. Videos last 1.5 h, and are
paused and resumed an average of once each. We evaluated
our schemes on a prototypical simulated day in each of seven
successive weeks, under the assumption that forecasts would
4.1 Methodology be revised on a weekly basis. On each subsequent week, 5
new videos were added into the mix in randomly chosen
In this section we describe the simulation experiments depositions, the positions of the existing videos were varied
signed to test the performance of the DASD dancing algobased on a correlation scheme with= 10 similar to the
rithm. First we list some of the key parameters used. Weabove, and 5 old videos (those whose positions would now
assume a total ofi/ = 200 videos. Each disk has enough be beyond)M = 200) were removed. The demand forecast
physical capacity to store 3 videos. We look at cases of 2for each video in a given week is chosen randomly from
way, 4-way and 8-way striping. In other word$; varies  a truncated normal distribution whose mean is the actual
between 2, 4 and 8. We examine configurations with 72, 80daily activity rate of that video. This is intended to model
88 and 96 total disks. For example, in the case of 8-wayinacurracy in the forecasting process. While our simulations
striping, a 72-disk configuration means that the number ofcould not be exhaustive, they were extensive. (Experiments
DSGs isD = 9. (Given 200 videos at 3 videos per disk, in which many of the above parameters were varied yielded
there is not enough physical capacity whén= 8. But  results similar to those reported on. Examples include the
at D = 9 there is enough spare capacity for 16 additionalnumber of videos, the physical and stream capacities of the
video copies.) We assume that the disks are identical in perdisks, and the distribution of videos throughout the day.) We
formance, with a maximum number df = 10 concurrent also believe that the simulation framework is realistic and
video streams per disk. So the physical capacity of an 8-wayobust enough to test the DASD dancing scheme with some
DSG is 24 videos, while the maximum number of concur-level of confidence.
rent video streams is 80. We employ the shortcut resource For example, Fig. 4 shows actual video grosses on six
allocation problem described in Sect. 2.4 to compute oursuccessive weekends in May and June of 1995 [26]. The
load-balancing goals. As noted, this problem can be solvedelative gross dollar amounts should presumably approxi-
trivially, because the disks are homogeneous. mately mimic video demand, though in a VOD environment
Next, we describe the structure of the simulation ex-the skew may be even more pronounced: Theatre customers
periments themselves. We choose hour-of-day arrival patcannot attend a showing of a hot movie if there are no re-
terns according to a Zipf-like distribution with =24 and  maining seats. Notice, in any case, that each week has a
¢ = 0.3. (Briefly, a Zipf-like distribution [13, 24] takes two roughly Zipf-like distribution, with varying degrees of skew.
parametersN andd, the latter corresponding to the degree Notice also how the hot videos fare week-by-week. For ex-
of skew. The distribution is given by; = ¢/i'~? for each  ample, the hottest video of week 1 assumes positions 1, 3,
i€ {1,..,N}, wherec = 1/[>"¥, 1/i'] is a normaliza- 4, 6 and 7 in weeks 2 through 6, respectively.
tion constant. Setting = 0 corresponds to a pure Zipf dis-
tribution, which is highly skewed. Settifj= 1 corresponds

1. no further improvements to the diameter Hf or its
connectivity are possible, or
2. the number of moves would exce&d

4 Experimental results
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Fig. 4. Weekend video grosses

4.2 Results ness, the difference is more than 11 only 1% of the day.) As
] ) _ o with DASD dancing, the performance of greedy with LLF
We first describe a test comparing combinations of two dy-is slightly worse than with CLLF. Returning to the DASD
namic strategies with twanitial static strategies. The dy- dancing algorithm with CLLF, there were 1343 dances of
namic strategies are, of course, greedy and DASD dancingength 1, 386 dances of length 2, and 1 dance of length 3.
(Remember that greedy is a special case of DASD dancingrhis amounts to approximately 72 dances per hour, or just
In WhICh the threshold has been set to |nf|n|ty.) The StatiCO\/er one per minute. Given that the da||y video throughput
strategies are CLLF and LLF alone. There are thus fourin this experiment was 3000, with a similar number of pause
load-balancing strategies overall. We chooselthe 9 case  resumes, the number of dances does not appear to be very
with 8-way striping. As noted, this means that there are 16sjgnificant. We note that the badness threshold in these ex-
additional videos available to reduce the diameter of a nin%rnp|e was set very low. This has the cosmetic advantage
node graph. We choose a single day for comparison, angf providing a very tight distribution in the figure. It turns
study the distribution of time throughout this 24-h period of oyt that setting it higher appears to still provide effective

the maximum load per DSG minus the minimum load perdjsk load-balancing while cutting the number of dances by
DSG: If the system is properly load-balanced, the maximumg factor of nearly two.

and minimum DSG loads should be nearly identical, so that ~ Assuming now that CLLF is the right initial static com-

this distribution would be concentrated near 0. The resunfponent a|gorithm, we experiment with the performance of
are shown in Fig. 5. Actually, a difference of 0 or 1 should the D = 9, 8-way striping example over the course of 7
be regarded as perfect load-balancing, based on integralityeeks. This allows us to test tiecrementalportion of the
considerations. (We have emphasized this by drawing a verstatic component algorithm and see if performance degrades.
tical line in the figure atr = 1.) So we can see that the The results of the simulation appear in Fig. 6. The figure
DASD dancing algorithm with CLLF does very well, pro- shows the distribution of the maximally loaded DSG mi-
ducing a tight distribution, for which the difference between nys the minimally loaded DSG for both DASD dancing and
the maximally loaded DSG and minimally loaded DSG is greedy. Week 0 is the initial week, and weeks 1 through 6
never more than 5, and achieves 5 less than 0.2% of thgre incremental. There does not appear to be any significant
day. DASD dancing with LLF alone does well also, but no- degradation in either dynamic scheme. The shapes of the

ticeably worse. Both of the greedy versions fare noticeablygistributions for DASD dancing are in fact quite similar, as
more poorly. For example, for greedy with CLLF, there are gre those for greedy.

four times in the day when the difference reaches 16. (In fair-
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Finally, we consider the maximum daily video through- the maximal throughput of the DASD dancing algorithm
put achievable by DASD dancing and greedy, given theis identical for all three striping scenarios. This comes at
stream capacities of the disks. From the standpoint of theéhe price of more dancing, however. The distribution of the
VOD provider the throughput is perhaps the most importantengths of the dances is shown in Table 4. In all cases DASD
metric. However, by the design of our simulation experi- dancing does better than greedy alone. One would expect the
ments a maximum of approximately 23% of all daily videos performance of these two algorithms to be relatively close
will be playing concurrently at various times between 10in scenarios with a small number of disks (because there
pm and 11 pm. Thus, maximum daily throughput effectively is too little connectivity for dancing to work well), and in
translates into maximum concurrent video streams. So thesscenarios with a large number of disks (because there is so
results can be understood in terms of the latter metric asnuch connectivity that greedy works well). One would ex-
well. We consider cases of 2-way, 4-way and 8-way strip-pect DASD dancing to perform best relative to greedy for
ing, and scenarios with 72, 80, 88 and 96 actual disks. Thewumbers of disks between these extremes. The figure shows
maximal daily throughput was determined by combining ourmany of these effects. It should also be noted in the figure
simulation code with dracket and bisectioalgorithm [14].  that DASD dancing does better than greedy in all scenarios,

Figure 7 shows the results of this study. The DASD danc-but that the performance of the two schemes is closest for
ing algorithm exhibits nearly linear growth, at least as thehighly striped cases.

DSGs start to become more highly connected. Observe the As a baseline scheme, we also simulated the ftrivial
striping degree, which is noted on the left side of the figure.scheduling policy in which there is always a single copy

For 72 disks and 2-way striping, there are 16 video copief each video available, assigned via LLF. (Clique trees are
available to connect 36 DSGs, so dancing will not help asirrelevant in this case, and the scheduling policy amounts to
much in this instance. Note also that as the number of actugblaying the video on the DSG to which it is assigned.) One
disks grows, connecting the DSGs in low-striping scenarioswould hope that the throughput would grow with the number
occurs more slowly than in high-striping scenarios. This isof disks. But, for the SC algorithm, the maximum throughput

because the number of DSGs is inversely proportional to thés nearly flat in each striping example. Since striping assists
degree of striping. Nevertheless, by the 96-disk experimenttoad-balancing, 8-way striping does better than 4-way, which
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Given a suite of simulation tests, we explore

Length 8-Way 4-Way 2-Way the disk search space to find a VOD hardware configuration
1 1878 1661 981 which passes the tests and has minimal cost.
2 42 554 1100
3 0 21 139
4 0 2 11
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does better than 2-way. But, in each case, the hottest video
must be played from a single DSG, and this immediately be- ,
comes the bottleneck. Thus, the maximal throughput achiev-
able using 8-way striping is approximately 1850 videos per
day, independent of the number of disks. For 4-way striping, 3-
the throughput is roughly 1100, and, for 2-way striping, the
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On the other end of the spectrum, we can compute the
largest possible daily throughput theoretically obtainable by
anyload-balancing scheme as follows. Given our simulation 5.
design, we have noted that the maximum number of simul-
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throughput across all of our disk configurations.

4.

11.

5 Conclusions

In this paper, we have devised a real-time disk-schedulin
algorithm for VOD computer systems. The algorithm con-

sists of a dynamic and a static scheme. The dynamic schemg

schedules videos to DSGs in order to balance the load on the

disks. Typically, it does this scheduling in a greedy fashion,15.

but occasionally it may transfer several in-progress videos
between successive pairs of DSGs in order to deal wit

degrading load balance. This “DASD dance” is achieved,;

through a baton-passing primitive. The CLLF static scheme

assigns videos to DSGs on a periodic basis, perhaps onas.

per day or once per week. Its mission is to optimize the
load-balancing achievable by the dynamic scheme. The tech-

niques in both the static and dynamic schemes are grapﬁl—g'

theoretic, and are based primarily on resource allocation
problem optimization algorithms.
Based on our simulation results, DASD dancing with

CLLF appears to be an effective load-balancing scheme21.

It works synergistically with disk striping, and outperforms
the greedy scheduling policy alone in all examples tested:
DASD dancing / CLLF appears to allow for video through-
puts which grow in proportion to the number of disks.
The problem ofconfiguration plannings in a sense dual
to the load-balancing problem which has been our focus. In

the latter, we wish to maximize the load we can handle in &4

fixed hardware configuration. In the former we wish to min-
imize the cost of the configuration, while handling a given
video forecast demand. Thus, in principal, we can use our

simulation code to solve VOD configuration planning prob- 26.
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