
Multimedia Systems 5:358–370 (1997) Multimedia Systems
c© Springer-Verlag 1997

Disk load balancing for video-on-demand systems

Joel L. Wolf1, Philip S. Yu1, Hadas Shachnai2

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2 Department of Computer Science, Technion IIT, Haifa 32000, Israel

Abstract. For a video-on-demand computer system, we pro-
pose a scheme which balances the load on the disks, thereby
helping to solve a performance problem crucial to achieving
maximal video throughput. Our load-balancing scheme con-
sists of two components. The static component determines
good assignments of videos to groups of striped disks. The
dynamic component uses these assignments, and features a
“DASD dancing” algorithm which performs real-time disk
scheduling in an effective manner. Our scheme works syn-
ergistically with disk striping. We examine the performance
of the proposed algorithm via simulation experiments.

1 Introduction

Consider avideo-on-demand(VOD) computer system con-
sisting of a central processor and a collection of shared disks,
sometimes known asdirect access storage devices(DASDs).
VOD computer systems must be able to “play” multiple
streams of many different videos simultaneously, based on
customer demand. Most videos will be stored most cost ef-
fectively on disk. (A few videos may be popular enough
to justify their being stored in main memory. Conversely,
lower levels of the storage hierarchy, such as tape, may be
appropriate for infrequently played videos. In this paper we
will consider only those videos which are stored on disk.)
Because the I/O subsystem is generally the performance and
cost bottleneck of a VOD server, the challenge is to balance
the load on the existing disks effectively, so as to maximize
the throughput the system can achieve. Overutilization of
disks can cause either video service interruptions to current
customers or rejection of new customer demands, neither
of which is desirable. On the other hand, underutilization is
wasteful. Said differently, VOD systems present a real-time
disk-scheduling problem which is non-trivial but must be
solved satisfactorily almost all of the time.

On the positive side, video streams, once demanded, rep-
resent a logically defined unit of load to the disks. They are

Correspondence to: J.L. Wolf
Part of this work was done while Hadas Shachnai was with IBM T.J. Watson
Research Center

read-only in nature, and basically predictable in length: cus-
tomers are typically entitled to pause and then resume [22],
but, generally speaking, they watch the videos without inter-
ruption for long stretches at a time. Video on disks is typi-
cally stored in MPEG-compressed format [25], and different
videos require similar megabits-per-second rates. Thus, al-
though a disk has a very well-defined maximum acceptable
I/O bandwidth, that limit can be achieved in a manner largely
independent of which videos are actually being played.

The disk-scheduling problem is made more complicated
by the fact that some videos are vastly more popular than
others at any given time. Furthermore, this highly skewed
distribution varies on a weekly, daily, and even hourly basis,
due to changing video popularity and customer mix. In fact,
the popularity of the hottest videos can often be so great that
storing them on a single disk may not be feasible from a per-
formance standpoint. Playing them from a single disk may
cause that disk to be overloaded. A partial solution to this is
to usestriped disks. As defined in [3], striping transparently
distributes data over multiple disks to give the appearance
of a single large and fast disk. By combining, for example,
each group of eight disks into an eight-waydisk-striping
group (DSG), the load generated by each video stream can
be cut correspondingly, and the overall load across each of
the eight disks essentially balanced. Nevertheless, striping
does have its disadvantages, for example availability in the
event of disk failures. These tradeoffs imply that the degree
of striping should be limited to some extent. Thus, depend-
ing on the required throughput, it will still typically be nec-
essary to create multiple copies of some videos. Likewise,
given a fixed striped-disk configuration and a fixed number
of videos to be offered, there may actually be spare disk
space available for replicating certain videos.

In this paper, we propose to takeadvantageof multiple
video copies on disk to solve the VOD load-balancing prob-
lem very effectively. Our algorithm works synergistically
with disk striping, and is more effective than disk striping
alone. The load-balancing algorithm consists of two com-
ponents. One is static, and creates the assignment of videos
to DSGs. The other is dynamic, and performs the real-time
video stream scheduling.

359

– The static component consists of two stages.
– First, based on video demand forecasts, we em-

ploy an optimization technique for solving the so-
called apportionment problemto determine the op-
timal number of copies per video. This technique
is borrowed from the theory of resource allocation
problems [5].

– Second, we design an algorithm which makes good
quality assignments of these optimal number of video
copies to DSGs. This algorithm can be run either
in initial or incremental mode. The initial mode
is appropriate when configuring a new VOD sys-
tem. Those videos with multiple copies are assigned
first, using a graph-theoretic scheme based on a con-
struct calledclique trees. Then single-copy videos
are assigned, using aleast loaded first(LLF) scheme.
The overall scheme is called CLLF. The incremental
mode allows for constraints which limit the number
of copy and assignment changes, and is thus prac-
tical for maintaining high-quality video-to-DSG as-
signments. Aneighborhood escape heuristic[10] is
employed. The incremental mode is meant to be run
periodically, perhaps once per day or once per week.
The exact frequency will depend on the volatility of
the video demand forecasts.

– The dynamic component handles the real-time schedul-
ing of videos streams to DSGs, based on the output of
the static component and on fluctuating video customer
demands. These fluctuations occur because videos start
and complete, and also because customers may pause
and resume in-progress videos. There are two stages to
this component as well.
– The first stage of the algorithm uses an optimiza-

tion technique for solving so-calleddiscrete class-
constrained resource allocation problems[6, 18] to
determine optimal load-balancing goals at any given
moment, given the assignments of videos to DSGs.
Specifically, the output of this stage is the optimal
number of video streams on each DSG. This prob-
lem will need to be solved again whenever the overall
load on the VOD system increases, namely when-
ever a new video request arrives, or a paused video
resumes. Fortunately, the algorithm is incremental in
nature.

– The second stage attempts to achieve these load-
balancing goals. Much of the time, the scheduling
decision on which DSG should handle a new video
request or resumed video can be performed on a
greedybasis: Specifically, we play the video on that
DSG which is relatively most underloaded among
those DSGs which have a copy. However, periodi-
cally load-balancing using the greedy approach alone
may degrade relative to the optimal goal. When the
quality of the DSG load-balancing differs from the
goal by more than a predefined threshold, theDASD
dancingalgorithm is initiated. This algorithm is also
graph-theoretic, and has the effect of shifting load
from relatively overloaded to relatively underloaded
DSGs.

A sample DASD dance will help to illustrate our technique.
Consider a scenario in which the static component of the
algorithm has assigned video A (Dances with Wolves) to
DSGs 1 and 2, video B (Yu Can’t Cheat an Honest Man)
to DSGs 2 and 3, video C (A Shachnai Phobia) to DSGs 3
and 4, and a less popular video D (Dirty Dancing) to DSG
1 alone. Suppose a new request to play video D arrives.
The greedy algorithm must schedule video D on DSG 1,
thus increasing the load on that DSG by one. Suppose that
this action overloads DSG 1 past the predefined threshold,
relative to optimal. If DSG 4 is relatively underloaded, the
DASD dancing algorithm might change a currently playing
stream of video A from DSG 1 to 2, a currently playing
stream of video B from DSG 2 to 3, and a currently playing
stream of video C from DSG 3 to 4. The directed graph

1
A−→ 2

B−→ 3
C−→ 4

represents this neatly, with the nodes corresponding to DSGs
and the directed arcs corresponding to videos. The effect of
this three-step “dance” is to lower the load on DSG 1 by
one and raise the load on DSG 4 by one. There is no net
effect on DSGs 2 and 3. (The actual transfer of plays can
be achieved via a simplebaton-passingprimitive.)

For simplicity, we will refer to our overall dynamic phase
algorithm as DASD dancing, and our overall static-phase
algorithm as CLLF.

In this paper, we shall examine the performance of our
proposed disk-load-balancing algorithm via simulation ex-
periments. In particular, we will show that DASD dancing
combined with CLLF works well at more or less any degree
of striping, and does better than striping alone. In many sce-
narios our scheme performs load-balancing equally well at
lower striping degrees, albeit at a cost of additional dancing.
We will also compare DASD dancing / CLLF with a vari-
ety of other load balancing schemes. For example, we con-
sider a dynamic phase scheme which employs only a greedy
scheduling algorithm in the dynamic component. (This can
be regarded as a trivial special case of DASD dancing in
which the threshold is set to infinity, and is certainly a rea-
sonable strategy in its own right.) Similarly we consider a
static phase scheme employing LLF alone, instead of the
more elaborate CLLF. Our experiments show that DASD
dancing / CLLF does better than either of three possible vari-
ant schemes, namely DASD dancing / LLF, Greedy / CLLF
and Greedy / LLF. (These variants are in order of decreas-
ing performance.) Finally, we consider a baseline scheme
which assigns only single DSG copies of each video, so
that the real-time scheduling algorithm becomes trivial. The
static component is LLF. DASD dancing with CLLF per-
forms dramatically better than this approach.

We briefly comment on some related work to support
other aspects of VOD. Significant results were presented
in [15] regarding admission control techniques and the
choice of service size to support multimedia applications.
The issue of collocational storage of multiple media seg-
ments on a disk is examined in [16]. In [23], a new for-
mulation for disk-arm-scheduling schemes called grouped
sweeping scheduling is proposed and analyzed. The goal
is to minimize the buffer requirement. A similar concept
is also considered in [11]. Furthermore, [19] studies stor-

360

age management and disk access algorithms in a disk ar-
ray environment using this grouping approach. In [4], a
cost/performance analysis of a video server with hierarchi-
cal storage is presented. Batching policies are considered in
[2], while adaptive piggybacking schemes are discussed in
[1, 12].

The remainder of this paper is organized as follows: In
Sect. 2 we present the dynamic component of our algorithm,
and in Sect. 3 we present the static component. We order
the sections in this way because the load-balancing tech-
nique motivates the approach we take for the video-to-DSG
assignments. In Sect. 4 we present the results of our simula-
tion experiments. Section 5 contains conclusions, including
some discussion of a VOD configuration planning problem,
essentially dual to the load-balancing problem which is our
focus.

2 Dynamic load balancing scheme

2.1 Preliminaries

In this section we describe the dynamic disk-load-balancing
scheme called DASD dancing. The algorithm assumes the
DSG assignments of videos as given. It then reacts dynam-
ically to fluctuating video play demands, making decisions
on which DSGs should handle the streams of each new or
resumed video, as well as possibly changing decisions on
which DSGs should handle currently playing videos. This
transfering is accomplished via a baton-passing synchroniza-
tion primitive, and gives the algorithm its name.

First, we fix some notation. (For the reader’s conve-
nience, we summarize the key notation employed in this
paper in Table 1.) LetM denote the number of videos, and
D denote the number of DSGs. (If we letS denote the
degree of striping employed, thenS D is the number of ac-
tual disks.) LetA = (ai,j) denote the assignments of video
copies to DSGs. We make the reasonable assumption that
any DSG will have at most one copy of any one video.
Thus,A is a {0, 1} M×D matrix defined by

ai,j =

{
1 if a copy of videoi exists on DSGj,
0 otherwise.

Associated with each DSGj is a maximum acceptable num-
berLj of concurrent video streams. This number depends on
the performance characteristics of the disks, and is chosen
to ensure that the real-time scheduling problem of reading
the videos within a required fixed deadline can be solved
successfully. To avoid reaching this threshold and balance
the load on the disks, we shall employ a functionFj for
each DSGj which progressively penalizes loads approach-
ing Lj . Thus, Fj can be any convex increasing function
on the set{0, . . . , Lj} satisfying Fj(0) = 0. (The func-
tion Fj(x) = x/(Lj(Lj + 1− x)) is one such. A function
which measures disk access times based on load would also
be an appropriate choice.) Assume at a given moment that
there areλi streams of videoi in progress. We break these
down further intoλi,j streams playing on DSGj. Thus,
λi =

∑D
j=1λi,j , andλi,j = 0 wheneverai,j = 0. (One can-

not play a video from a DSG which has no copy.) We let

Table 1. Glossary of key DASD dancing variables

Variable Section Definition
M 2 Number of distinct videos stored on disk
D 2 Number of DSGs
S 2 Degree of disk striping
A 2 Video / DSG assignment matrix
Lj 2 Maximum stream capacity for DSGj
Fj 2 Penalty function for DSGj
λi,j 2 Actual number of videoi streams playing on DSGj
λi 2 Total number of videoi streams playing
Λ 2 Total number of videos streams playing
xi,j 2 Optimal number of videoi streams playing on DSGj
Xj 2 Optimal load on DSGj
D1 2 Number of relatively overloaded DSGs
D2 2 Number of relatively underloaded DSGs
B 2 Badness norm
T 2 Badness threshold
G 2 Directed DASD dancing graph
φi 3 Forecast demand for videoi
Φ 3 Total forecast demand
K 3 Total allowable number of video copies
Ki 3 Number of copies of videoi
H 3 Undirected DASD dancing graph
Sj 3 Storage capacity of DSGj
si 3 Size of videoi
U 3 Maximal number of new video copies allowed
θ 4 Zipf-like distribution skew parameter
κ 4 Correlation coefficient

Λ =
∑M

i=1λi denote the total number of all video streams in
progress.

2.2 Optimal load balancing

The disk loads can be regarded as optimally balanced given
the current load and video-to-DSG assignments when the
objective function

D∑
j=1

Fj(
M∑
i=1

xi,j)

is minimized subject to the constraints

xi,j ∈ {0, . . . , Lj},
D∑
j=1

xi,j = λi,

xi,j = 0 if ai,j = 0.

Here,xi,j is a decision variable representing the hypo-
thetical number of streams of videoi which might be playing
on DSGj. The first constraint limits the acceptable values
of xi,j . The second constraint ensures that the total number
of video i streams equals the actual number of such streams
in progress. The third constraint ensures that the video-to-
DSG assignments are respected. Note that, for the optimal
solution,Xj =

∑M
i=1xi,j represents the desired load on DSG

j. Our ultimate goal in DASD dancing will be to ensure that
the optimal loadXj and the actual load

∑M
i=1λi,j are always

close to each other for each DSGj.
Now the optimization problem described above is a

special case of the so-calleddiscrete class-constrained re-
source allocation problem. (The classes here correspond to

361

the videos. The problem is discrete because of the first con-
straint, a resource allocation problem because of the second,
and class-constrained because of the third.) As shown in-
dependently in [6, 18], discrete class constrained resource
allocation problems can be solved exactly and efficiently
using a graph-theoretic optimization algorithm.

We now present an overview of the algorithm in [18]
as it applies to the special case above. There are actually
two reasons to do so. First, of course, the algorithm will be
called as part of the dynamic component scheme, in order
to set the target DSG loads. But second, the graph technique
of the original algorithm is mimicked in the next component
of the dynamic component scheme, namely in the DASD
dancing algorithm itself. Assuming a feasible solution exists,
the algorithm proceeds inΛ steps. A directed graph is created
and maintained throughout the course of the algorithm. The
nodes of the graph are the DSGs 1, ..., D, plus a dummy
node, which we label as node 0. We also create and modify
a partial feasible solution{xi,j |i = 1, ...M, j = 0, ..., D}.
Initially, this partial feasible solution is set for eachi to
havexi,0 = λi, andxi,j = 0 for all j = 1, ..., D. Thus, all
resources reside at the dummy node. The directed graph at
any step has a directed arc from a nodej1 ∈ {0, ..., D}
to a nodej2 ∈ {1, ..., D} if there is at least one videoi1
satisfying

(1) ai1,j1 = ai1,j2 = 1,
(2) xi1,j1 > 0,
(3)
∑M

i=1xi,j2 < Lj2.

(Note that there may be directed arcsfrom node 0, but there
are no directed arcsto node 0.) The general step of the
algorithm finds, among all nodesj ∈ {1, ..., D} for which
there is a directed path from 0 toj, the node for which the
first difference

Fj(
M∑
i=1

xi,j + 1)− Fj(
M∑
i=1

xi,j)

is minimal. If no such node exists, the algorithm terminates
with an infeasible solution. Otherwise, an acyclic directed
path is chosen from 0 to the optimal node. For each directed
arc (j1, j2) in this path, the value ofxi1,j1 is decremented by
1 and the value of ofxi1,j2 is incremented by 1 for an appro-
priate videoi1. Performing this step over all directed arcs
has the effect of removing one unit of load from the dummy
node, and adding one unit of load to the optimal node. There
is clearly no net effect on the load of the intermediate nodes.
Thus, the dummy node serves as a staging area for the re-
sources, one of which is released in each step into the DSG
nodes. Bookkeeping is then performed on the graph, which
may modify some directed arcs and potentially disconnect
certain nodes, and the step is repeated. AfterΛ steps the
algorithm terminates with an optimal solution to the original
discrete class-constrained resource allocation problem. Fea-
sibility is guaranteed because of the conditions on the arcs
in the directed graph. The complexity of this algorithm is
O(D(ΛD +D2 +ΛM)). See [18] for further details.

2.3 DASD dancing

Given these optimal DSG loads, we are now ready to discuss
the real-time scheduling algorithm itself. Clearly, stream de-
mands are increased by one when a customer starts a new
video or resumes a currently paused video. (Similarly, stream
demands are decreased by one when a customer finishes a
video or pauses a currently playing video; the scheduling
algorithm does not react directly to these, however, since
reductions in stream demand will not, by themselves, result
in disk overloading.) Normally, handling demand increases
can be accomplished by employing the obviousgreedyal-
gorithm. In other words, if a new stream of videoi1 is to be
added, that DSGj satisfyingai1,j = 1 whose first difference

Fj(
M∑
i=1

λi,j + 1)− Fj(
M∑
i=1

λi,j)

is minimal is chosen. However, periodically this approach
may degrade. To check this, we solve the discrete class-
constrained resource allocation problem of the previous sub-
section to obtain optimal DSG loadings given the current
video demands. Reindexing these DSGs according to de-
creasing values of

∑M
i=1λi,j − Xj puts them in order of

most overloaded to most underloaded, relative to optimal.
(To fix notation, suppose that the firstD1 DSGs are rela-
tively overloaded, and the lastD2 DSGs are relatively un-
derloaded. The middleD−D1−D2 DSGs must therefore be
optimally loaded.) If the values

∑M
i=1λi,j −Xj differ from

zero by more than some fixed thresholdT according to any
reasonable norm, the DASD dancing component of the dy-
namic component algorithm will be initiated. (Examples of
reasonable norms include the value

∑M
i=1λi,1−X1 of the rel-

atively most overloaded DSG, the sum
∑D1

j=1(
∑M

i=1λi,j−Xj)
of all the relatively overloaded DSGs, the sum of squares∑D

j=1(
∑M

i=1λi,j−Xj)2, and so on. For simplicity we choose
the first of these in our implementation. We letB denote the
value of this norm, an indicator of load-balancing badness.)

The DASD dancing component is also graph-theoretic,
maintaining at all times a directed graphG defined as fol-
lows. The nodes correspond to the DSGs. (There is no
dummy node.) For each pairj1 and j2 of distinct nodes,
there is a directed arc fromj1 to j2 provided there exists at
least one videoi1 for which

(1) ai1,j1 = ai1,j2 = 1,
(2) λi1,j1 > 0,
(3)
∑M

i=1λi,j2 < Lj2.

As before, the existence of a directed arc signifies the poten-
tial for reducing the load on one DSG, increasing the load
on another without exceeding the load capacity, and leaving
the loads on other DSGs unaffected. We try, of course, to
move load from relatively overloaded to relatively under-
loaded DSGs. The algorithm has a main routine and one
subroutine:

362

Procedure : MAIN
While B > T

Call DANCE
If DANCE returns (0) then stop
Perform bookkeeping onB,G,D1, D2

End
End MAIN

Procedure : DANCE
Do for j1 = 1 toD1

Do for j2 = D to D −D2 + 1 by − 1
If there exists a directed path inG from j1 to j2 then
transfer videos along the shortest such directed path
using baton passing and return (1)

End
End
Return (0)

End DANCE

The DASD dance corresponds to a successful call of the
DANCE routine (a call which returns the value 1). The while
loop in the MAIN routine continues to call the DANCE rou-
tine until either the threshold is no longer exceeded, or the
call is not successful (no DASD dance is identified, and the
value 0 is returned). The order of the nested do loops in the
DANCE routine causes shifts of load from the most rela-
tively overloaded DSGs to the most relatively underloaded
DSGs to occur as early as possible. Note that the require-
ment to proceed along a shortest directed path keeps the
dance lengths as small as possible, and implies that each di-
rected arc involves the baton-passing transfer of adifferent
video. For a single arc, baton passing can be accomplished
using a synchronization primitive. This is not difficult to im-
plement, but the details are not important to the main thrust
of the paper. For a directed path of length greater than 1, the
dance should be performed in forward order – from the first
arc through the last: This will fix the overloading problem
as quickly as possible, without overloading the other DSGs
even temporarily. The DASD dancing scheme will have the
effect of balancing the load to a larger degree than would
be possible without transfering videos dynamically.

An example will help illustrate the DASD dancing al-
gorithm. Consider a six DSG configuration supporting four
videos, with video-to-DSG assignments listed in Table 2.
Suppose the following scenario: DSG 1 is loaded to capacity
with video streams, and is thus relatively overloaded. DSG 6
is relatively underloaded. DSGs 1, 2 and 3 are each playing
The Thin Man. DSGs 2 and 5 are playingDashing Through.
Thick as Thievesis not currently playing.Polka Dot Puss
is playing on DSG 6, but not on DSG 5. Consider Fig. 1,
which shows the directed graphG at this moment. There
are thin directed arcs from DSG 1 to DSGs 2 and 3, and
in both directions between DSGs 2 and 3 themselves. There
are no thin arcs directed towards DSG 1, because DSG 1 is
at capacity. There aredasheddirected arcs in both directions
between DSGs 2 and 5. There are nothick directed arcs in
either direction between DSGs 3 and 4, because of the lack
of current plays of that video. There is adotteddirected arc
from DSG 5 to DSG 6, but none in the opposite direction.
Under these conditions, a DASD dance from DSG 1 to 2
to 5 to 6 would occur, transferring the plays of 3 videos.

Table 2. Sample video to DSG assignments

Video Name DSGs
The Thin Man 1,2,3
Dashing Through 2,5
Thick as Thieves 3,4
Polka Dot Puss 5,6

Fig. 1. The directed graphG

Fig. 2. The graphH

The shortest directed path between DSGs 1 and 6 happens
to also be the only such directed path. As a result of this
dance, the overall disk load-balancing would be improved.

363

2.4 Algorithmic shortcuts

We should observe that successive calls to find optimally
balanced DSG loadings (Sect. 2.2) will involve substantially
similar problem instances. Fortunately, there exist natural
incremental variants of the described solution technique, so
that the computational complexity can be kept within reason.
Actually, it is also possible to shorten the execution time
of the dynamic component scheme by replacing the calls
to the discrete class-constrained resource allocation problem
algorithm with calls to a simpler algorithm, at the expense
of some accuracy in setting the DSG optimal loading goals.
Specifically, consider the corresponding resource allocation
problem in which the classes have been removed (or more
precisely, conglomerated into a single class). Thus, we wish
to minimize the objective function

D∑
j=1

Fj(xj)

subject to the constraints

xj ∈ {0, . . . , Lj},
D∑
j=1

xj = Λ.

By definition, the value of the objective function for this
problem is less than or equal to the corresponding value for
the class-constrained problem, since we have relaxed one
constraint. Of course, relaxing this constraint also means that
the solution obtained may not be actually implementable.
But if the video-to-DSG assignment algorithm described in
the next section is done well, the optimistic assumption that
the valuesxj and Xj will be close is generally justified.
Thus, we can use each valuexj as a surrogate forXj , even
though it may not correspond exactly to a truly feasible so-
lution. The point is that this new optimization problem is
solvable by a fast algorithm [7] with computational com-
plexity O(D + Λ logD). Because of its incremental nature,
this algorithm computes the optimal solution for all values
between 1 andΛ as it proceeds. Thus, these can be stored
and simply looked up as needed, rather than being computed
each time. (There exist even faster algorithms [8, 9] for this
resource allocation problem, but they are not incremental in
nature. See also [5] for further details.)

If all the disks are homogeneous in the sense that they
have identical performance, we reduce complexity further
still. In this case, we can drop the subscripts and define
L = Lj and F = Fj for each DSGj, and then the re-
source allocation problem solves trivially (modulo integral-
ity considerations), with eachxj = Λ/D. We will make this
assumption and adopt this shortcut in our experimental sec-
tion.

3 Efficient static assignment of videos to DSGs

3.1 Preliminaries

In this section, we describe the static scheme which assigns
videos to DSGs, the goal being to facilitate the job of the

real-time scheduler of Sect. 2. Using the notation of that
section, the output of this stage is simply the{0, 1} assign-
ment matrixA = (ai,j). The static algorithm proceeds in
two stages.

In the first stage, we decide how many copies of each
video to create, given the forecast demands for each video
and the total number of video copies allowed in the system.
Thus, we determine the row sums of the matrixA.

Specifically, assume we have indexed theM videos in
terms of decreasing forecast demandφi. Therefore φ1 ≥
. ≥ φM . (The issue of providing good-quality forecasts
is orthogonal to the main thrust of the paper. We assume
these forecasts as given.) LetK denote the acceptable num-
ber of video DSG copies in the system. The goal is to com-
pute the numberKi ≥ 1 of required copies for each video
i. Making eachKi roughly proportional toφi with the con-
straint that

K =
M∑
i=1

Ki

is a resource allocation problem known as theapportionment
problem. The problem arises natually in the context of gov-
ernment representation. In the 435-member United States
House of Representatives, for example, it is necessary to
choose the size of the congressional delegation from each
of the 50 states in proportion to its population. New York
State has 31 representatives, for instance. Many schemes
have been proposed for this apportionment problem, and
we adoptWebster’s monotone divisor method. (Alternative
schemes are due, for example, to Hamilton, Adams and Jef-
ferson, all figures from the American revolution.) We de-
scribe Webster’s method in Sect. 3.2. Other details may be
found in [5].

Next, we assign the numbers of video copies computed
in the first stage to DSGs. This second stage has two pos-
sible modes. The “initial” mode is used to configure a new
system from scratch, one for which no videos have yet been
assigned to DSGs. This mode is described in Sect. 3.3. The
“incremental” mode, described in Sect. 3.4, is used on a
periodic basis to adjust existing video-to-DSG assignments
based on revised video demand forecasts. In order to ensure
that implementation of these adjustments is practical, we al-
low for a constraint on the number of new video copies
which can be assigned to DSGs.

The primary goal in both modes is to achieve high con-
nectivity of the undirected graphH defined as follows. The
nodes correspond to the DSGs. For each pairj1 and j2 of
distinct nodes, there is an arc betweenj1 and j2, provided
there exists at least one videoi1 for which

ai1,j1 = ai1,j2 = 1 .

This condition mimics condition (1) in the definition for the
directed graphG given in Sect. 2.3. The notion is thatH
serves as an effective surrogate forG, since a good dynamic
component scheme will typically ensure that conditions (2)
and (3) in the definition ofG will be satisfied whenever (1)
is. We attempt to increase connectivity by minimizing the
diameterof the graphH, which is the maximum distance
between any pair of nodes. Figure 2 shows the graphH for
the example described in Sect. 2.3. Note the similarities to

364

the directed graphG shown in Fig. 1. There is, however,
a thick arc in Fig. 2 between DSGs 3 and 4, even though
Fig. 1 has no comparable directed arc.

A secondary goal will be to keep the forecast load on
each DSG roughly proportional to its maximum stream ca-
pacity. To this end, approximate the per-copy forecast load
on each videoi by

δi =
φi
Ki

.

We will attempt to equalize the values of
M∑
i=1

ai,jδi

Lj

for each DSGj.
Finally, we will need to ensure that the storage capacity

of each DSG is not exceeded. Denote bySj the storage
capacity of DSGj, and letsi denote the size of videoi (in
the same units). Then the storage capacity test amounts to
checking that
M∑
i=1

ai,jsi ≤ Sj

for each DSGj.

3.2 Apportionment problem

DefineΦ =
∑M

i=1φi to be the sum of all the video demand
forecasts. We wish to keepKi nearly proportional toφi for
each videoi, and there areK =

∑M
i=1Ki videos in all. Thus,

we want to maintain the proportionsKi/φi ≈ K/Φ. Said
differently, in our context, the goal in solving the appor-
tionment problem is to give each videoi a number of DSG
copiesKi as close as possible to itsquotaKφi/Φ, while cre-
ating K =

∑M
i=1Ki DSG copies altogether. Unfortunately,

the quota for any given video need not be integral, andKi

must be. There are rounding algorithms which ensure thatKi

always falls between the floor and ceiling of its quota. For
example, Hamilton’s scheme is one of these. But it turns
out that there are interesting and subtle paradoxes which
any such scheme must suffer. The Webster monotone divi-
sor method avoids these paradoxes, and may be described
as follows. Initialize eachKi = 1. The general step is to
find the videoi∗ for which φi/(Ki + .5) is maximized, and
incrementKi∗ by 1. If K =

∑M
i=1Ki, stop. Otherwise re-

peat the general step. Webster’s method is basically a greedy
algorithm, and the denominatorKi + 0.5 is one of several
possible so-calleddivisors which can be used as criteria in
selecting the next video to increment. (There are divisors due
to Hamilton and Adams as well.) An excellent description
of these algorithms and the various paradoxes which they
avoid appears in [5].

3.3 Initial assignment algorithm

In the initial mode we achieve high connectivity of the graph
H from scratch in three steps. We first produce aclique tree

and initial graph, then use the greedyADD scheme to reduce
the diameter of the graph, and finally assign single copies,
using a scheme we callLLF. The first two schemes will
handlemulticopy(MC) videos, in other words videosj for
which Kj > 1. The last scheme will handle the remaining
single-copy(SC) videos. We describe each of these steps in
turn.

Each node of theclique treewill consist of a set of DSGs
such that each has a copy of a common video. (These are the
cliques.) Each DSG will be contained in at most one node
in the tree. However, aside from the root node, one copy of
this common video will also be placed on another preexisting
node in the tree, and an edge will thereby be created. More
specifically, we proceed as follows. All copies of the most
popular MC video are first assigned to different DSGs and
these DSGs form the root node of the clique tree. We then
consider the next hottest MC video. Each copy except one
is assigned different empty DSGs, and these DSGs form
a branch node in the clique tree. The remaining copy is
assigned to the relatively least loaded DSG with sufficient
storage capacity in the root node. This copy is called the
connection copy, because it creates an edge in the clique tree.
We continue in this manner to create new clique tree nodes,
assigning the connection copy to the node closest to the root
which has a DSG with sufficient storage capacity. Within
that node, the relatively least loaded DSG with sufficient
storage capacity is chosen. The process is repeated until we
run out of empty DSGs or we run out of MC videos. The
leaf nodes represent less popular videos with replications.
During the final step of the tree building, the video may
have more copies (excluding the connection copy) than the
number of DSGs remaining unassigned. The assignment of
those excess copies will be addressed in the next step.

The ADD algorithm handles the remaining MC videos
in two stages. Each stage is greedy in nature. For each MC
video with copies left to be assigned, we can pair off all
but at most one copy. We treat the paired copies in the first
stage, in order of decreasing popularity. In the second stage,
we treat the remaining single copies in the same order.

(i) For eachpair of remaining video copies, we choose from
the set of DSGs with sufficient capacity that pair (j1, j2)
with maximal distance. Ties are adjudicated by picking a
pair which is theleast connectedin the following sense.
Let M (ji) denote the number of distinct copies of MC
videos assigned to DSGji. Then the connectivity of the
pair (j1, j2) is defined as

C(j1, j2) = M (j1) +M (j2).

Intuitively, we measure the connectivity of the graph by
counting the number of potential DASD dancing paths
originating from a given DSGji.

(ii) Any remainingsinglecopy of an MC video is placed on
a DSG so as to maximally decrease the diameter of the
graph. Ties are adjudicated in a manner similar to that
described in (i).

The remaining SC videos have no effect on the diameter
of H. We assign them to balance the load only. The scheme
is greedy, and calledLeast Loaded First(LLF). In other
words, we assign the next single copy of a video to that

365

Table 3. Sample video forecast demand and number of copies

Video ID Name Forecast (%) Copies
A After the Dance 16 4
B Bolero 13 3
C Charleston 11 3
D Dance Fever 10 3
E Emperor Waltz 9 2
F Flashdance 9 2
G Go Into Your Dance 9 2
H Hustle 8 2
I I am a Dancer 8 2
J Jo Jo Dancer, Your Life is Calling 4 1
K Kickin’ the Conga ’Round 3 1

DSG with sufficient capacity for which the ratio of forecast
load to maximum stream capacity is minimal.

We now illustrate the above construction by an example.
We first produce a clique tree and initial graph, then use the
greedy ADD scheme to reduce the diameter of the graph, and
finally assign single copies using the LLF scheme. Assume
a system ofD = 13 DSGs andM = 11 videos. For simplic-
ity, assume all videos are of equal size, and that the DSGs
themselves are identical, with a storage capacity of 2 videos
per DSG and a stream capacity of 10. Assume that the al-
lowable number of copies isK = 25. The forecast demands
and numbers of required copies of each video are presented
in Table 3. (Note that the forecasts are normalized, and the
number of copies are computed using Webster’s monotone
divisor method.)

The ultimate assignment of videos to DSGs is given by
the matrix

A =

1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

.

The graphH obtained after the greedy phase is illus-
trated in the top portion of Fig. 3. The four copies of the
most popular video A are assigned to DSGs 1, 2, 3 and 4.
These four DSGs form the root node of the clique tree. The
next most popular video is B, which has 3 copies. One of
these is assigned to one of the DSGs in the root node, DSG
1, as the connection copy of the video. The other two copies
of the video B are assigned to DSGs 5 and 6, respectively.
These two DSGs form a branch node of the clique tree.
Video C also has three copies, one of which is assigned to
DSG 2 as a connection copy to the branch node consisting
of DSGs 7 and 8. Similarly, there are three copies of video
D, one of which is assigned to DSG 3 as a connection copy
to the branch node consisting of DSGs 9 and 10. There are
two copies of video E. The connection copy is assigned to
DSG 4, while the other is assigned to branch node DSG 11.
At this point in the assignment process, the storage capaci-
ties of DSGs in the root node have been reached, and thus
it is no longer possible to assign connection copies of the

Fig. 3. Initial assignment of videos to DSGs

remaining videos to the root node. Therefore, one copy of
video F is assigned to DSG 5 and another is assigned to
DSG 12. Similarly, one copy of video G is assigned to DSG
6 and another to DSG 13. The clique tree is now complete.

Now the ADD phase begins. The two copies of video H
are assigned to DSGs 7 and 12. We note that these DSGs
belong to different nodes in the clique tree. The assignments
reduce the graph diameter, previously determined by the dis-
tance between these DSGs. The two copies of video I are
assigned to DSGs 9 and 13. There are no SC MC videos to
deal with, so the ADD phase is now complete. The graphH
at this stage is illustrated in Fig. 3. (Again, the clique tree
can also be seen in the top of this figure; the effect of the
ADD phase is shown in the bottom.)

Finally, SC videos J and K are assigned to DSGs 10 and
8, repectively, by LLF.

3.4 Incremental assignment algorithm

The incremental algorithm will be used to retain high con-
nectivity in the graphH on a day-by-day or week-by-week
basis. The idea is that periodic revisions to the video de-
mand forecasts will, in turn, cause changes in the solution
to the apportionment problem. Thus, some videos will need
to lose DSG copies, some will gain DSG copies, and some
of the existing video copies may be moved from one DSG
to another. The three steps of the algorithm are performed
in this order. We keep track of the net number of new video
copies on DSGs, which is forced to be bounded by some
fixed thresholdU . This threshold is designed to avoid ex-
cessive revisions to the video-to-DSG assignments. This, in
turn, is intended to make the incremental mode scheme prac-
tical from the standpoint of implementation.

In step 1, we greedily remove DSG copies from net-loss
videos using a scheme we callDELETE. In other words, we
always remove that video copy which increases the diameter
of the graphH least. Again there is a scheme for adjudi-
cating ties, which we omit. In step 2, we greedily add DSG
copies to net-gain videos, using the algorithm ADD. We then
compute the number of new video copies. If this number is

366

greater than or equal toU , we stop. Otherwise, we perform
step 3, aneighborhood escape heuristic[10] on the entire set
of video copies. (Briefly, a neighborhood escape heuristic is
an iterative improvement scheme which attempts to avoid
being trapped in local minima, while achieving low compu-
tational costs. Assuming a predefined metric on the search
space of feasible solutions, plus an existing initial feasible
solution, the algorithm successively searches the neighbor-
hoods of distance 1, 2, and, so on about that solution. If
no improvement is found within a predetermined number of
neighborhoods, the algorithm stops. Otherwise, the improved
solution is adopted as the new solution, and the process re-
peats.) For our problem, one can impose a natural metric in
which the distance between two sets of video-to-DSG as-
signmentsA1 andA2 is the number of matrix entries on
which they are not equal. Thus, modifying an assignment by
moving a single video copy results in a new assignment a
distance of 1 away. Swaps of video copies are of distance 2,
and so on. The feasibility constraints are on load-balancing
and DSG storage capacity. If either

1. no further improvements to the diameter ofH or its
connectivity are possible, or

2. the number of moves would exceedU ,

we stop. In the latter case, we abort the final move decision.
We call this scheme ESCAPE. Details on a similar neigh-
borhood escape heuristic may be found in [20].

4 Experimental results

4.1 Methodology

In this section we describe the simulation experiments de-
signed to test the performance of the DASD dancing algo-
rithm. First we list some of the key parameters used. We
assume a total ofM = 200 videos. Each disk has enough
physical capacity to store 3 videos. We look at cases of 2-
way, 4-way and 8-way striping. In other words,S varies
between 2, 4 and 8. We examine configurations with 72, 80,
88 and 96 total disks. For example, in the case of 8-way
striping, a 72-disk configuration means that the number of
DSGs isD = 9. (Given 200 videos at 3 videos per disk,
there is not enough physical capacity whenD = 8. But
at D = 9 there is enough spare capacity for 16 additional
video copies.) We assume that the disks are identical in per-
formance, with a maximum number ofL = 10 concurrent
video streams per disk. So the physical capacity of an 8-way
DSG is 24 videos, while the maximum number of concur-
rent video streams is 80. We employ the shortcut resource
allocation problem described in Sect. 2.4 to compute our
load-balancing goals. As noted, this problem can be solved
trivially, because the disks are homogeneous.

Next, we describe the structure of the simulation ex-
periments themselves. We choose hour-of-day arrival pat-
terns according to a Zipf-like distribution withN = 24 and
θ = 0.3. (Briefly, a Zipf-like distribution [13, 24] takes two
parameters,N andθ, the latter corresponding to the degree
of skew. The distribution is given bypi = c/i1−θ for each
i ∈ {1, ..., N}, wherec = 1/[

∑N
i=1 1/i1−θ] is a normaliza-

tion constant. Settingθ = 0 corresponds to a pure Zipf dis-
tribution, which is highly skewed. Settingθ = 1 corresponds

to a uniform distribution.) The most busy hour is fixed to be
9 pm, followed by 10 pm, 11 pm, 8 pm, and, so on down to
the least busy hour, which is fixed to be 4 am. Multiplying
a variable overall daily throughput against this distribution
determines the arrival rate of videos per hour. The relative
popularity of each of theM = 200 videos varies hour by
hour, and is chosen as the weighted average of four reason-
ably well-correlated Zipf-like distributions withN = M and
randomly chosen values ofθ. (We model thecorrelationbe-
tween two distributions by using a single parameterκ that
can take on any integer value between 1 andM . First, the
most popular video in distribution 1 is made to correspond
to ther1th most popular video in distribution 2, wherer1 is
chosen randomly from between 1 andκ. Then, the second
most popular video in distribution 1 is made to correspond
to ther2th most popular video in distribution 2, wherer2 is
chosen randomly from between 1 andmin(M,κ+1), except
that r1 is not allowed, and so on. Thus,κ = 1 corresponds
to perfect correlation, andκ = M to the random case. In our
case, we choose random values forκ which are less than
or equal to 10. See [21] for details on a similar correlation
scheme.) These four distributions are meant to correspond
to the hours of 3 am, 9 am, 3 pm and 9 pm, respectively.
The weightings for any other given hour are chosen to be
inversely proportional to the time difference between that
hour and these four. The idea is to provide different cus-
tomer mixes throughout the day. Videos last 1.5 h, and are
paused and resumed an average of once each. We evaluated
our schemes on a prototypical simulated day in each of seven
successive weeks, under the assumption that forecasts would
be revised on a weekly basis. On each subsequent week, 5
new videos were added into the mix in randomly chosen
positions, the positions of the existing videos were varied
based on a correlation scheme withκ = 10 similar to the
above, and 5 old videos (those whose positions would now
be beyondM = 200) were removed. The demand forecast
for each video in a given week is chosen randomly from
a truncated normal distribution whose mean is the actual
daily activity rate of that video. This is intended to model
inacurracy in the forecasting process. While our simulations
could not be exhaustive, they were extensive. (Experiments
in which many of the above parameters were varied yielded
results similar to those reported on. Examples include the
number of videos, the physical and stream capacities of the
disks, and the distribution of videos throughout the day.) We
also believe that the simulation framework is realistic and
robust enough to test the DASD dancing scheme with some
level of confidence.

For example, Fig. 4 shows actual video grosses on six
successive weekends in May and June of 1995 [26]. The
relative gross dollar amounts should presumably approxi-
mately mimic video demand, though in a VOD environment
the skew may be even more pronounced: Theatre customers
cannot attend a showing of a hot movie if there are no re-
maining seats. Notice, in any case, that each week has a
roughly Zipf-like distribution, with varying degrees of skew.
Notice also how the hot videos fare week-by-week. For ex-
ample, the hottest video of week 1 assumes positions 1, 3,
4, 6 and 7 in weeks 2 through 6, respectively.

367

Fig. 4. Weekend video grosses

4.2 Results

We first describe a test comparing combinations of two dy-
namic strategies with twoinitial static strategies. The dy-
namic strategies are, of course, greedy and DASD dancing.
(Remember that greedy is a special case of DASD dancing
in which the threshold has been set to infinity.) The static
strategies are CLLF and LLF alone. There are thus four
load-balancing strategies overall. We choose theD = 9 case
with 8-way striping. As noted, this means that there are 16
additional videos available to reduce the diameter of a nine
node graph. We choose a single day for comparison, and
study the distribution of time throughout this 24-h period of
the maximum load per DSG minus the minimum load per
DSG: If the system is properly load-balanced, the maximum
and minimum DSG loads should be nearly identical, so that
this distribution would be concentrated near 0. The results
are shown in Fig. 5. Actually, a difference of 0 or 1 should
be regarded as perfect load-balancing, based on integrality
considerations. (We have emphasized this by drawing a ver-
tical line in the figure atx = 1.) So we can see that the
DASD dancing algorithm with CLLF does very well, pro-
ducing a tight distribution, for which the difference between
the maximally loaded DSG and minimally loaded DSG is
never more than 5, and achieves 5 less than 0.2% of the
day. DASD dancing with LLF alone does well also, but no-
ticeably worse. Both of the greedy versions fare noticeably
more poorly. For example, for greedy with CLLF, there are
four times in the day when the difference reaches 16. (In fair-

ness, the difference is more than 11 only 1% of the day.) As
with DASD dancing, the performance of greedy with LLF
is slightly worse than with CLLF. Returning to the DASD
dancing algorithm with CLLF, there were 1343 dances of
length 1, 386 dances of length 2, and 1 dance of length 3.
This amounts to approximately 72 dances per hour, or just
over one per minute. Given that the daily video throughput
in this experiment was 3000, with a similar number of pause
resumes, the number of dances does not appear to be very
significant. We note that the badness threshold in these ex-
ample was set very low. This has the cosmetic advantage
of providing a very tight distribution in the figure. It turns
out that setting it higher appears to still provide effective
disk load-balancing while cutting the number of dances by
a factor of nearly two.

Assuming now that CLLF is the right initial static com-
ponent algorithm, we experiment with the performance of
the D = 9, 8-way striping example over the course of 7
weeks. This allows us to test theincrementalportion of the
static component algorithm and see if performance degrades.
The results of the simulation appear in Fig. 6. The figure
shows the distribution of the maximally loaded DSG mi-
nus the minimally loaded DSG for both DASD dancing and
greedy. Week 0 is the initial week, and weeks 1 through 6
are incremental. There does not appear to be any significant
degradation in either dynamic scheme. The shapes of the
distributions for DASD dancing are in fact quite similar, as
are those for greedy.

368

Fig. 5. Load imbalance distributions for different schemes

Fig. 6. Load imbalance distributions for different days

Fig. 7. Maximal daily throughputs for different configurations

Finally, we consider the maximum daily video through-
put achievable by DASD dancing and greedy, given the
stream capacities of the disks. From the standpoint of the
VOD provider the throughput is perhaps the most important
metric. However, by the design of our simulation experi-
ments a maximum of approximately 23% of all daily videos
will be playing concurrently at various times between 10
pm and 11 pm. Thus, maximum daily throughput effectively
translates into maximum concurrent video streams. So these
results can be understood in terms of the latter metric as
well. We consider cases of 2-way, 4-way and 8-way strip-
ing, and scenarios with 72, 80, 88 and 96 actual disks. The
maximal daily throughput was determined by combining our
simulation code with abracket and bisectionalgorithm [14].

Figure 7 shows the results of this study. The DASD danc-
ing algorithm exhibits nearly linear growth, at least as the
DSGs start to become more highly connected. Observe the
striping degree, which is noted on the left side of the figure.
For 72 disks and 2-way striping, there are 16 video copies
available to connect 36 DSGs, so dancing will not help as
much in this instance. Note also that as the number of actual
disks grows, connecting the DSGs in low-striping scenarios
occurs more slowly than in high-striping scenarios. This is
because the number of DSGs is inversely proportional to the
degree of striping. Nevertheless, by the 96-disk experiments

the maximal throughput of the DASD dancing algorithm
is identical for all three striping scenarios. This comes at
the price of more dancing, however. The distribution of the
lengths of the dances is shown in Table 4. In all cases DASD
dancing does better than greedy alone. One would expect the
performance of these two algorithms to be relatively close
in scenarios with a small number of disks (because there
is too little connectivity for dancing to work well), and in
scenarios with a large number of disks (because there is so
much connectivity that greedy works well). One would ex-
pect DASD dancing to perform best relative to greedy for
numbers of disks between these extremes. The figure shows
many of these effects. It should also be noted in the figure
that DASD dancing does better than greedy in all scenarios,
but that the performance of the two schemes is closest for
highly striped cases.

As a baseline scheme, we also simulated the trivial
scheduling policy in which there is always a single copy
of each video available, assigned via LLF. (Clique trees are
irrelevant in this case, and the scheduling policy amounts to
playing the video on the DSG to which it is assigned.) One
would hope that the throughput would grow with the number
of disks. But, for the SC algorithm, the maximum throughput
is nearly flat in each striping example. Since striping assists
load-balancing, 8-way striping does better than 4-way, which

369

Table 4.DASD dancing length distributions for different degrees of striping

Length 8-Way 4-Way 2-Way
1 1878 1661 981
2 42 554 1100
3 0 21 139
4 0 2 11
5 0 0 1

does better than 2-way. But, in each case, the hottest video
must be played from a single DSG, and this immediately be-
comes the bottleneck. Thus, the maximal throughput achiev-
able using 8-way striping is approximately 1850 videos per
day, independent of the number of disks. For 4-way striping,
the throughput is roughly 1100, and, for 2-way striping, the
throughput is approximately 550.

On the other end of the spectrum, we can compute the
largest possible daily throughput theoretically obtainable by
any load-balancing scheme as follows. Given our simulation
design, we have noted that the maximum number of simul-
taneous videos is about 23% of the entire daily throughput.
Given also a maximum stream capacity of 10 concurrent
videos per disk, we determine that a system with 72 disks
can accomodate a daily throughput of at most 3130 videos
if it is operating at absolutely full capacity during its busiest
period. This number grows in proportion to the number of
disks, so that a system with 96 disks can handle a through-
put of 4174 videos. Note how closely DASD dancing with
8-way striping comes to achieving this theoretical maximum
throughput across all of our disk configurations.

5 Conclusions

In this paper, we have devised a real-time disk-scheduling
algorithm for VOD computer systems. The algorithm con-
sists of a dynamic and a static scheme. The dynamic scheme
schedules videos to DSGs in order to balance the load on the
disks. Typically, it does this scheduling in a greedy fashion,
but occasionally it may transfer several in-progress videos
between successive pairs of DSGs in order to deal with
degrading load balance. This “DASD dance” is achieved
through a baton-passing primitive. The CLLF static scheme
assigns videos to DSGs on a periodic basis, perhaps once
per day or once per week. Its mission is to optimize the
load-balancing achievable by the dynamic scheme. The tech-
niques in both the static and dynamic schemes are graph-
theoretic, and are based primarily on resource allocation
problem optimization algorithms.

Based on our simulation results, DASD dancing with
CLLF appears to be an effective load-balancing scheme.
It works synergistically with disk striping, and outperforms
the greedy scheduling policy alone in all examples tested.
DASD dancing / CLLF appears to allow for video through-
puts which grow in proportion to the number of disks.

The problem ofconfiguration planningis in a sense dual
to the load-balancing problem which has been our focus. In
the latter, we wish to maximize the load we can handle in a
fixed hardware configuration. In the former we wish to min-
imize the cost of the configuration, while handling a given
video forecast demand. Thus, in principal, we can use our
simulation code to solve VOD configuration planning prob-

lems as well. Given a suite of simulation tests, we explore
the disk search space to find a VOD hardware configuration
which passes the tests and has minimal cost.

References

1. Aggarwal C, Wolf J, Yu P (1996) On Optimal Piggyback Merging
Policies for Video-on-Demand Systems. ACM Sigmetrics Conference,
Philadelphia Pa

2. Aggarwal C, Wolf J, Yu P (1996) On Optimal Batching Policies for
Video-on-Demand Storage Servers. 3rd International Conference on
Multimedia Computing and Systems, Hiroshima, Japan

3. Chen P, Lee E, Gibson G, Katz R, Patterson D (1994) RAID:
high-performance, reliable secondary storage. ACM Comput Surv
26(2):145–185

4. Doganata Y, Tantawi A (1994) A Cost / Performance Study of Video
Servers with Hierarchical Storage. 1st International Conference on
Multimedia Computing and Systems, Boston Mass.

5. Ibaraki T, Katoh N (1988) Resource Allocation Problems - Algorithmic
Approaches. MIT Press, Cambridge, Mass.

6. Federgruen A, Groenevelt H (1986) The greedy procedure for resource
allocation problems: necessary and sufficient conditions for optimality.
Oper Res 34:909–918

7. Fox B (1966) Discrete optimization via marginal analysis. Management
Sci 13:210–216

8. Frederickson G, Johnson D (1982) The complexity of selection and
ranking in X+Y and matrices with sorted columns. J Comput Syst Sci
24:197–208

9. Galil Z, Megiddo N (1981) A Fast Selection Algorithm and the Prob-
lem of Optimum Distribution of Efforts. J ACM 26:58–64

10. Garfinkel R, Nemhauser G (1972) Integer Programming, Wiley, New
York

11. Gemmell D (1993) Multimedia Network File Servers: Multi-Channel
Delay-Senstitive Data Retrieval. ACM Multimedia 93, Anaheim Calif.

12. Golubchik L, Lui J, Muntz R (1995) Reducing I/O Demand in Video-
on-Demand Storage Servers. ACM Sigmetrics Conference, Ottawa,
Canada

13. Knuth D (1973) The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley, Reading, Mass.

14. Press W, Flannery B, Teukolsky S, Vetterling W (1986) Numerical
Recipes. Cambridge University Press, Cambridge, UK

15. Rangan P, Vin H (1991) Designing File Systems for Digital Video and
Audio. 12th ACM Symposium on Operating Systems

16. Rangan P, Vin H (1993) Efficient storage techniques for digital con-
tinuous media. IEEE Trans Knowl Data Eng 5(4):564–573

17. Sincoskie W (1991) System architecture for large scale video on de-
mand. Comput Networks ISDN Syst 22:155–162

18. Tantawi A, Towsley D, Wolf J (1988) Optimal Allocation of Multiple
Class Resources in Computer Systems. ACM Sigmetrics Conference,
Santa Fe NM

19. Tobagi F, Pang J, Baird R, Gang M (1993) Streaming RAID – A
Disk Array Management System for Video Files. ACM Multimedia
93, Anaheim Calif.

20. Wolf J (1989) The Placement Optimization Program. ACM Sigmetrics
Conference, Berkeley Calif.

21. Wolf J, Dias D, Yu P (1993) A parallel sort merge join algorithm for
managing data skew. IEEE Trans Parallel Distrib Syst 4:70–86

22. Yu P, Wolf J, Shachnai H (1995) Design and analysis of a look-ahead
scheduling scheme to support pause-resume for video-on-demand ap-
plications. Multimedia Syst 3(4):137–149

23. Yu P, Chen M-S, Kandlur D (1993) Grouped sweeping scheduling
for DASD-based multimedia storage management. Multimedia Syst
1(3):99–109

24. Zipf G (1949) Human Behavior and the Principle of Least Effort.
Addison-Wesley, Reading, Mass.

25. International Organization for Standardization. (1991) DCT Cod-
ing of Motion Sequences Including Arithmetic Coder. ISO-
IEC/JTC1/SC2/WG8 N

26. New York Times (1995) May 22 - June 25

370

Joel L. Wolf received his Ph.D
from Brown University in 1973 and his
Sc.B. from the Massachusetts Institute
of Technology in 1968, both in Mathe-
matics. He is currently a Staff memeber
at the IBM T.J. Watson research Center,
with interests in mathematical optimiza-
tion. In 1988, he won an IBM Outstand-
ing Innovation Award for his work on
the Placement Optimization technique to
solve the disk file assignment problem.
In 1994, he won another OIA for his
work on parallel quera processing. He
has also been an Assistant Proffessor
of Mathematics at Havard University,
as well as a Distinguished Member of

Technical Staff and manager at Bell Laboratories. Dr. Wolf is a senior
member of IEEE, INFORMS and ACM, and the author of numerous pa-
pers and patents.

Philip S. Yu received the B.S. degree
in E.E. from National Taiwan Univer-
sity, Taipe, Taiwan, Republic of China,
in 1972, the M.S. and Ph.D. degrees
in E.E. from Stanford University, in
1976 and 1978, respectively, and the
M.B.A. degree from New York Univer-
sity in 1982. Since 1978 he has been
with the IBM Thomas L. Watson Re-
search Center, Yorktown Heights, NY.
Currently he is manager of the Software
tools and Techniques group. His cur-
rent research interests include database
systems, data mining, multimedia sys-
tems, parallel and distributed processing,
disk arrays, computer architecture, per-

formance modelling, and workload analysis. He has published more than
200 papers in refereed journals and conferences, and over 130 research
reports and 90 invention disclosures. He holds or has applied for 32 US
patents. Dr. Yu is a Fellow of the IEEE and the ACM. He is an editor
of the IEEE Transactions on Knowledge and Data Engeneering. In addi-
tion to serving as program committee members on various conferences,
he has served as the program chair of the 2nd International Workshop on
Research Issues in Data Engeneering: Transaction ans Query Processing
and the program co-chair of the 11th International Conference on Data
Engeneering. He has received several IBM and external honors includ-
ing Best Paper Award, 2 IBM Outstanding Innovation Awards, Outstanding
Technical Achievement Award, Research Division Award, and 15 Invention
Achievement Awards.

Hadas Shachnai received B.S. and
Ph.D. degrees in Computer Science from
the Israel Institute of Technologiy (Tech-
nion) in 1986 and 1991. In 1993–1995
she was a visiting postdoctoral fellow at
the IBM T.J. Watson Research Center,
Yorktown Heights, NY, and currently
she is Assistant Professor in the depart-
ment of Computer Science at the Tech-
nion. Her research interests are perfor-
mance evaluation and probabilistic mod-
eling of computing and multimedia sys-
tems.

