
Multimedia Systems (1997) 5:324–336 Multimedia Systems
c© Springer-Verlag 1997

An adaptive protocol for synchronizing media streams

Kurt Rothermel, Tobias Helbig1

University of Stuttgart, Institute of Parallel and Distributed High-Performance Systems (IPVR), Breitwiesenstrasse 20-22, D-70565 Stuttgart, Germany
e-mail: {rothermel,helbig}@informatik.uni-stuttgart.de

Abstract. Stream synchronization is widely regarded as a
fundamental problem in the field of multimedia systems. So-
lutions to this problem can be divided into adaptive and rigid
mechanisms. While rigid mechanisms are based on worst
case assumptions, adaptive ones monitor the underlying net-
work and are able to adapt themselves to changing network
conditions. In this paper, we will present an adaptive stream
synchronization protocol. This protocol supports any kind of
distribution of the sources and sinks of the streams to be syn-
chronized. It is based on a buffer-level control mechanism,
allowing immediate corrections when the danger of a buffer
overflow or underflow is recognized. Moreover, the proposed
protocol is flexible enough to support a wide variety of syn-
chronization policies, which can be dynamically changed
while synchronization is in progress. Finally, the message
overhead of this protocol is low, because control messages
are only exchanged when network conditions change.

Key words: Distributed systems – Communication networks
– Multimedia – Stream synchronization – Quality of service

1 Introduction

The evolution of broadband networks and multimedia tech-
nologies have significantly contributed to the emergence
of new multimedia applications, integrating various media
types, such as text, graphics, audio and video. These data
typically possess timeliness requirements with respect to
their presentation. Media synchronization mechanisms are
needed to assure the correct temporal alignment of such
time-critical activities.

Media synchronization can be divided into event-based
synchronization and stream (or continuous) synchronization.
While event-based synchronization refers to synchronization
activities performed in response to events such as user inter-
action, stream synchronization is an on-going commitment

1 Contact address: Philips Research Laboratories, Weisshausstrasse 2,
D-52066 Aachen, Germany; helbig@pfa.research.philips.com
Correspondence to:T. Helbig

to a repetitive pattern of event-based synchronization rela-
tionships, such as a ‘lip sync’ relationship between the in-
dividual data units in an audio and video stream (Campell
et al. 1992). The stream synchronization can be further sub-
divided into intra-stream synchronization and inter-stream
synchronization. While the former refers to preserving tem-
poral relationships of data within a stream, the latter deals
with the temporal dependencies across streams.

Intra-stream synchronization is concerned with a single
stream. A source of a stream produces data units and trans-
mits them over a transmission path to one or more sinks.
The transmission path inevitably introduces some variation
in the delay of each delivered data unit, which traditionally
has been called jitter. Intra-stream synchronization requires
the jitter to be removed before playing out the data units,
which is done by buffering the incoming data. A data unit
is rendered at a designated play-out point, and is buffered if
it arrives before this point. Data arriving after the associated
play-out point is useless in reconstructing the corresponding
real-time signal.

Multimedia applications have been classified into adap-
tive and rigid applications (Clark et al. 1992). The latter
class of applications use ana priori transfer delay bound
advertised by the underlying network to set the play-out
point. The play-out point is kept fixed regardless of the ac-
tual delay experienced. In contrast, for adaptive applications,
the sink measures the transfer delay experienced by arriving
data units and then adaptively moves the play-out point to
the minimum delay that still produces a sufficiently low loss
rate.

Rigid applications are typically based on a so-called
guaranteed (or deterministic) service (Ferrari 1990a, b),
whose service commitment is based on a worst case analysis.
Adaptive applications will generally have an earlier play-out
point than rigid applications, and hence will have a shorter
end-to-end delay. This is because the application’s estimate
of the post factobound on actual delay will likely be less
than thea priori boundpre-computed by the underlying net-
work (Clark et al. 1992). On the other hand, the loss rate of
adaptive applications is likely to be higher, as they depend
on the assumption that the transfer delay in the near future
will be “similar” to the one in the recent past. Any viola-

325

tion of this assumption in the direction of increased delays
may cause data units missing the play-out point. Though the
application will then immediately adapt the play-out point
accordingly, it may momentarily experience data loss. Note
that the notion of “similar” leaves room for tuning adaptive
protocols. The more “similar” delays may differ, the more
data has to be buffered and the bigger is the end-to-end
delay.

There is a need for both classes of applications. Appli-
cations that cannot tolerate any service interruption, such
as a remote surveillance system or tele-medicine, will be
typically rigid. On the other hand, if the application per-
formance is sensitive to the end-to-end delay and a briefly
degraded quality is tolerable, then the application should be
adaptive. For example, end-to-end delay is crucial in most
CSCW applications, because there is often real-time inter-
action between the participants of a session. For many of
those applications, a short end-to-end delay is more impor-
tant than a perfect data delivery. They often can tolerate the
loss of a certain fraction of data units with only a minimum
distortion of the real-time signal.

Inter-stream synchronization determines the play-out
points for a group of data streams, based on the temporal
relationships existing between the group members. To ensure
that a stream group is played out synchronously, temporally
related data units are to be associated with the same play-out
point. Adaptive inter-stream synchronization protocols mon-
itor the actual transfer delay of each of the group’s streams
and are able to synchronously adapt the play-out point for
every group member to reflect changes in network condi-
tions. In this paper, we will present anadaptive protocol
for inter-stream and intra-stream synchronization. This pro-
tocol, called Adaptive Synchronization Protocol (ASP), has
the following major characteristics:

• Distributed sources and sinks
ASP supports any kind of distribution of the group of
streams to be synchronized. The streams of a group may
originate from sources residing on different nodes and
may be played out at sinks located at various nodes.
The individual streams may be point-to-point or point-
to-multipoint.

• Immediate reactions on changing network conditions
ASP monitors the actual transfer delay indirectly by
means of a buffer control mechanism and adapts the
play-out point only when a stream becomes critical. A
stream is defined to be critical if it runs the risk of a
buffer underflow or overflow. A nice property of our
algorithm is that each stream may immediately adapt
its play-out point when it becomes critical. Allowing
streams to react immediately in critical situations may
decrease the loss rate significantly.

• Low message overhead
ASP only exchanges control messages when adaptions
are to be performed due to changing network conditions
or quality of service requirements. Consequently, there
is basically no message overhead if network conditions
and QoS requirements are rather stable over time. The
significant reduction of the message overhead for syn-

Fig. 1. System model

chronizing streams is achieved by making the transition
from a periodic exchange of the streams’ state informa-
tion to reacting on changing conditions only.

• Flexibility
ASP is a flexible mechanism that can form the base for
various synchronization policies, such as a “minimum
delay” and “minimum loss” policy. It allows an appli-
cation to dynamically adjust the quality of service per-
ceived by an end-user. In particular, an application can
individually adjust protocol parameters to achieve the
desired trade-off between end-to-end delay and data loss
rate and can modify these parameters even while syn-
chronization is in progress.

The remainder of the paper is structured as follows. Af-
ter introducing the basic principles of ASP in Sect. 2, the ac-
tual synchronization mechanism is described in Sect. 3. The
proposed mechanism can be adapted to various application
needs and forms the basis for different synchronization poli-
cies. This is discussed in Sect. 4. The stability aspects and
buffer requirements are treated in Sect. 5. A discussion of
simulation results and performance measurements is given
in Sect. 6. The paper concludes with a discussion of related
work and a summary.

2 Basic principles and concepts

The existence of synchronized clocks not only simplifies me-
dia synchronization significantly but also allows for more
efficient solutions. Some of the protocols based on synchro-
nized clocks use global time only for the timing of control
operations, such as starting, stopping or adjusting a group of
streams at the same point in global time (e.g., see Campell et
al. 1992). Others additionally use global time as the tempo-
ral basis for scheduling the play-out of data units (e.g., see
Escobar et al. 1994). In this section, we will introduce the ba-
sic principles of the latter class of synchronization protocols.
Before, however, we have to introduce some terminology.

The set of streams which are to be played out in a syn-
chronized fashion is calledsynchronization group(or sync
group for short). For each sync group, there exist a single
synchronizationcontroller and severalagents(see Fig. 1).
The controller is a software entity that maintains state infor-
mation and performs control operations concerning the entire
sync group. In particular, it controls the start-up procedure,
and enforces the synchronization policy chosen by the user.
The controller communicates with the agents, which are soft-
ware entities controlling individual streams. For each stream
there exist a sink agent and a source agent, which commonly
realize the functionality for starting and stopping the stream,
as well as modifying the stream’s play-out rate. Sink agents

326

may communicate with each other in order to adapt play-out
points.

We are considering continuous data streams, which may
originate from live or stored media sources. For the sake
of simplicity, we will assume relative timestamping, i.e.,
the timestamp of a stream’s first data unit is zero, and all
succeeding data units are timestamped relative to time zero.

The basic principle of stream synchronization adopted
by ASP and other protocols exploiting synchronized clocks
is fairly simple. All source agents in the sync group start
sending data units at the same time, sayt0. A data unitu
is sent at timet0 + TS(u), where TS(u) denotes the time-
stamp associated withu. Each sink in the sync group starts
the presentation of its stream at timet0 +∆. Each data unit
u is played out at timet0 + ∆ + TS(u), which is u’s play-
out point. Clearly,∆ must be big enough to allow at least
the first data unit of each stream to arrive at its sink by time
t0+∆. Roughly speaking,∆ determines the end-to-end delay
of a sync group:∆ = max(di : i in sync group), wheredi
denotes the delay of streami. Since different streams may
have different transfer delays, buffering is required at the
sink sites. Data units arriving beforet0 + ∆ are buffered,
which means that different transfer delays are equalized by
means of buffering. This principle is typically used for the
synchronization of live streams, but may also be applied to
the retrieval of stored data.

In the case of non-adaptive protocols,∆ is determined
during protocol initialization and then it is fixed afterwards.
Note, this approach implies that worst case assumptions are
made about stream delays, which results in a worst case end-
to-end delay for the sync group, independent of the actual
delays. If∆ is fixed, the synchronization mechanism is triv-
ial. All that has to be done is to start the transfer and the
presentation of the streams in the way described above. Once
started, the streams remain in sync because play-out times
are derived from global time, i.e., no control messages have
to be transferred after initialization. The message overhead
caused by the underlying clock synchronization mechanism
is amortized among all applications making use of synchro-
nized clocks.

With adaptive protocols,∆ is based on the actual stream
delays rather than worst case assumptions. Stream delays are
monitored and∆ is adapted in response to delay changes.
Moreover, the quality of service (QoS) can be changed dy-
namically. By increasing∆, the probability of data loss
due to late arrival of data units is decreased, whereas the
end-to-end delay is increased. Conversely, decreasing∆ in-
creases the loss probability and decreases the end-to-end de-
lay. Adaptive protocols are a bit more complex than non-
adaptive ones. In addition to deriving a common∆ for the
streams to be synchronized, adaptive protocols need to have
functions for controlling the adaption process, which may be
distributed over several sink sites. Those functions monitor
stream delays, react on changing QoS demands, and trigger
adaptions as needed. Of course, adaptions have to be per-
formed in a coordinated fashion to preserve synchronization.
In particular, all streams in a sync group have to agree on a
new∆ value and switch to it without losing synchronization.

In ASP, adaptions are coordinated by adynamic mas-
ter/slave algorithm. Each sink agent monitors the transfer
delay by controlling the stream’s play-out buffer. During

Fig. 2. Data stream and delay model

normal operation, there is one stream responsible for adapt-
ing ∆, the so-calledmaster stream. The master’s decision of
when and how to adapt is entirely based on its local moni-
toring. Whenever the master’s sink agent decides to change
∆, it propagates its decision to the sink agents of all the
other streams in the sync group, the so-calledslave streams.
The algorithm is dynamic in the sense that, whenever a slave
stream becomes critical, it may immediately become a mas-
ter and perform the appropriate adaptions. Obviously, with
this algorithm it may happen that there exist multiple mas-
ters at the same time. Our protocol is able to handle those
situations without losing synchronization and ensures that
after a certain recovery period the sync group ends up with
a single master stream.

Our model of stream transmission and buffering is de-
picted in Fig. 2. The data units of a stream are produced
by a source with anominal rateR1 and are transmitted to
one or more sinks over a unidirectional transmission path.
We will use a transmission path as an end-to-end abstraction
describing the flow of data between end-points of applica-
tions. In this sense, a transmission path may be a communi-
cation channel (e.g., a transport connection) directly linking
a source with a set of sinks, or it may represent a sequence of
processing elements, such as codecs, mixers or filters, con-
nected with each other by communication channels. Before
the data units are played out, they are stored in aplay-out
buffer at the sink’s site. From this buffer, data units are re-
leased with arelease rateR2.

With ASP, ∆ is modified by increasing or decreasing
release rateR2 for a certain amount of time. During nor-
mal operationR2 equalsR1. In order to increase∆, ASP
decreasesR2 for a period of time, causing an increase in
buffer delay. Conversely, increasingR2 results in a decrease
of ∆. Sinks must be able to adapt to changing release rates.
Either a sink can adapt its consumption rate accordingly, or
adaptions are achieved by means of skipping or duplicating
data units (Anderson and Homsy 1991). Also media-specific
methods are conceivable, such as adjusting silent periods in
voice data streams.

On its way from generation to play-out, a data unit is de-
layed at several stages. It takes a data unit atransfer delaydT
until it arrives in the buffer at the sink’s site. This includes
all the times for generation, communication, processing, as
well as the transfer into the buffer. In the buffer, a data unit
is delayed by abuffering delaydB before it is delivered to
the sink device. In the sink, a data unit experiences aplay-
out delaydS before it is actually presented. The time from
the generation to the presentation is theend-to-end delay.

The media timeM (t) specifies the stream’s temporal
state of play-out. It is derived from timestamp TS of the
data unit that is next to be released from the play-out buffer:
M (t) = TS− dS . However, the granularity of media time

327

would be too coarse if it were simply based on timestamps.
Therefore, media time is interpolated between timestamps
of data units to achieve the required granularity.

We will assume that control messages are communicated
reliably. The required level of reliability is typically pro-
vided by virtual circuits or reliable datagrams. Further, it is
assumed that the system clocks of the nodes participating
in a sync group are approximately synchronized to withinε
of each other, i.e., no clock value differs from any other by
more thanε. Well-established protocols, such as the Network
Time Protocol (Mills 1990), achieve clock synchronization
with ε in the lower milliseconds range.

3 The adaptive synchronization protocol

This section presents the Adaptive Synchronization Proto-
col (ASP), which can be separated into four rather indepen-
dent subprotocols. After a brief overview, we will describe
each of these protocols in detail. It is important to mention,
that this section concentrates on mechanisms, while possi-
ble policies exploiting these mechanisms will be discussed
in the next section.

3.1 Overview of the protocols

ASP consists of the following four subprotocols: the start-up
protocol, buffer control protocol, master/slave synchroniza-
tion protocol, and master switching protocol.The start-up
protocol initiates the data transmission at the sources and
the play-out process at the sinks. Start-up is coordinated by
the controller, which derives start-up times from estimated
transmission times, selects an initial master stream depend-
ing on the chosen synchronization policy and sends control
messages containing the start-up times to the agents.

The buffer control protocolis a purely local mechanism,
performed by the master stream’s sink agent to keep the
play-out buffer delay in a given target area. The determi-
nation of the target area depends on the applied synchro-
nization policy, and thus is not subject to this mechanism
itself. Whenever the buffer delay moves out of the given
target area, the buffer control protocol regulates the mas-
ter’s release rate accordingly. It is this protocol that adjusts
the play-out point of the master stream when network con-
ditions or QoS requirements change.

The master/slave synchronization protocolis initiated
whenever the master stream’s release rate is adjusted by
the above protocol. To ensures inter-stream synchronization,
the sink agent of the master stream propagates an appro-
priate specification of this adjustment to the sink agents of
all slave streams. Upon receipt of this information, an agent
adjusts the release rate of its slave stream accordingly. It is
this protocol that makes sure that play-out points are adjusted
consistently across all streams in the sync group.

Themaster switching protocolallows to switch the mas-
ter role from one stream to another at any point in time. The
protocol involves the sink agents and the controller, which
is responsible for granting the master role. Switching the
master role becomes necessary when some slave stream en-
ters the critical state. A critical slave becomes a so-called

tentative master, whose release rate can be adjusted imme-
diately. The protocol takes care of the fact that there may
be a master and several tentative masters at the same point
in time and makes sure that the sync group eventually ends
up with a single master.

3.2 Start-up protocol

Our start-up procedure is very similar to that described in Es-
cobar et al. 1994. The controller initializes the synchronous
start-up of a sync group’s data streams by sendingStart
messages to each sink and source agent. EachStart mes-
sage contains besides other information a start-up time. All
source agents receive the same start-up time, at which they
are supposed to start transmitting data units. Similarly, all
sink agents receive the same start-up time, which tells them
when to start the play-out process.

Starting agents simultaneously requires theStart mes-
sages to arrive early enough. The start-up timet0 of sources
is derived from the current timetnow, the transfer delay
dm experienced byStart messages, and processing delays
dproc at the controller site:t0 = tnow + dm + dproc. Start-
up of sinks is deferred by an additional time∆ to al-
low the stream data to arrive at the sinks’ locations and
to preload buffers. This extra delay is computed from the
streams’ transfer delays and delays caused by buffer preload-
ing: ∆ = max((di + LWMi) : i in sync group), wheredi and
LWMi denotes streami’s transfer delay and buffer delay,
respectively.LWMi mainly depends oni’s jitter (for detail
see next section). We assume some infrastructure compo-
nent that provides access to the (estimated) jitter and delay
parameters.

A Start message sent to a source agent contains the start
time t0 and the nominal stream rateRN . A source agent
receiving such a message starts transmission at timet0 with
rateR1 = RN . Start received by a sink agent includes start
time t0+∆,RN and a flag indicating the receiver’s initial role
(i.e., master or slave). Furthermore, it includes some initial
parameters concerning the play-out buffer (see below). A
sink agent starts the play-out process at the specified time
with rateR2 = RN .

Each agent starts stream transmission or play-out at the
received start-up time. Therefore, the start-up asynchronic-
ity is bounded by the inaccuracy of clock synchronization,
provided Start messages arrive in time. However, even if
someStart messages are too late, ASP is able to immedi-
ately resynchronize the ‘late’ streams.

3.3 Buffer control protocol

Before describing the protocol, we will take a closer look
at the play-out buffer. The parameterdB(t) denotes the
smoothed buffer delay at timet. The buffer delay at a given
point in time is determined by the amount of buffered data
and the rate of the stream. In order to filter out short-term
fluctuations caused by jitter, some smoothing function is to
be applied. ASP does not require a distinct smoothing func-
tion. Some examples are the geometric weighting smooth-
ing function (Postel 1981):dB(ti) = α · dB(ti−1) + (1− α) ·

328

ActBufferDelay(t), or the Finite Impulse Response Filter
as used in Koehler and M̈uller (1994).

In ASP, all buffer-related values are measured in time
units rather than bytes. A buffer of sizen seconds can hold
up to n seconds of the corresponding data stream. The ad-
vantage of using a temporal dimension is that the ASP mech-
anism becomes totally independent of the media streams to
be synchronized and their encodings. Mapping the tempo-
ral size of a buffer to its size in bytes is straight-forward
for CBR streams. For VBR streams, this mapping is more
complicated for a number of reasons. Note that this type of
mapping is needed wherever buffer space and bandwidth is
to be allocated for streams. Thus, it should be provided by
resource management protocols. ASP is kept independent
from this mapping leading to a clear separation of stream
control and resource management.

For each play-out buffer alow-water mark (LWM)and
high-water mark (HWM)is defined. WhendB(t) falls under
LWM or exceedsHWM, there is the risk of underflow or
overflow, respectively. Therefore, we will call the buffer ar-
eas belowLWM and aboveHWM thecritical buffer regions.
As will be seen below, ASP takes immediate corrective mea-
sures whendB(t) moves into either one of the critical buffer
regions. Note that the quality of intra-stream synchroniza-
tion is primarily determined byLWM andHWM values. The
buffer parameters are set by the ASP client according to
application and network characteristics (see Sect. 4).

The buffer control protocol is executed locally at the sink
site of the master stream. Its only purpose is to keepdB(t)
of the master stream in a so-calledtarget area, which is
defined by anupper target boundary (UTB)and alower tar-
get boundary (LTB). While the high- and low-water marks
describe the intervention marks that cause a slave stream’s
reactions to avoid the overflow and underflow of its buffer,
the target area causes the master stream to follow changes in
transfer delays. Hence, the role of the stream determines the
marks used for reactions. Clearly, the target area must not
overlap with a critical buffer region. The location and width
of the target area is primarily determined by the chosen syn-
chronization policy (see Sect. 4). For example, to minimize
the overall delay the target should be close toLWM.

The buffer delaydB(t) may float freely between the
lower and upper target boundary without triggering any rate
adaptions. Changing transmission delays (or a modification
of the target area requested by the controller) may cause
dB(t) to move out of the target area. When this happens, the
master enters a so-calledadaption phase, whose purpose is
to movedB(t) back into the target area.

At the beginning of the adaption phase, the release
rate is modified accordingly. The adapted release rate is
RA

2 = RN ·(1+Rcorr), whereRcorr = (dB(t)−(LTB+(UTB−
LTB)/2))/L is the relative correction rate. LengthL of the
adaption phase determines how aggressive the algorithm re-
acts: the smallerL, the more aggressive the algorithm. At
the end of the adaption phase, it is checked whetherdB(t)
has moved back into the target area. If this is the case, then
R2 is set back toRN , otherwise another adaption phase is
started.

In order to keep the slave streams in sync, each adap-
tion of the master stream has to be propagated to the slave
streams. This is achieved by the protocol described next.

3.4 Master/slave synchronization protocol

The master/slave synchronization protocol ensures that the
slave streams are played out in sync with their master stream.
This protocol is initialized whenever the master (or a tenta-
tive master, as will be seen in the next section) modifies its
release rate. Protocol processing only involves sink agents,
each of which acts either as master or slave.

Whenever the master enters an adaption phase, it per-
forms the following operations. First, it computes the so-
called target media time for this adaption phase, which is
defined to be the media time the master stream will reach
at the end of this phase. Assume that the adaption phase
starts at real-timets and is of lengthL. Then the target me-
dia time isM (ts + L) = M (ts) + L · RA

2 . Subsequently, the
master propagates anAdapt message to each slave in the
sync group. AnAdapt message includes the following in-
formation: (TS, te,M (te)), wherete = ts +L is the time the
adaption phase ends,M (te) specifies the media time at the
end of the adaption phase, andTS is a structured timestamp
for ordering competingAdapt messages.

When a slave receives anAdapt message, it immediately
enters the adaption phase by modifying its release rate ac-
cording to the received target media time (see Fig. 5). The
modified release rateRA

2 = RN · (M (te)−M (ta))/(te− ta),
whereta denotes the time at which the slave receivedAdapt.
At time te (i.e., at the end of the adaption phase),R2 is set
back toRN .

Obviously, this protocol ensures that at the end of each
adaption phase all streams in the sync group reach the same
target media time at the same point in real-time. Between
two adaption phases, streams stay in sync as their nominal
release rates are derived from global time.

As with all synchronization schemes based on the no-
tion of global time, skew among sinks is introduced by
the inaccuracy of synchronized clocks, which is assumed
to be bounded byε. In our protocol, an additional source
of skew is the adaption of release rates at different points
in time. The worst case skewSmax during the adaption
phase of the master depends on transfer timedm of the
Adapt message and the master’s relative correction rate
Rcorr : Skewmax = dm · |Rcorr| + ε, where the term
dm · |Rcorr| denotes the skew caused by the delay of the
Adaptmessages. Our simulation results in Sect. 6 will show
that the value of this term typically is in the range of 10–
15 ms in wide area networks. If no adaption is in progress,
the skew is bounded byε.

With a slight modification of our protocol, we can
achieve a skew bound ofε even during the adaption phase.
We only have to make sure that the master and its slaves
enter the adaption phase at the same point in global time.
Assume that the master’s buffer delay moves out of the target
area at timet. Instead of entering immediately the adaption
phase, it only sends outAdaptmessages to all of its slaves,
while the start of the actual adaption phase is deferred by
some timeδ. An Adaptmessage contains the following pa-
rameters (TS, ts, te,M (te)), where the additional parameter
ts = t + δ denotes the starting time of the adaption phase.
All other parameters have the same semantics as above.

A slave receiving anAdapt message checks whether it
received this message later thants. If this is the case, the

329

Fig. 3. Buffer regions and intervention marks of the
play-out buffer

Fig. 4. Buffer delay adaption

Fig. 5. Master/slave synchronization

slave immediately enters the adaption phase. Otherwise, it
waits for entering this phase until timets is reached. Ob-
viously, if δ is set to the maximum delay of control mes-
sages, the master and all of its slaves start the adaption at
the same point in global time. Now the potential inaccuracy
of the synchronized clocks is the only source of skew, i.e.,
Skewmax = ε. Deferring the adaption phase results in a de-
crease of skew, which means that the quality of inter-stream
synchronization is increased. On the other hand, the deferred
reaction increases the risk of buffer overflow or underflow,
which may affect the quality of intra-stream synchroniza-
tion. Consequently, theδ parameter, whose value may range
from zero to the maximum delay of control messages, can be
used to put emphasis on either inter-stream or intra-stream
synchronization quality. We assume, however, that for a ma-
jority of applicationsδ may be set to zero, even in wide area
networks.

3.5 Master switching protocol

In our protocol, we distinguish between two types of master
switching. The first type of switching, calledpolicy-initiated,
is performed whenever (a change in) the synchronization
policy requires a new assignment of the master role. In this
case, the controller, which enforces the policy, performs the
switching just by sending aGrantMaster messageto the new
master and aQuitMaster messageto the old master.Grant-
Master specifies the target buffer area of the new master,

which is determined by the controller, depending on the cho-
sen policy. With this simple protocol it may happen that for
a short period of time there exist two masters, which both
propagateAdapt messages. Our protocol prevents inconsis-
tencies by performingAdapt requests in timestamp order
(see below).

The second type of switching isrecovery-initiated. A
sink slave initiates recovery when its stream becomes criti-
cal. A stream is called critical if its current buffer delay is
in a critical region and (locally) no rate adaption improv-
ing the situation is in progress. A very attractive property of
our protocol is that a slave can immediately react when its
stream becomes critical. Recovery goes as follows. First, the
slave makes a transition to a so-calledtentative master(or
t-master for short) and informs the controller about this by
sending anIamT-Mastermessage. Then – without waiting
for any response – it enters an adaption phase, in which it
adapts release rateR2 in a way that its buffer delay can be
expected to move out of the critical region. In order to keep
the other streams in sync, it propagates anAdapt request
to all other sink agents, including the master. At the end
of the adaption phase, a t-master falls back into the slave
role. Should the stream still be critical by this time, then the
recovery procedure is initiated once again.

Obviously, our protocol allows multiple instances to
propagateAdapt concurrently, which may cause inconsis-
tencies leading to the loss of synchronization if no care is
taken. As already pointed out above, policy-initiated switch-

330

ing may cause the new master to sendAdaptmessages while
the old master is still in place. Moreover, at the same point
in time, there may exist any number of t-masters propagating
Adapt requests concurrently. It should be clear that stream
synchronization can be ensured only ifAdaptmessages are
performed in the same order at each agent. This require-
ment can be fulfilled by including a timestamp inAdapt
requests and performing these requests in timestamp order
at the agent sites. The latter means that an agent accepts an
Adapt request only if it is younger than all other requests
received before. Older requests are just discarded.

However, performing requests in some timestamp order
is not sufficient. Assume, for example, that the master and
some t-master propagateAdapt requests at approximately
the same time, and the former requests an increase of the
release rate, while the latter requests a decrease. For some
synchronization policies, this might be a very common situ-
ation (see for example the minimum delay policy described
in the next section). If the timestamps were solely based on
system time and the master would perform the propagation
slightly after the t-master, then the t-master’s request would
be wiped out, although it is the reaction to a critical situation
and hence is more important. The stability of the algorithm
can only be guaranteed if recovery actions are performed
with the highest priority.1 Consequently, the timestamping
scheme defining the execution order ofAdaptrequests must
take into account the ‘importance’ of requests.

The precedence ofAdaptrequests sent at approximately
the same time is given by the following list in increas-
ing order: (1) requests of old masters, (2) requests of the
new master (3) requests of t-masters. We apply a structured
timestamping scheme to reflect this precedence of requests.
In this scheme, a timestamp has the following structure:
< ER · EM · T >, whereER denotes arecovery epoch,
EM designates amaster epoch, andT is thereal-timewhen
the message tagged with this timestamp was sent. A new
recovery epoch is entered when a slave performs recovery,
while a new master epoch is entered whenever a new master
is selected. So, a recovery epoch may have seen several mas-
ter epochs. As will be seen below, entering a new recovery
epoch requires a new master to be selected.

Each control message contains a structured timestamp,
which is generated before the message is sent on the ba-
sis of two local epoch counters and the local (synchro-
nized) clock. The controller and the agents keep track of
the current recovery and master epoch by locally maintain-
ing two epoch counters. Whenever they accept a message
whose timestamp contains an epoch value greater than the
one recorded locally, the corresponding counter is set to the
received epoch value. Moreover, an agent increments its lo-
cal recovery epoch counter when it performs recovery, i.e.,
the IamT-Mastermessage sent to the controller already re-
flects the new recovery period. The controller increments
its master epoch counter when it selects a new master, i.e.,
the GrantMastermessage already indicates the new master
epoch.

1 We assume that at no point in time there exist two t-masters that try to
adapt the release rate in a contradicting fashion, i.e., one tries to increase the
rate, while the other tries to decrease it. This is achieved by enabling mas
ter switching only for one type of critical situation, underflow or overflow.
Which type is enabled depends on the chosen sync policy (see Sect. 4)

Adapt requests are accepted only in strict timestamp or-
der. Should an agent receive two requests with the same
timestamps, total ordering is achieved by ordering these two
request according to the requestors’ unique identifiers in-
cluded in the messages. As a slave performing recovery
enters a new recovery epoch, allAdapt request generated
by some master in the previous recovery epoch are wiped
out. Similarly, selecting a new master enters a new master
epoch, and by this wipes out allAdapt request from former
masters. When a master receives anAdapt request indicat-
ing a younger master or recovery epoch, it can learn from
this message that there exists a new master or a t-master per-
forming recovery, respectively. In both cases, it immediately
gives up the master role and becomes a slave.

As mentioned above, a critical slave sends anIamT-
Master message when it becomes a t-master. When the con-
troller receives such a message indicating a new recovery
epoch, it must select a new master. Which stream becomes
the new master primarily depends on the synchronization
policy chosen. For example, the originator of theIamT-
Master message establishing a new recovery epoch may
be granted the master role. All other messages of this type
belonging to the same recovery epoch are discarded upon
arrival (see Fig. 6).

In summary, in an adaption phase a t-master or mas-
ter may receive anAdapt or GrantMaster message. They
are only accepted if they are younger than all other control
messages of the same type received before. If anAdapt re-
quest is accepted, a new adaption phase is started based on
the target media time included in the accepted request. As
mentioned above, a master accepting anAdaptmessage im-
mediately becomes a slave. IfGrantMaster is accepted, the
recipient becomes master and acts accordingly. A t-master
that has not receivedGrantMasterby the end of the adap-
tion phase goes back to the slave role. Of course, if it is still
critical by this time, it initiates recovery again.

In the previous section, we discussed skew in the adap-
tion phase without considering master switching. The possi-
bility of switching the master role can increase the skew, as
it may happen that the master and a t-master independently
from each other decide to adapt in opposite directions. The
worst case skew among sinks can be observed if such a deci-
sion is made at approximately the same time. The maximum
skew can be shown to be

Skewmax =

max(0, dm − δ) · (|Rcorr,master| + |Rcorr,t−master|) + ε,

where dm denotes the transmission delay ofAdapt mes-
sages andδ is the time the adaption phase is deferred. If
δ is set to the maximum delay of control messages the
skew is bounded byε. The skew bound is increased by
dm · (|Rcorr,master| + |Rcorr,t−master|) if δ is zero. This
term will be in the range of 20–30 ms in wide area networks
and correspondingly lower in local area networks. Remem-
ber that ifδ equals zero, streams may immediately perform
adaptions at the time they become critical.

331

Fig. 6. Recovery-initiated master switching

4 Synchronization policies

ASP has many parameters for tuning the protocol to the char-
acteristics of the underlying system as well as to the quality
of service requested by the given application. A discussion
of all these parameters would go far beyond the scope of
this paper. Therefore, we will focus on the most important
parameters, in particular those influencing the synchroniza-
tion policy: the low- and high-water mark, the width of the
target area and its placement in the play-out buffer, as well
as the rules for granting the master role.

The intra-stream synchronization quality in terms of data
loss due to underflow or overflow is primarily influenced by
the LWM and HWM values. As pointed out in Sect. 2, the
play-out time of a data unitu is t0 + ∆ + TS(u), where∆
is adapted as needed in adaption phases. For a data unit
released on time, the sum of its transfer delay and buffer
delay must be equal to∆. Assume, for example that the
transfer delay ofu is dT = ∆− LWM, i.e.,u’s buffer delay
is at the border of the lower critical region. Obviously, if the
transfer delays of the data units followingu do not differ
from dT by more thanLWM, there is no buffer underflow.
Remember that∆ is immediately adapted when the buffer
delay enters a critical region. Our experiments with ASP
have shown that a reasonable value for the width of a critical
region isj/2, wherej denotes the jitter of the corresponding
data stream.

IncreasingLWMgenerally increases the intra-stream syn-
chronization quality as the data loss probability is decreased.
At the same time, however, this modification may increase
the end-to-end delay of the sync group, which might be criti-
cal for certain applications. ASP allows the client to modify
LWM and HWM values even while the presentation is in
progress. For example, it is conceivable that a user inter-
actively adjusts the stream quality during play-out. Alterna-
tively, an internal mechanism similar to the one described in
Kaeppner et al. (1994) may monitor the data loss rate and
adjust the water marks as needed.

The width of the target area determines the aggressive-
ness of the buffer control algorithm. The minimum width of
the target area isω = c · j, wherec depends on the smooth-
ing function used to determinedB(t). In our experimentsc
turned out to be about 0.3. The larger the width of the tar-
get area, the less adaptions of the release rate are required.
On the other hand, with a large target area, there is only
limited control over the actual buffer delay. If, for example,
the actual buffer delay has to be kept as close as possible to
LWM to minimize the end-to-end delay, a small target area
is preferable.

The location of the target area together with the way how
the master role is granted are the major policy parameters of
ASP. This will be illustrated by the following two policies,
the minimum delay policy and the minimum loss policy.

The goal of theminimum delay policyis to achieve the
minimum end-to-end delay for a given intra-stream synchro-
nization quality. To reach this goal, the stream with the cur-
rently maximum transfer delay is granted the master role,
and this stream’s buffer delay is kept as close as possible to
LWM. This means that the target area for the master is lo-
cated as follows:LTB = LWM andUTB = LWM +ω, where
ω is the jitter of the smoothed buffer delaydB(t).

Due to changing network conditions, it may happen that
the transfer delay of a slave stream surpasses the one of
the master. This will cause the slave’s buffer delay to fall
below itsLWM, triggering recovery. When the controller re-
ceives anIamT-Mastermessage, it assigns the master role to
the received message’s originator by sending aGrantMas-
ter request. If it receives multipleIamT-Mastermessages
originated in the same recovery epoch, only the first one
is accepted, all the other ones are ignored. This strategy
ensures that the stream with the maximum transfer delay
always becomes master. The end-to-end delay of the sync
group at timet amounts to the maximum transfer delay at
t plus (UTB + LTB)/2, which is the minimum end-to-end
delay that can be achieved att.

With the minimum delay policy, a slave running out of
buffer may cause master switching to be performed continu-
ously. To ensure stability in those situations, master switch-
ing is disabled for overflow-critical streams. Various policies
for a slave to recover from overflow-critical situations are
possible (for details, see Sect. 5).

The possibility of adjustingLWM dynamically makes
this policy very powerful. By increasingLWM, the data loss
rate is decreased, while the end-to-end delay is increased.
The loss rate is increased and the end-to-end delay is de-
creased ifLWM is decreased. Consequently, by dynamically
adjustingLWM, the user may (interactively) determine the
appropriate trade-off between end-to-end delay and intra-
stream synchronization quality.

While the minimum delay policy minimizes the buffer
delay, theminimum loss policymaximizes the buffer de-
lay to minimize the probability of buffer underflow for the
available buffer space. This policy is appropriate for those
applications, for which a perfect transmission (i.e., low loss
rate) is more important than a low end-to-end delay.

With this policy, the stream with the at present minimum
transfer delay is granted the master role. The master’s buffer

332

delay is kept as close as possible toHWM, which means that
the target area for the master is located as follows:UTB =
HWM and LTB = HWM − ω, whereω denotes the jitter
of dB(t). Note that each slave stream has a lower buffer
delay than the master stream, as the latter is the one with
the minimum transfer delay.

When changing network conditions cause a slave to ex-
perience a smaller transfer delay than the current master,
this slave’s buffer delay will exceedHWM, triggering re-
covery. The controller receiving anIamT-Mastermessage
reacts in exactly the same way as with the previous pol-
icy. It sends aGrantMastermessage to the originator of the
IamT-Mastermessage arriving first in a recovery period, all
following messages belonging to the same recovery period
are ignored. Obviously, this policy ensures that always the
stream with the minimum transfer delay is the master. Max-
imizing the buffer delay of the master means keeping the
buffers as full as possible and thereby minimizing the loss
probability due to underflow.

With the minimum loss policy a “starving” slave stream
may cause master switching to be performed continuously.
To ensure stability in those situations, master switching is
disabled for underflow-critical streams if this policy is ap-
plied. Stability aspects and recovery for critical streams are
discussed in detail in the next section.

5 Stability and buffer requirements

ASP uses buffering to equalize the different transfer delays
of the streams in a sync group. Therefore, the size of the
play-out buffer of an individual stream depends on the delay
characteristics of the stream group.

The streams in a sync group may have different buffer
requirements. We will determine the size of the streams’
play-out buffer in terms of time units to keep the results
independent from the encodings of the various media. Let
di,max and di,min be the maximum and minimum transfer
delay of streami, respectively, andδi,k = dk,max − di,min.
The target of master streamk is LWMk +ωk/2, whereωk is
the width ofk’s target area. Streami’s high water mark can
be determined as follows:HWMi = max(LWMk + ωk/2 +
δi,k : k ∈ G − {i}), whereG denotes the corresponding
sync group. Consequently, the size of the play-out buffer of
streami is Bi = HWMi + LWMi assuming the same width
for both critical regions.

The buffer size is determined based on assumptions con-
cerning the maximum and minimum transfer delay. If the
underlying network provides (reasonable) delay guarantees
and buffer is allocated according to the results above, it may
never happen that two streams of a sync group are critical
in a contradicting way, i.e., one experiences a buffer un-
derflow, while the other suffers from overflow at the same
time. If, however, the underlying network does not provide a
deterministic service, the assumed minimum and maximum
delays have to be determined on a statistical basis. In this
case, it might happen that a sync group’s streams experience
underflow and overflow at the same time. We will call this
an underflow&overflow situation.

It is important to note that an underflow&overflow sit-
uation does not jeopardize the stability ofASP . Since the

minimal delay and minimal loss policy both enable master
switching either for underflow recovery or for overflow re-
covery, an underflow&overflow situation may never cause
master switching to be performed continuously. For exam-
ple, consider the minimum delay policy. Remember, this
policy minimizes the buffer delays of all streams in a sync
group by minimizing the buffer delay of the stream with
the currently longest transfer delay. For this policy mas-
ter switching is only enabled for buffer underflow. While a
stream experiencing an underflow will always initiate mas-
ter switching and decrease the stream’s play-out rate accord-
ingly, the recovery processing for overflow depends on the
policy implemented by the stream’s sink agent. Following
policies are conceivable:

Dynamic buffer allocation.In order to avoid overflow, the
buffer is dynamically extended when a stream’s buffer delay
exceedsHWM. The dynamically allocated buffer can be re-
leased as the buffer delay decreases due to changing network
conditions. If dynamic buffer allocation is impossible there
are two remaining policies, skipping and stream removal.

Skipping.The sink agent may skip data units, either already
residing in the buffer or just arriving. Of course, if data
units differ in importance (e.g., I-, B- and P-frames of MPEG
videos), the agent will try to skip the less important ones first.
Obviously, this policy causes data loss, and hence decreases
the quality of the individual stream, while the quality of
inter-stream synchronization is not affected.

Stream removal.When a stream becomes (overflow-)
critical, the stream’s sink agent may remove the stream tem-
porarily from the sync group. This removal is a local oper-
ation that does not require any communication with other
protocol instances. After removal the agent can adjust the
play-out rate independent from the other streams in the sync
group. However, it still receives theAdaptrequests from the
master and thus is able to keep track of the sync group’s
media time. Stream removal will cause the stream’s (local)
media time to differ from the sync group’s media time. In
other words, this policy decreases the quality of inter-stream
synchronization, while the quality of the individual streams
is not affected. The skew can be minimized by keeping the
buffer delay of the removed stream close toHWM. A re-
moved stream may rejoin the sync group when its local me-
dia time equals the sync group’s media time.

Obviously, skipping and stream removal can be com-
bined. For example, an agent may perform skipping until
the loss rate reaches a certain threshold and then switch to
stream removal.

In our discussion above, we have confined ourself to the
minimum delay policy, as the stability arguments for the
minimum loss policy are almost symmetrical.

6 Simulation results and performance measurements

In order to investigate ASP’s behavior in different environ-
ments, the proposed protocol has been simulated extensively.
Moreover, it has been implemented and its performance has
been experimentally measured (for details, see Helbig 1996).
In this section, we will discuss the major results of this work,

333

focusing on ASP’s ability to adapt to changing conditions,
its message overhead and skew.

Our simulations use delay data measured in the Inter-
net as well as synthetically generated delays. The Internet
data are used to investigate ASP’s behavior in fairly un-
predictable environments, while the synthetic data allow for
more systematic investigations.

In our first simulation, the transfer delays are based on
measurements in the Internet. This simulation illustrates how
ASP reacts on a client-initiated reduction of the end-to-end
delay (Fig. 7a–d). The target area in the play-out buffer is
defined byLTB = 100 ms andUTB = 200 ms. This set-
ting leads to a constant release rate and an end-to-end de-
lay of about 260 ms. There is no data loss due to late ar-
rivals. During the simulation, the target area is moved to
LTB = 35 ms andUTB = 135 ms to reduce the end-to-
end delay by about 90 ms. This reduction causes an increase
in late arrivals by approximately 2.5%. This client-initiated
adaption is achieved within a single adaption phase.

The following simulations use synthetic transfer delays
generated according to a normal distribution.2 The trans-
fer delay distributions of streams S1, S2 and S3 have a
mean transfer delay/ standard deviation of 200 ms/20 ms,
180 ms/10 ms, 200 ms/10 ms, respectively. We have chosen
similar transfer delays, as this is the interesting case with
regard to the frequency of master switching.

The simulation results depicted in Fig. 8a show the de-
pendency of the end-to-end delay and the data loss due to
late arrivals. ParameterLWM is set to 10, 20, 50, 100, and
200 ms, respectively. IfLWM is increased, this increases the
end-to-end delay and reduces the number of late data units,
e.g., for stream S3 from 10% to 0%. Our simulations show
that increasingLWM beyond 50 ms does not improve the
quality of the considered streams anymore.

During adaption phases, the skew is determined by the
size of rate corrections and the transfer delay ofAdaptmes-
sages. Figure 8b illustrates the impact of the length of the
adaption phase on the minimum, average and maximum rate
correctionRcorr. The results show that a reasonable length
of the adaption phase is from 1 to 5 s, leading to a maximum
rate correction of about 2% and an average rate correction
below 1%. The maximum rate correction for a length of 5 s
is about 0.35%.

The resulting skew during adaption phases is clearly be-
low the values tolerated in the scenarios described in the
experiments of Steinmetz and Engler (1993). With the avail-
able clock synchronization protocols, such as NTP (Mills
1990), we can assume clocks to be synchronized within the
lower milliseconds range. By using radio-controlled clocks,
this situation will improve even further. The skew added by
ASP for rate corrections of up to 2% is typically below 1
ms in a LAN and below 20 ms in a WAN, assuming transfer
delays of up to 1 s.

Finally, we will investigate how ASP adapts to changing
transfer delays. We will consider two types of changes, a
jump and a ramp-shaped change. For the jump, the height is
varied in steps of 10 ms from -50 ms to +50 ms, while for
the ramp, the transfer delay is continuously increased within

2 Normal distribution for packet delays in packet-switched networks is
suggested in Alvarez-Cuevas et al. (1993) and Shivakumar et al. (1995)

a certain time interval. The length of the time interval is
varied from 1 s to 50 s, andramp heights of 10, 20 and
50 ms are considered. In all simulations, the width of the
target area is 20 ms and the adaption phase is 5 s inlength.

Figure 9a shows the results of the jump simulation.
Jumps up to half the width of the target area either cause no
or a single rate adaption, depending on the buffer delay at
the time of the jump. Consequently, 0.5 rate adaptions are
required in average. Jump heights of 20 ms (width of the tar-
get area) and 50 ms require two and three adaption phases,
respectively. The reason why multiple adaption phases are
needed is the smoothing function applied on buffer delays,
which causes the first rate adaption to be smaller than actu-
ally needed.

In Fig. 9b, the simulation results for the ramp-shaped de-
lay changes are illustrated. Independent of the length of the
interval, changes of half the target area width lead to a single
or no rate adaption, and a change of the same size as the tar-
get area requires two adaption phases. Only larger changes
over longer time intervals require more rate adaptions since
they cause a sequence of small adaptions. For the 50-ms
ramp, the worst case is 8 adaptions in 50 s.

To verify the simulation results, ASP has been imple-
mented and evaluated in theCinema project (Configurable
Integrated Multimedia Architecture; Rothermel et al. 1994).
Cinema provides a platform for developing and control-
ling multimedia applications in distributed environments. In
particular, it offers abstractions and mechanisms to build
distributed multimedia applications by configuration of ba-
sic processing and communication elements. Synchroniza-
tion constraints between streams may be specified by means
of so-called clock hierarchies (Rothermel and Helbig 1996).
While clock hierarchies are programming abstractions, ASP
is the mechanism that actually performs stream synchroniza-
tion. Cinema runs on IBM RS/6000 workstations under
AIX, as well as Sun SPARCstations under Solaris.

So far, measurements have been performed for two net-
work technologies, a 10-Mbps Ethernet and a 155-Mbps
ATM network. With these measurements we could confirm
the essential results of our simulations (for details, see Hel-
big 1996). In the Ethernet-based experiments,Adapt mes-
sages are generated every 10–20 s for rather tight target
areas. By increasing the target area, it can be achieved that
Adaptmessages are sent only every couple of minutes. The
maximum rate correctionRcorr is below 2%, average rate
corrections are between 0.4% and 1.2%. Consequently, the
skew added by ASP is far below the skew limits given
in Steinmetz and Engler (1993) for scenarios such as lip
synchronization or video/text overlays. As expected, experi-
ments performed in the ATM environment show even better
results. Measurements in WAN environments are subject to
future work.

7 Related work and conclusions

Existing approaches to stream synchronization can be classi-
fied in various ways. One classification criterion is whether
or not synchronization is distributed. In the case of dis-
tributed approaches, the sinks of the sync group may reside

334

Fig. 7. a Transmission and end-to-end delay.b Buffer delay of master stream.c Release rate of master stream.d Late data units/1000

Fig. 8. a Delay versus late data units.b Rcorr versus length of adaption phases

Fig. 9. a Reaction on jump in delay.b Reaction on ramp in delay

on different nodes, while local approaches require all sinks
to reside on the same node.

The class of local approaches comprises a number mul-
timedia toolkits, e.g., ACME (Anderson and Homsy 1991),
Multimedia Presentation Manager (IBM 1992), QuickTime
(Apple 1991), or Tactus (Dannenberg et al. 1992), as well
as various synchronization algorithms proposed in the liter-
ature; e.g., Ravindran and Bansal (1993), Kaeppner et al.
1994), (Shivakumar et al. (1995). Distributed approaches
include algorithms proposed in Ramanathan and Rangan
(1992), Agarwal and Son (1994), the Flow Synchronization
Protocol (Escobar et al. 1994), the Lancaster Orchestration
Service (Campell et al. 1992), as well as ASP.

Both local as well as distributed approaches may be rigid
or adaptive. For example, the Concord algorithm (Shivaku-
mar et al. 1995) and the DMOS protocol (Kaeppner et al.
1994) fall into the class of local adaptive approaches. The
Concord algorithm allows to trade off packet loss rates, end-
to-end delay and skew. The algorithm computes the packet
delay distribution on-the-fly and delivers it to the client
which decides on adaptions. In other words, the algorithm
itself does not provide for automatic adaptions. In DMOS,
a QoS parameter “rate of late data units” is monitored, al-
lowing applications to trade off end-to-end delay versus loss
rate. Automatic adaptions are performed as required. In both
schemes, inter-stream synchronization is based on comput-

335

ing a reference end-to-end delay for all streams by a dedi-
cated (centralized) entity. Transfering this approach to dis-
tributed settings would lead to a significant message over-
head for collecting state information and propagating control
messages.

Distributed adaptive approaches may be based on lo-
cal time or global time, where the latter is achieved by
clock synchronization. No global time is required for the
algorithms proposed in Ramanathan and Rangan (1992) and
Agarwal and Son (1994). Stored data streams are transferred
from a centralized server to distributed sinks. The sinks
are required to periodically send feedback messages to the
server, which uses these messages to estimate the temporal
state of the individual streams. In Ramanathan and Rangan
(1992), the accuracy of these estimations depends on the
jitter of feedback messages. Agarwal and Son (1994) elimi-
nate this dependency by estimating the differences between
system clocks by means of probe messages. With this mod-
ification, accuracy depends on the jitter of probe messages.
The feedback messages cause an overhead ofn messages
per period forn streams. After a stream becomes critical, it
takes at least one message round-trip time before an adaption
takes effect at the sink.

Both the Flow Synchronization Protocol (Escobar et al.
1994) and the Lancaster Orchestration Service (Campell
et al. 1992) are distributed adaptive approaches assuming
synchronized clocks. In the Flow Synchronization Protocol,
each sink periodically sends its delay estimate to all other
sinks in the sync group. Having received all delay estimates,
each sink locally performs the same function on its own and
the received estimates to determine the end-to-end delay for
the next period. The message complexity isn · (n− 1) mes-
sages (orn messages if multicast is available) per period,
however, various optimizations are proposed to reduce this
message overhead. When a stream becomes critical, its sink
cannot perform (global) adaptions before the next period be-
gins.

With Lancaster Orchestration Service, a centralized con-
troller periodically receives the temporal state of each sink in
the sync group. Based on the collected information, the con-
troller periodically decides whether adaptions are needed and
sends the corresponding adapt requests. The message over-
head per period is at leastn messages, and 2·n in the worst
case. Moreover, reactions on critical situations are deferred
by at least one message round-trip time.

ASP belongs to the same class as the Flow Synchroniza-
tion Protocol and the Lancaster Orchestration Service. The
major difference is that ASP does not know the concept of
a period. Instead of sending control messages periodically,
in ASP adapt requests are sent solely on demand, when rate
adaptions actually become necessary due to changing net-
work conditions or QoS requirements. The propagation of
adapt requests requires (n − 1) messages (or 1 message if
multicast is available). A nice feature of ASP is that a sink
may react immediately on critical situations. The price of
this feature is an increase in skew, which, however, can
be ignored for most applications as has been shown in the
previous section. For applications that are extremely skew-
sensitive, ASP provides the possibility to defer adaptions
artificially in order to avoid this skew.

ASP is a very general and flexible synchronization mech-
anism that can be tailored to various network characteris-
tics, as well as to a wide range of multimedia applications.
ASP has been simulated and implemented in theCinema
system. Both the simulations and the performance measure-
ments confirmed the properties postulated for ASP.

References

Agarwal N, Son S (1994) Synchronization of distributed multimedia data in
an application-specific manner. In: 2nd ACM International Conference
on Multimedia, San Francisco, Calif., pp 141–148

Alvarez-Cuevas F, Bertram M, Oller F, Selga JM (1993) Voice synchro-
nization in packet switching networks. IEEE Network 7: 20–25

Anderson DP, Homsy G (1991) Synchronization policies and mechanisms
in a continuous media i/o server. Report No. UCB/CSD 91/617, Com-
puter Science Division (EECS), University of California, Berkeley,
Calif.

Apple (1991) QuickTime Developer’s Guide. Apple Computer Inc., Cuper-
tino, Calif., USA

Campell A, Coulson G, Garcia F, Hutchison D (1992) A continuous media
transport and orchestration service. SIGCOMM’92 Communications
Architectures and Protocols. pp 99–110

Clark DD, Shenker S, Zhang L (1992) Supporting real-time applications
in an integrated services packet network: Architecture and mechanism.
SIGCOMM’92 Communications Architectures and Protocols. pp 14–
26

Dannenberg RB, Neuendorffer T, Newcomer JM, Rubine D (1992) Tactus:
Toolkit-level support for synchronized interactive multimedia. 3rd In-
ternational Work-shop on Network and Operating System Support for
Digital Audio and Video. pp 264–275

Escobar J, Partridge C, Deutsch D (1994) Flow synchronization protocol.
IEEE Trans Networking 2: 111–121

Ferrari D (1990a) Client requirements for real-time communication services.
Request for Comments RFC 1193

Ferrari D (1990b) Design and applications of a delay jitter control scheme
for packet-switching internetworks. In: 2nd International Workshop on
System Support for Digital Audio and Video, Heidelberg, Germany.

Helbig T (1996) Communication and synchronization of multimedia data
streams in distributed systems (in German). PhD thesis, University of
Stuttgart, Faculty of Computer Science, Stuttgart, Germany

IBM (1992) Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00 and S41G-2920-
00. IBM Corporation

Käppner T, Henkel F, M̈uller M, Schr̈oer A (1994) Synchronisation in einer
verteilten Entwicklungs- und Laufzeitumgebung für multimediale An-
wendungen. Innovationen bei Rechen- und Kommunikationssystemen.
pp 157–164

Köhler D, Müller H (1994) Multimedia playout synchronization using
buffer level control. 2nd International Workshop on Advanced Tele-
services and High-Speed Communication Architectures, Heidelberg,
Germany.

Mills DL (1990) On the accuracy and stability of clocks synchronized by
the network time protocol in the internet system. Comput Commun
Rev 20: 65–75

Postel (1981) Transmission control protocol, darpa internet program, pro-
tocol specification. RFC 793

Ramanathan S, Rangan PV (1992) Continuous media synchronization in
distributed multimedia systems. 3rd International Workshop on Net-
work and Operating System Support for Digital Audio and Video. pp
289–296

Ravindran K, Bansal V (1993) Delay compensation protocols for synchro-
nization of multimedia data streams. IEEE Trans Knowl Data Eng 5:
574–589

Rothermel K, Barth I, Helbig T (1994)Cinema – an architecture for dis-
tributed multimedia applications. In: Architecture and Protocols for
High-Speed Networks. Kluwer, Dordrecht, pp 253–271

336

Rothermel K, Helbig T (1996) Clock hierarchies: An abstraction for group-
ing and controlling media streams. IEEE J Select Areas Commun (Syn-
chronization Issues in Multimedia Communications) 14: 174–184

Shivakumar N, Sreenan C, Narendran B, Agarwal P (1995) The concord
algorithm for synchronization of networked multimedia streams. In:
IEEE International Conference on Multimedia Computing and Sys-
tems, Washington, D.C. pp 31–40

Steinmetz R, Engler C (1993) Human perception of media synchronization.
Technical Report 43.9310, IBM ENC, Heidelberg, Germany

Kurt Rothermel received his doc-
toral degree in Computer Science from
Stuttgart University in 1985. From 1986
to 1987 he spent a sabbatical at the
IBM Almaden Research Center, working
on distributed database management sys-
tems. In 1988 he joined IBM‘s European
Networking Center, where he was re-
sponsible for several projects in the area
of distributed application systems. He
left IBM in 1990 to become a Professor
for Computer Science back at Stuttgart
University, where he now leads the Dis-
tributed Systems Research Group. His
current research interests are communi-
cation architectures and protocols, dis-

tributed multimedia systems, management of distributed systems, and mo-
bile software agents. He is a member of IEEE Computer Society, ACM
and GI.

Tobias Helbig studied Computer Sci-
ence at the University of Stuttgart. He
received his M.Sc. (Diplom-Informati-
ker) degree in 1992. At the same uni-
versity he studied towards his PhD in
Computer Science in the years 1993–
96. He is now a research scientist with
the Philips Research Laboratories in
Aachen, Germany. His main research in-
terests are multimedia system services,
control and synchronization of continu-
ous data streams in distributed environ-
ments and QoS handling.

