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Traffic and video quality with adaptive neural compression
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Abstract. Video sequences are major sources of traffic forof service for video users should relate not only to issues
broadband ISDN networks, and video compression is funsuch as cell-loss rates, delay, and jitter, but also to the visual
damental to the efficient use of such networks. We presentuality of the received, decompressed video sequence.
a novel neural method to achieve real-time adaptive com- The use of feedback from the network for the control of
pression of video. This tends to maintain a target quality ofincoming traffic has been examined by various authors [see,
the decompressed image specified by the user. The methddr example, Fendick et al. (1992)]. The principle of being
uses a set of compression/decompression neural networks able to vary video bit rates in response to network conditions
different levels of compression, as well as a simple motion-is not new, and several authors have recently addressed this
detection procedure. We describe the method and preseirtriguing issue (Chen and Wong 1993; Gilge and Gusella
experimental data concerning its performance and trafficl991; Jeffay et al. 1992; Kanakia et al. 1989; Wakeman
characteristics with real video sequences. The impact of thid993a,b). In particular, Bolot and Turletti (1993) present a
compression method on ATM-cell traffic is also investigatedscheme that modifies the parameters of a video coder in
and measurement data are provided. response to changing conditions in the Internet. It was tested
in the H.261 coder of a videoconferencing system Turletti
Key words: Compression/decompression neural networks -(1993). However, we do not know of schemes that vary
Motion detection — ATM traffic compression ratios so as to meet certain levels of quality of
the decompressed image.

In this paper we describe a scheme for software-video
compression and decompression based on a neural algorithm
that uses our pulsed “random neural network” model (Ge-

1 Introduction lenbe 1989, 1993). The method we propose uses simple mo-
tion detection to determine whether a portion of the image
Sources of real-time traffic are often very unpredicatableneeds to be transmitted. If transmission is needed, then a set
with respect to the instantaneous and average load that theyf learning neural networks are used for compression and de-
create. Yet such sources will provide the majority of traffic compression. The level of compression is adaptively chosen
in future ATM networks, and will also necessarily affect so as to meet an image-quality levg] which is specified by
existing datagram networks. One major source of such traffiche user. The sensitivity of the motion detector can also be
originates in video that must be compressed in some formvaried to modify compression levels and the resulting image
Modern video compression techniques generate variable bijuality. Our method is very fast and has been implemented
rates, since they take advantage of motion in the scenesor real-time operation in software.
Therefore, it is of great interest to relate the compression In the following sections, we survey the literature in the
method to the traffic that it generates in the network. Sucharea, then present our method in detail. We test it on two
information can be used in many ways. It can be used forommonly available video sequences, and measure the re-
traffic modeling and prediction of quality of service, and it sulting bit rates and image quality. We also look at the ATM
can also be used to design adaptive compression algorithntgaffic that would result from using our method with these
that meet constraints on the traffic or on the quality of servicereal video sequences and measure certain of its characteris-
for users. In the latter case, it is important to note that qualitytics.
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1.1 Compression of moving images
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can only be achieved witlossycompression schemes. The space coding to YCrCb coding, which gives an automatic
aim of image compression is to encode images or image se2:1 compression ratio, (2) JPEG encoding based on the dis-
guences into as few bits as possible with a decoding mechazrete cosine transform (DCT) and quantization followed by
nism that reconstructs the original image with an acceptablsome lossless compression, which yields compression ratios
visual and/or informational quality. Another issue in image as large as 30:1 with good image quality, and (3) motion
compression and decompression is its speed, especially icompensation, in which a frame can be encoded in terms
real-time applications, and in those in which the source pro-of the previous and next frames. These techniques severely
duces data at a very high rate. It is therefore often importantimit the speed at which a sequence of images can be com-
to be able to compress and decompress “on the fly” withoupressed.

additional delay in conveying the image. Two classical techniques for still image compression are
A simplified schematic representation of a method fortransform and subband encoding. In transform coding tech-
moving image compression is shown in Fig. 1. niques, the image is subdivided into small blocks, each of

A digital image! is described by a functiofi: Z x Z — which undergoes a reversible linear transformation (Fourier,
{0,1,...,2" —1}, whereZ is the set of natural numbers and Hadamard, Karhunen-Loeve, etc.), followed by quantization
k is the maximum number of bits to be used to representand coding to redue redundant information in the trans-
the gray level of each pixel. In other wordg,s a mapping formed domain. In subband coding (Woods and O’Neill
from discrete spatial coordinates, () to gray-level values. 1980) an image is filtered to create a set of images, each
Thus, M x N x k bits are required to store all x N of which contains a limited range of spatial frequencies.
digital image. The aim of digital image compression is to These so-called subbands are then downsampled, quantized
develop a scheme to encode the original imdgato the  and coded. These techniques require much computation. An-
fewest number of bits so that the imagfereconstructed by other common image-compression method is vector quanti-
decoding from this reduced representation is as similar taation (Gray 1984), which can achieve large compression
the original image as possible. The problem is to design aatios. A vector quantizer is a system for mapping a stream
COMPRESS and aDECOMPRESS block so thatl ~ I’ and  of analog or very high rate or volume-discrete data into a
|I.| << |I| where|.| denotes the size in bits (Fig. 2). sequence of low volume and rate data suitable for storage

In lossy compressigithe peak signal-to-noise ratio (PSNR)n mass memory and communication over a digital chan-
is often used as the measure of similarity or of dissimilarity, nel. This technique suffers mainly from edge degradation
although it does not always reflect perceived visual qualityand great computational complexity. Although more sophis-
as well as one would like. For moving images, the compresticated vector quantization schemes have been proposed to
sion ratio may vary dynamically with the specific image or reduce edge effects (Ramamarthi and Gersha 1986), the com-
image portion being transmitted, since advantage is taken gbutation overhead still exists. Recently, novel approaches
the existence or nonexistence of significant motion in suc-have been introduced on the basis of pyramidal structures
cessive image frames. However, the PSNR metric can stil{Adelson and Simoncelli 1987), wavelet transforms (Zettler
be used to compare corresponding frames in the original andt al. 1990), and fractal transforms (Jacquin 1992). These
decompressed image sequences. and some other new techniques (Kunt et al. 1987) inspired

Let the original and reconstructed images be denotedy the representation of visual information in the brain, can
by functions f(x,y) and g(z,y) of the pixel plane position achieve large compression ratios with good visual quality,
(z,y), respectively. The PSNR for the reconstructed imagebut are nevertheless computationally intensive.

g(x,y) is defined by: The speed of compression/decompression is a major is-
(@28 — 1y sue in applications such as vid_eoconferen(_:ing, HDTV appli-
PSNR =10log, =~ , (1) cations, and videophones, which are all likely to be a part
€rms of daily life in the near future. Artificial neural networks
where: (Rumelhart et al. 1986) are being widely used as alternative
| M-in-1 computational tools in many applications. This popularity
2 _.2- Y f 2 is mainly due to the inherently parallel structure of these
ms =€ N Z Z[g (@,4) = )l @ networks and to their learning capabilities, which can effec-

z=0 y=0 . . .
tively be used for image compression.

Several researchers have used the Learning Vector Quan-

1.2 Previous work tization (LVQ) network (Kohonen 1987) for developing

codebooks with a distribution of codewords that approxi-
Image compression research generally addresses the basi@ates the probabilistic distribution of the data to be pre-
trade-off between the reconstruction quality of the com-sented. A Hopfield network for vector quantization that
pressed image, the compression ratio, and the complexitpachieves a compression of less than 4:1 is reported in (Nail-
and speed of the compression algorithm. The two currentljon 1989). Nasrabadi (1988) demonstrates a Kohonen net
accepted standards for still and moving image compressiomethod for codebook compression. It seems to perform
are, respectively, JPEG (Wallace 1991) and MPEG (LeGalklightly better than other standard methods of generating
1991). These schemes provide large compression ratios witbodebooks. Cottrell et al. (1989) train a two-layer percep-
good picture-reconstruction qualities. The amount of com-tron with a small of number of hidden units to encode and
putation required for both is generally large for real-time decode images, but do not report encouraging results about
applications, so that they must be implemented in hardthe performance of the network on previously unseen im-
ware. MPEG uses the following techniques: (1) RGB colorages. Using neural encoder/decoders has been suggested by
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many researchers such as (Carrato 1992). Daugman (1988) Motion detection and compensation are key issues when
presents a neural network method for finding coefficients ofone deals with moving images. Motion compensation pro-
a 2D Gabor transform. This two-way function can then bevides for a great deal of the compression in the MPEG stan-
guantized and encoded to give good images at a compregtard. By using motion compensation, MPEG can code the
sion of under 1 bit/pixel, and as low as38 bits/pixel with  blocks in a frame in terms of motion vectors for the blocks
good image quality in a particular case. in the previous and/or next frames. To compensate for mo-
A feed-forward neural network model to achieve a 16:1tion, the motion must be estimated by block matching over
compression of untrained images with a PSNR = 26.9 dB ighe area local to the block under consideration. Exhaustive
presented in by Marsi (1991). It uses four different networkssearches that consider all possible motion vectors yield good
to encode different “types” of images. A backpropagationresults. However, for large ranges, the cost of such a search
network to compress data at the hidden layer and an imbecomes prohibitive, and heuristic searches must be used.
plementation on a 512 processor NCUBE are discussed b¥his also raises the problem that motion cannot be fully com-
Sonehara (1989). Huang (1991) compares backpropagatigrensated in real time since the future frame must be known in
networks with recirculation networks and the DCT. The bestadvance. Partial motion compensation, in which blocks may
results reported here are obtained with the DCT, then withbe encoded only in terms of blocks in the previous frame,
recirculation networks and finally with backpropagation net-may be used. One should also note that the MPEG standard
works. An interesting feature of this paper is that they showdoes not specify the method of motion compensation to be
the basis images for the neural networks, which allows one tased, and a neural solution to the motion compensation prob-
compare the underlying matrix transformations of the neuralem in two dimensions has been examined. Courellis (1990)
networks to that of the DCT. Feng (1991) presents a VLSlpresents a neural network for motion detection. However, it
implementation of a neurovector quantization/codebook al-only works for a 1D case, and the author states that prob-
gorithm. Kohno (1990) suggests the use of a nonlinear maplems arise when the approach is extended to 2D detection of
ping function with parameters that are learned in order toedge motion. It appears this approach would involve a great
achieve better image compression in a standard backpropeal of research before it could be usefully applied in mov-
agation network. Namphol (1991) uses a backpropagationing picture compression. Chiang (1990) presents a neural
based nested training algorithm to compress. For images onetwork method for motion estimation. Drawbacks include
which the network has already been trained (which is notthe assumption that displacement is uniform in the area of
specifically of practical use) the compression ratios and reinterest. This would be a problem in trying to estimate the
sulting qualities are as follows: 8:1 (PSNR = 22.89 dB), 64:1motion of a human being because the motion vectors differ
(PSNR = 15.15 dB) to 256:1 (PSNR = 10.44 dB). For previ- over subsets of the picture.
ously “unseen” images, results are given with the following
ratios and qualities: 8:1 (PSNR = 18.13 dB) to 64:1 (PSNR
= 12.93 dB). Our own earlier results for the compression of2 Moving image compression with the random network
previously “unseen” still images provide substantially better L .
quality, especially at the lower compression ratios (8:1 aanne of the common neural approaches in image compression

16:1) (Gelenbe and Sungur 1984) where we obtain a PSNRS to train a network to encode_and_decode the input_data
close to 30 db for a 16:1 ratio. (Chiang 1990,) so that the resulting difference between input

and output images is minimized. The network consists of
an input layer and an output layer of equal sizes, with an
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intermediate layer of smaller size in between. The ratio ofgig. 5. still image compressed at a 16:1 ratio(0.5 bits/pixel) with a random

the size of the input layer to the size of the intermediateneural network

layer is — of course — the compression ratio. More generallyfig. 6. Original and reconstructed 101st frames in the Salesman sequence.

there can also be several intermediate layers. The network i the motion detection schemé,= 1

usually trained on one or more images so that it develops an

internal representation corresponding twthe image itself,

but rather to the relevant features of a class of images. ~ We deal with moving images, our networks are trained with
In the still image approach that Gelenbe and Sunguithe algorithm described by Gelenbe (1993) and with a sin-

(1994) describe, the input, intermediate, and output image§le image: the well-known 512 512 8-bitLena Indeed,

are subdivided into equally-sized blocks, and they are comwe have found thatenaprovides some of the best results

pressed block by block (Fig. 3), as in JPEG and MPEG. Thidor training the network. The network is then tested for a

has the desirable effect of reducing the learning time of thevariety of images, and we have observed a reconstruction

neural network. It also achieves good generalization, sincguality ranging from PSNR=23 dB to more than 30 dB for

the numerous blocks, which make up the test image used6:1 compression (0.5 bits/pixel). As an example, Fig. 5

for learning, are used as the training set. The amount of inshows our results with 16:1 compression for the 51212

formation representing the compression and decompressiofrbit Peppersimage (Gelenbe and Sungur 1984).

algorithm (i.e., the “neural network weights”) is also sub-

stantially reduced in this manner. We use a random neural

network with a feed-forward encoder/decoder and with one2.1 Motion detection

intermediate layer as shown in Fig. 4. The weights between

the input layer and the intermediate layer correspond to théVe deal with sequences of image frames representing a mov-

encoding olcompressiomprocess, while the weights from the ing video sequence. Thus, very often, a substantial part of an

intermediate to the output layer correspond to the decodingmage, such as the background, basically does not move —

or decompressioprocess. except for noise that may originate at various levels, includ-
Specifically, we use & 8 pixel boxes and encode the ing the imaging devices. However, the objects in the image

8-bit gray-level values as real numbers between 0 and 1, i.edo move relative to the background, but this displacement

we linearly map the [55] interval into the [01] interval ~ may be quite small between any two successive frames. We

since the gray level of each image pixel is transformed intouse this to detect motion.

a real-valued excitation level of a neuron (and vice versa). Specifically, we examine thex83 boxes from successive

This is done by simply dividing the pixel value by 255.0. framesF;_1, F;. Motion is sensed if the average grayscale

The network is trained so as to minimize the squared errovalue of a box inF; differs from that of the corresponding

between the output and input values, thus maximizing thebox in frame F;_; by more than a certain amount We

SNR, with the proviso that the image SNR is measured forhave observed experimentally that the difference in the av-

guantized values in [@55] while the neural network learn- erage grayscale value of a block that is perceptible to the

ing uses the corresponding real-valued network parameterfwuman eye is approximately= 1. d Also affects the com-

In all the results we report, both in this section and whenpression ratio by determining how many blocks in a frame



361

will be sent. Note that the box structure used throughout our — The second network compresses the blocks that have
compression scheme makes this approach possible as long been identified by the first network. In fact, the sec-
as the box size is small enough. Indeed, a large box size ond network is a set of distinct neural compression net-

would either make it highly improbable that motion has not  works C;, ...,Cr. Each network has been designed
occurred within any given box, or would render the detection  and trained to compress blocks at a different compres-
process insensitive if accompanied by a large valué. oh sion level. Each of these networks compresses the box in
contrast, small blocks incur a larger overhead for transmis- parallel. The compression level is selected by the third
sion, but improve frame quality. Blocks of sizex88 were network.
chosen as a good compromise. — The third network simulates the decompression and pro-
For the data we present, we use the gray-level image vides a measure of the “quality” of the compression-
sequenceMiss Americaand Salesmarto test our motion decompression. In fact, it is composed bfdistinct de-
detector. Each frame is of size 360288 pixels, yielding compression network®;, ..., Dy, whereD; matches

1620 8x 8 boxes. To test the motion detector, we load the  C;.
first two frames into two arrays. Array 1 contains the frame

on the screen at the receiving end of the transmission, whil%It
array 2 is the new frame. Each>88 box in the frames

is tested for motion detection. If a box is classified as un-
changed, the box in Array 1 is replaced by the box in Array
2. Once all of the boxes are tested, the next frame is loade
into array 2, and the process is repeated. Clearly, the pa-
rameterd will influence both the compression ratios and the training all of these networks with an unseen image (in

resulting image quality. In order to illustrate its effect on our case the well-knowrLena image), all the operations

%Og}prisls'otﬂ’ v;/ebhia\{[e drl'mf a setrlles ?:] tef‘?t?’ lsummanze_d fhat have been outlined are carried out “on-the-fly”, that is
able 1. In the tabulated information, the total COmpression;, .o, time as each block leaves the sender, and as each

ratio” is derived from the size of the \‘/‘vhole video SEQUENCE.,mpressed block goes into the receiver and is decom-
after motion detection, whereas the “steady state compre%

The pairC;,D; that yields the largest compression ratio
a quality level of@) or better, chosen to be acceptable for
the particular application, is selected and the compressed
block is transmitted. For gray-level imagé&3,is formulated

s a SNR value. Figure 8 shows the block diagram of the
daptive, still image, compression network.

Note that, with the exception of the learning phase for

. T . . . —pressed (Fig. 1). The relationship between any two com-
sion ratio” is the average compression ratio due to motio (Fig. 1) P y

detect Il the frameaster th lete first f ression/decompression networks D; is shown in Fig. 4.
etection over all Iné framester (n€ complete Tirst frame Another refinement, which we have not tested, would be
has been transmitted. Both valués includethe overhead

o o L to use the networlD; (which is stored both at the transmit-
due to the additional two bytes to indicate thandy indices ting end and at the receiving end) to train the netwetk

of each block in a frame. further in on-line mode. In this casé);’s weights arenot

Other results are presented in the form of the actual 'm'changed, and onlg;'s weights are updated.

ages before and after motion detection. Figure 6 shows the At the “receiving or decompression” end, if the trans-
original and the reconstructed 101st frame of the SEQUENCh,itier has indicated that the current block is identical to the

with d = 1. In Fig. 7a, the PSNR is plotted as a function of same block in the previous frame, then the previous frame’s

Lramef E%mtber foz_ltt= j Simiflarlyi' Fig.f?fb shows tht? nulgn- block is placed in the corresponding position of the output
er ot bits transmitied as a function ot frame numper. romimage. Otherwise, the compressed block is received. Implic-

these results and other experiments we have run, it appPeafy through the block’s size) or explicitly (via a variabie

that a compression ratio Of 6 or 7 can be obt'ained gaasily Wiﬂ}hat accompanies the block) the compression level used is
a value ofd close to or slightly above 1, with satisfactory known to the receiver. Therefore, the appropriate network

image_ quality, when only r_notion detection !s used for COM- 1y is used to decompress the block, which is then placed in
pression. In the next section this scheme is combined W'tr%elquence in the output image ’

the actual neural compression of frames to achieve large
compression ratios and satisfactory image quality.

3 Experimental results

2.2 Compression for moving images The experimental results we now present were obtained with
three compression/decompression paits=(4) with com-
Hression ratios of 4:1, 8:1, 16:1 and 32:1. The target qual-

scheme for video sequences of natural images. We user'g for the decompressed image is set to the SNR value of

combination of the motion detection scheme described ear ~ 30. Th_e gray-level video Sequences “S_ed in the tests are
h. Miss Americaand Salesmanmentioned previously.

We now describe and evaluate the complete compressio

lier and our adaptive still block-by-block (Fig. 3) tec In Table 2 . h ) I Its
nique that includes compression/decompression with a ran- " Table 2 we summarize the experimental results for

dom neural network. Specifically, our compression schemg/@rtous Va!'“es of the motion d_etectlon threshaldn each
uses threametworks: case( is fixed, and the same video sequences are presented

as input to the compression/decompression software.

— The first network scans successive blocks in sequence, It can be seen in Table 2 and Figs. 9a and b that both
and identifies those blocks where motion has taken placethe compression ratio and the video quality are almost linear
as already described. If a block is considered identical tdunctions ofd. This linearity will allow future implementa-
the same box in the previous frame, it is not compressedions to adaptively control the trade-off between video qual-
or transmitted. ity and compression ratio in an informed manner. Current



362

Table 1. Compression ratios obtainexhly by motion detection as a function of the sensitivity of the motion detettor

Miss America Salesman
d Compression ratio Frame SNR Compression ratio Frame SNR
Total Steady state Minimum Average Total Steady state Minimum Average
0.5 2.25 2.28 38.78 39.80 3.01 3.07 37.38 39.16
1.0 4.44 4.59 36.82 37.72 6.55 6.94 35.04 36.97
15 6.06 6.38 35.72 36.67 9.23 10.06 33.66 35.70
2.0 7.25 7.74 34.57 35.84 11.26 12.55 32.77 34.73
25 8.42 9.10 33.91 35.23 13.08 14.88 31.99 33.81
3.0 9.53 10.41 33.63 34.62 14.70 17.04 31.41 33.25
35 10.60 11.73 33.02 34.19 16.32 19.29 30.84 32.71
4.0 11.71 13.11 32.69 33.74 18.01 21.71 30.60 32.25
4.5 12.82 14.54 32.37 33.29 19.75 24.30 30.05 31.80
5.0 13.96 16.04 32.08 32.98 21.38 26.86 29.77 31.39
'SNR as a hunction of frama number Bits transmitied a5 @ function of frame number l
c, D; 1 SNR
:
H R SELECT
J_ i
CcL Dy — SNR

Ta 7b 8

‘Steady State Compression Ratio ve d

— Salesman
~+ Miss America

Video SNR vs d

&

Video SNR {dB)
@ B 8

-3

9a 9b

Fig. 7a,b. Experimental results for motion detection with = 1:
a PSNR as a function of the frame numbernumber of bits trans-
mitted as a function of the frame number

Fig. 8. Block diagram of the adaptive, still image, compression net-
work

Fig. 9. Steady state compression ratio as a functiorl;of Average
video pek signal-to-noise ratio (PSNR) as a functiordof

Fig. 10. Original and reconstructed 101st frames in the Miss America
10 sequence withl = 1.5 and@ = 30

Reconstructed (SNIG = 33.82)

Original 101st frame

video compression techniques are not linear in terms of theishows the running average compression ratios and the run-
compression parameters. This means that, while one coulding average bits per pixel for a run length of 1000, based
adaptively control either the compression ratio or the videoon the Miss Americasequence withi = 2 and@ = 30. In
quality in MPEG and H.261, the effects on the compressionFig. 13a, the SNR is plotted as a function of frame number
ratio of adjusting the quality of the video sequence couldfor d = 2, @ = 30. Figure 13b shows the number of bits
not be as easily predicted as in the adaptive neural videtransmitted as a function of frame number.
compression (ANVC) scheme. All of these results confirm the effectiveness of the
In Fig. 10 we show the original and the reconstructedmethod we propose in obtaining relatively high compres-
101st frame ofMiss Americausing the complete scheme sion ratios with good image quality. They also illustrate the
described withd = 1.5 and Q = 30. Figure 11 indicates fact that our compression method will provide time-varying
the variation of the compression ratio over time. Figure 12traffic, and that it will strongly depend on the specific image
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Table 2. Compression ratios obtained by motion detection and compression with the image-qualit@)lev&0 as a
function of threshold{

Miss America Salesman
d Compression ratio Frame SNR Compression ratio Frame SNR
Total Steady state Minimum Average Total Steady state Minimum Average

0.5 37.06 57.96 33.62 34.17 36.51 56.62 30.56 31.65
1.0 38.16 60.72 33.51 34.05 38.37 61.27 30.50 31.63
15 39.39 63.93 33.29 33.90 41.46 69.64 30.37 31.53
2.0 40.55 67.08 33.05 33.73 44.19 77.78 30.26 31.46
25 41.76 70.50 32.80 33.57 46.65 85.82 30.05 31.27
3.0 43.13 74.54 32.74 33.36 48.73 93.23 29.81 31.14
35 44.44 78.59 32.53 33.21 50.87 101.48 29.64 30.96
4.0 45.84 83.11 32.29 32.98 53.25 111.54 29.54 30.80
45 47.56 88.99 32.13 32.74 55.53 122.10 29.32 30.62
5.0 49.25 95.18 31.96 32.56 57.78 133.68 29.18 30.45
5.5 50.75 100.98 31.65 32.35 59.50 143.38 29.06 30.31
6.0 52.39 107.79 31.28 32.13 61.23 153.94 28.86 30.15
6.5 53.86 114.24 31.10 31.94 63.15 166.81 28.70 29.97
7.0 55.46 121.79 30.95 31.72 64.81 179.06 28.51 29.82
7.5 57.20 130.62 30.60 31.55 66.63 193.88 28.39 29.66
8.0 58.42 137.17 30.50 31.38 68.02 206.29 28.33 29.57
8.5 59.79 145.07 30.26 31.23 69.35 219.16 28.17 29.46
9.0 61.28 154.28 30.07 31.08 70.75 233.90 28.08 29.34
9.5 62.38 161.55 29.98 30.95 71.81 246.03 28.07 29.29

wp : —[Opaverage compressionalo . . Thus, on Fig. 14 we show the traffic rate in ATM cells/s
| e doannan — that is generated for thiliss Americavideo sequence in a
880 I ] few seconds. We observe the highly unpredictable nature of

the traffic and its time-varying behavior. Figure 15 presents
the corresponding autocorrelation function of cell traffic gen-
erated by our compression method b= 0.5 andd = 2,
indicating a linear decrease in a few seconds. These results
are presented for the same target image quélity 30.

Much ATM traffic can be expected to travel over rela-
tively slow legacy networks for a number of years to come,
especially for portions of the network that are geographically
close to the user generating the video traffic. Therefore, we
also examine the behavior of a finite ATM buffer queue for
these traffic streams and measure the cell loss rate for var-
100000 120000 140000 160000 ious values ofd, different buffer sizes, and various speeds

at which the buffer is being emptied. These results are sum-
Fig. 11. Total average compression ratio as a function of the block numbermarized on Figs. 16 and 17 for tiMiss Americasequence.
with d = 2 and@ = 30 We have purposely chosen a slow legacy network speed of
64 kBytes/s to evaluate the losses observed on a link when

sequence being transmitted. Although we only report result& link capacity that is currently quite realistic is used. We
for two video sequences, we have also tested our method fci€€ that choosing a larger valuedbtan substantially reduce

other well-known sequences (such asireg-pong Playey,  the loss rate even for small buffers, and that the compression
scheme makes a very substantial difference in the cell loss

rate even when the network is slow and the buffer sizes are
3.1 Simulating ATM traffic small. In order to see what the effect of doubling the link
from the compressed video sources speed can be, on Fig. 18 we plot the ATM cell loss rate for
a 128 kByte/s with the same video sequence and with3.
We now turn to a study of the traffic being generated byClearly, by comparing results with Fig. 18, the cell loss can

our method. Since the video sequences produce images Bk substantially reduced by doubling the link speeds, even
a rate of 30 frames/s, and because each transmitted framighen they are relatively small.

is composed either of compressed blocks or of positional

information concerning a block that does not need to be

transmitted, it is easy to translate the output of the compres4 Conclusions

sion system into either an instantaneous rate of bits or ATM

cells transmitted per time unit. In the case of ATM cells, we In this paper we have described an adaptive neural technique
assume that compressed blocks are placed into 48-byte pafer video compression and have studied its traffic character-
load of ATM cells in such a way that any one block cannotistics. Our compression method is designed to meet qual-
span two different cells. ity requirements with respect to the decompressed image

Compression ratio

0
[ 20000 40000 60000 80000
Block number
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Fig. 12a,b.Experimental results for the Miss America sequence With2
and@ = 30:a running average compression ratio as a function of the block
] number;b running average bits per pixel as a function of block number
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g

Fig. 13a,b. Experimental results withl = 2 and@ = 30: a peak signal-

200, o5 ) 15 > 25 3 35 to-noise ratio (PSNR) as a function of frame numbemumber of bits
Time (In Seconds) transmitted as a function of frame number
14 Fig. 14. Asynchronous transfer mode (ATM) traffic rate with= 2

at the receiver. It can vary the traffic rate it generates intothe time required to compress each frame in ANVC and
the network by modifying a simple parameter that is usedH.261 for practical video sequences and shows that ANVC
to detect motion in successive frames. It can also do thiss more than six times faster.

by modifying the image quality requirement. This method is  The presentation of these ideas and algorithms is com-
computationally inexpensive in that motion detection is usedplemented by a substantial amount of experimental data
in place of the motion estimation used by methods such asoncerning effective compression ratios and resulting image
H.261 and MPEG. Furthermore, each block is compresseduality.

in O(n?) time. Timed results indicate that this method is ~ We also present experimental data concerning the ATM
several times faster than the H.261 and MPEG compressiotraffic that our method will generate, including measurement
schemes. Figure 19 provides an experimental comparison aif cell traffic rates, autocorrelation of the traffic and buffer
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overflow for ATM buffers of finite sizes. These results are ¢;(t) = Pr[k;(t) > 0]. As a consequence, the time-dependent
based on real-image sequences that are used to drive obehavior of the model is described by an infinite system
moving image compression method. of Chapman-Kolmogorov equations for discrete state-space
Many further improvements of the basic method inves-continuous markovian systems.
tigated in this paper can be envisioned, and some are cer- Information in this model is carried by tHeequencyat
tainly worth further work. In particular, we can adaptively which spikes travel. Thus, neurgn if it is excited, sends
vary the motion detection threshold in real time to meet aspikes to neurori at a frequencyw;; = w;'j +w;.. These
combined image quality and effective bit-rate requirement.spikes are emitted at exponentially distributed random inter-
We can also introduce on-line learning of certain parametersals. In turn, each neuron behaves as a nonlifreguency
at the transmitter to continuously improve the ability of the demodulatorsince it transforms the incoming excitatory and
system to compress moving images as image characteristiéshibitory spike trains’ rates into an “amplitude”, which is
change with time. Many of these improvements will lead ¢;(t), the probability that neuron is excited at timet. In-
to greater computational complexity and/or the need to exiuitively speaking, each neuron of this model is also a fre-
change more information between the sender and receivequency modulator, since neurérsends out excitatory and
so that any extension of the method needs to be carefullynhibitory spikes at rates (or frequencieg)t)r(i)p* (i, 7),
evaluated in terms of the major trade-offs addressed. q;(t)r(@)p~ (i, 4) to any neurory.
The stationary probability distribution associated with
the model is the quantity used throughout the computations:

5 Appendix: the random neural network model and its i ) )
learning algorithm p(k) = lim p(k, 1), ¢ = lim ¢@), =1 ....n (3

In this appendix we summarize the random neural networKt iS given by the following result:
model and of its learning algorithm. In the random neural '
network model (Gelenbe 1989, 1990) signals in the form of Theorem 1.Letg; denote the quantity

spikes of unit amplitude circulate among the neurons. Posi- _ +/. N 4
tive signals represent excitation and negative signals repreq—Z AT@)/[r(@) + A7 0)] “)
sent inhibition. Each neuron’s state is a non-negative intewhere thex*(i), \=(¢) for i = 1, ..., n satisfy the system of

ger called its potential, which increases when an excitatiomonlinear simultaneous equations:

signal reaches it, and decreases when an inhibition signal

arrives. Thus, an excitatory spike is interpreted as a “+1" A"()) = Y _ ¢;r(7)p"(j, ©) + A(i) ,

signal at a receiving neuron, while an inhibitory spike is in- J

terpreted as a—1" signal. Neural potential also decreases y— - — N — (s ,

when the neuron fires. Thus a neurpremitting a spike, A= Z%T(])p G+ AW - ®)
whether an excitation or an inhibition spike, loses one unit
of potential, going from a state of valug to the state of Letk(t) be the vector of neuron potentials at tirhand k& =
valuek; — 1. (k1, ...,k,) be a particular value of the vector; lei(k)

The state of then-neuron network at time is rep-  denote the stationary probability distribution.
resented by the vector of non-negative integé(s) = L _

(k1(t), . .., k,(t)), wherek;(t) is the potential or integer state p(k) = t“lgo Probli(t) = k]
of neuroni. We denote by and k; arbitrary values of the
state vector and of thih neuron’s state.

Neuron: will “fire” (i.e., become excited and send out
spikes) if its potential ipositive The spikes are sent out at
a rater(7), with independent, identically and exponentially n N
distributed interspike intervals. Spikes go out to some neuP(k) = H[l —qilg;" - (6)
ron j with probability p*(z, j) as excitatory signals, or with i=1
probabilityp~ (i, j) as inhibitory signals. A neuron may also  The quantities that are most useful for computational
send signals out of the network with a probabiliff), and  purposes, that is, the probabilities that each neuron is excited,
d@) + 30[p (6, 5) + p~ (6, 9)] = 1. Letw]; = r(@)p*(i,5),  are directly obtained from:

and w;; = r(i)p~(,7). Here the tW’s” play a role simi- . , o\t . —N e
lar to that of the synaptic weights in connectionist models,t“jgo Probf;(t) > 0] = ¢; = A"@)/[r(@) + A~()] g < 1.

though they specifically represent rates of excitatory and in- Let us now describe the learning algorithm we use in

hibitory spike em‘SS‘O”- The‘)‘/ are non—neg:’ﬂimqgenous this study. It is based on the algorithm described in (Gelenbe
(i.e., those coming from the “outside world”) excitatory and 1993).

inhibitory signals also arrive at neuranat ratesA(:) and
A(2), respectively.
This is a “recurrent network” model; that is, it is allowed
to have feedback loops of arbitrary topology.
Computations related to this model are based on th
probability distribution of network statg(k, t) = Prlk(t) =
k], or with the marginal probability that neuranis excited Ay, = [Ax(1), ..., Ax(n)], i = [Me(@), ... Ak(0)]

J

If a non-negative solutiof\*(z), A~ (z)} exists for Egs. 4 and
5 such that eacly; < 1, then

The algorithm chooses the set of network parameters
W in order to learn a given set ok input-output pairs
(¢, Y) where the set of successive inputs is denated
1, ... Lk}, andy = (Ag, A\x) are pairs of positive and
egative signal flow rates entering each neuron:
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The successive desired outputs are the vectdfs —(1+¢;)/D@) if u=1d,v=1

= {Z/L s 7yK}1 where each VeCtOyk = (ylk’v s 7ynk’)1 '77(u U) = _l/D(Z) If u= Z:’ v # Z

whose elements;,€[0, 1] correspond to the desired values '* * —qi/D(i) ifuzi,v=i

of each neuron. The network approximates the set of desired 0 for all other values ofi(, v) .

output vectors in a manner that minimizes a cost function Notice that

B 00/ 0w (u,v) = " (u, V)l — W]~ o
9a/0w(u,v) = 7~ (u, V)gull — W)L (®)

wherel denotes the: x n identity matrix. Hence the main
computational work is to obtainl [- W]~1. This is of
time complexityO(n®), or O(mn?) if an m-step relaxation

1 2
Ek—ziz:l:ai(qz‘—yik% a; > 0.

If we wish to remove a neurop from network output,
and hence from the error function, it suffices to egt 0. method is used.

Both of the n x n weight matricesW;, = {w;(i,7)} We now have the information to specify the complete
andW;~ = {w, (i, )} have to be learned after each input is |earning algorithm for the network. We first initialize the
presented, by computing a new valWg; and W~ of the  matricesw; andW; in an appropriate manner. This initia-
weight matrices for each inpuf, = (A, Ax). The computa-  tion will be made at random. Choose a valueypfind then,
tion uses gradient descent. Clearly, we seek only solutionfor each successive value bf starting withk = 1, proceed
for which all these weights are positive. as follows:

Let w(u, v) denote any weight term, which would be ei 1. Set the input values tg. = (Ax. \x).

— = — .t H
g‘rgr:f(u’v) = w (u0), .orw(um) = w'(u,v). The weights 2. Solve the system of nonlinear Egs. 3 with these values.
pdated as follows: . .
3. Solve the system of linear Eqgs. 8 with the results of step
2.
wi(u, v) = wi_1(u, v) 4. Using Eqg. 7 and the results of steps 2 and 3, update the
n matricesW; and W, . Since we seek the “best” ma-
—n Z ai(qir — yir)[0q: | Ow(u, v)] & (7 trices (in terms of gradient descent of the quadratic cost
py function) that satisfy theon-negativityconstraint, in any
stepk of the algorithm, if the iteration yields a negative
value of a term, we have two alternatives:
A. Set the term to zero, and stop the iteration for this
term in this stegk; in the next stog:+1 we iterate on
this term with the same rule starting from its current
null value.
B. Go back to the previous value of the term and iterate
with a smaller value ofj.

wheren > 0 is a constant, and

1. ¢;x Is calculated with the input,, and w(u,v)
= wp_1(u,v), in EQ. 3.

2. [0q;/0w(u,v)]) Is evaluated at the valuegs = ¢;;, and
w(u, v) = wg_1(u,v).

To compute §q;/0w(u,v)], we turn to the Eq. 3, from
which we derive the following equation:

0¢; /Ow(u,v)
=Y 0q;/0w(u, v)[w*(j, 5) — w™ (j, 3)g:] /D)
J

This general scheme can be specialized to feed-forward net-
works yielding a computational complexity 6f(n?), rather
than O(n®), for each gradient iteration.
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