
Multimedia Systems (1996) 4: 357–369 Multimedia Systems
c© Springer-Verlag 1996

Traffic and video quality with adaptive neural compression

Erol Gelenbe, Mert Sungur1 , Christopher Cramer, and Pamir Gelenbe2
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Abstract. Video sequences are major sources of traffic for
broadband ISDN networks, and video compression is fun-
damental to the efficient use of such networks. We present
a novel neural method to achieve real-time adaptive com-
pression of video. This tends to maintain a target quality of
the decompressed image specified by the user. The method
uses a set of compression/decompression neural networks of
different levels of compression, as well as a simple motion-
detection procedure. We describe the method and present
experimental data concerning its performance and traffic
characteristics with real video sequences. The impact of this
compression method on ATM-cell traffic is also investigated
and measurement data are provided.
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1 Introduction

Sources of real-time traffic are often very unpredicatable
with respect to the instantaneous and average load that they
create. Yet such sources will provide the majority of traffic
in future ATM networks, and will also necessarily affect
existing datagram networks. One major source of such traffic
originates in video that must be compressed in some form.
Modern video compression techniques generate variable bit
rates, since they take advantage of motion in the scenes.
Therefore, it is of great interest to relate the compression
method to the traffic that it generates in the network. Such
information can be used in many ways. It can be used for
traffic modeling and prediction of quality of service, and it
can also be used to design adaptive compression algorithms
that meet constraints on the traffic or on the quality of service
for users. In the latter case, it is important to note that quality
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of service for video users should relate not only to issues
such as cell-loss rates, delay, and jitter, but also to the visual
quality of the received, decompressed video sequence.

The use of feedback from the network for the control of
incoming traffic has been examined by various authors [see,
for example, Fendick et al. (1992)]. The principle of being
able to vary video bit rates in response to network conditions
is not new, and several authors have recently addressed this
intriguing issue (Chen and Wong 1993; Gilge and Gusella
1991; Jeffay et al. 1992; Kanakia et al. 1989; Wakeman
1993a,b). In particular, Bolot and Turletti (1993) present a
scheme that modifies the parameters of a video coder in
response to changing conditions in the Internet. It was tested
in the H.261 coder of a videoconferencing system Turletti
(1993). However, we do not know of schemes that vary
compression ratios so as to meet certain levels of quality of
the decompressed image.

In this paper we describe a scheme for software-video
compression and decompression based on a neural algorithm
that uses our pulsed “random neural network” model (Ge-
lenbe 1989, 1993). The method we propose uses simple mo-
tion detection to determine whether a portion of the image
needs to be transmitted. If transmission is needed, then a set
of learning neural networks are used for compression and de-
compression. The level of compression is adaptively chosen
so as to meet an image-quality levelQ, which is specified by
the user. The sensitivityd of the motion detector can also be
varied to modify compression levels and the resulting image
quality. Our method is very fast and has been implemented
for real-time operation in software.

In the following sections, we survey the literature in the
area, then present our method in detail. We test it on two
commonly available video sequences, and measure the re-
sulting bit rates and image quality. We also look at the ATM
traffic that would result from using our method with these
real video sequences and measure certain of its characteris-
tics.

1.1 Compression of moving images

Lossless compression is adequate when low compression ra-
tios are acceptable. However, substantial compression ratios
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can only be achieved withlossycompression schemes. The
aim of image compression is to encode images or image se-
quences into as few bits as possible with a decoding mecha-
nism that reconstructs the original image with an acceptable
visual and/or informational quality. Another issue in image
compression and decompression is its speed, especially in
real-time applications, and in those in which the source pro-
duces data at a very high rate. It is therefore often important
to be able to compress and decompress “on the fly” without
additional delay in conveying the image.

A simplified schematic representation of a method for
moving image compression is shown in Fig. 1.

A digital imageI is described by a functionf :Z×Z →
{0, 1, . . . , 2k−1}, whereZ is the set of natural numbers and
k is the maximum number of bits to be used to represent
the gray level of each pixel. In other words,f is a mapping
from discrete spatial coordinates (x, y) to gray-level values.
Thus, M × N × k bits are required to store anM × N
digital image. The aim of digital image compression is to
develop a scheme to encode the original imageI into the
fewest number of bits so that the imageI ′ reconstructed by
decoding from this reduced representation is as similar to
the original image as possible. The problem is to design a
compress and adecompress block so thatI ∼ I ′ and
|Ic| << |I| where|.| denotes the size in bits (Fig. 2).

In lossy compression, the peak signal-to-noise ratio (PSNR)
is often used as the measure of similarity or of dissimilarity,
although it does not always reflect perceived visual quality
as well as one would like. For moving images, the compres-
sion ratio may vary dynamically with the specific image or
image portion being transmitted, since advantage is taken of
the existence or nonexistence of significant motion in suc-
cessive image frames. However, the PSNR metric can still
be used to compare corresponding frames in the original and
decompressed image sequences.

Let the original and reconstructed images be denoted
by functionsf (x, y) andg(x, y) of the pixel plane position
(x, y), respectively. The PSNR for the reconstructed image
g(x, y) is defined by:

PSNR = 10 log10
(2k − 1)2

e2
rms

(1)

where:

e2
rms = e2 =

1
MN

M−1∑
x=0

N−1∑
y=0

[g(x, y)− f (x, y)]2 (2)

1.2 Previous work

Image compression research generally addresses the basic
trade-off between the reconstruction quality of the com-
pressed image, the compression ratio, and the complexity
and speed of the compression algorithm. The two currently
accepted standards for still and moving image compression
are, respectively, JPEG (Wallace 1991) and MPEG (LeGall
1991). These schemes provide large compression ratios with
good picture-reconstruction qualities. The amount of com-
putation required for both is generally large for real-time
applications, so that they must be implemented in hard-
ware. MPEG uses the following techniques: (1) RGB color

space coding to YCrCb coding, which gives an automatic
2:1 compression ratio, (2) JPEG encoding based on the dis-
crete cosine transform (DCT) and quantization followed by
some lossless compression, which yields compression ratios
as large as 30:1 with good image quality, and (3) motion
compensation, in which a frame can be encoded in terms
of the previous and next frames. These techniques severely
limit the speed at which a sequence of images can be com-
pressed.

Two classical techniques for still image compression are
transform and subband encoding. In transform coding tech-
niques, the image is subdivided into small blocks, each of
which undergoes a reversible linear transformation (Fourier,
Hadamard, Karhunen-Loeve, etc.), followed by quantization
and coding to redue redundant information in the trans-
formed domain. In subband coding (Woods and O’Neill
1980) an image is filtered to create a set of images, each
of which contains a limited range of spatial frequencies.
These so-called subbands are then downsampled, quantized
and coded. These techniques require much computation. An-
other common image-compression method is vector quanti-
zation (Gray 1984), which can achieve large compression
ratios. A vector quantizer is a system for mapping a stream
of analog or very high rate or volume-discrete data into a
sequence of low volume and rate data suitable for storage
in mass memory and communication over a digital chan-
nel. This technique suffers mainly from edge degradation
and great computational complexity. Although more sophis-
ticated vector quantization schemes have been proposed to
reduce edge effects (Ramamarthi and Gersha 1986), the com-
putation overhead still exists. Recently, novel approaches
have been introduced on the basis of pyramidal structures
(Adelson and Simoncelli 1987), wavelet transforms (Zettler
et al. 1990), and fractal transforms (Jacquin 1992). These
and some other new techniques (Kunt et al. 1987) inspired
by the representation of visual information in the brain, can
achieve large compression ratios with good visual quality,
but are nevertheless computationally intensive.

The speed of compression/decompression is a major is-
sue in applications such as videoconferencing, HDTV appli-
cations, and videophones, which are all likely to be a part
of daily life in the near future. Artificial neural networks
(Rumelhart et al. 1986) are being widely used as alternative
computational tools in many applications. This popularity
is mainly due to the inherently parallel structure of these
networks and to their learning capabilities, which can effec-
tively be used for image compression.

Several researchers have used the Learning Vector Quan-
tization (LVQ) network (Kohonen 1987) for developing
codebooks with a distribution of codewords that approxi-
mates the probabilistic distribution of the data to be pre-
sented. A Hopfield network for vector quantization that
achieves a compression of less than 4:1 is reported in (Nail-
lon 1989). Nasrabadi (1988) demonstrates a Kohonen net
method for codebook compression. It seems to perform
slightly better than other standard methods of generating
codebooks. Cottrell et al. (1989) train a two-layer percep-
tron with a small of number of hidden units to encode and
decode images, but do not report encouraging results about
the performance of the network on previously unseen im-
ages. Using neural encoder/decoders has been suggested by
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Fig. 1. Block diagram of a video compression scheme

Fig. 2. Block diagram of image compression

many researchers such as (Carrato 1992). Daugman (1988)
presents a neural network method for finding coefficients of
a 2D Gabor transform. This two-way function can then be
quantized and encoded to give good images at a compres-
sion of under 1 bit/pixel, and as low as 0.38 bits/pixel with
good image quality in a particular case.

A feed-forward neural network model to achieve a 16:1
compression of untrained images with a PSNR = 26.9 dB is
presented in by Marsi (1991). It uses four different networks
to encode different “types” of images. A backpropagation
network to compress data at the hidden layer and an im-
plementation on a 512 processor NCUBE are discussed by
Sonehara (1989). Huang (1991) compares backpropagation
networks with recirculation networks and the DCT. The best
results reported here are obtained with the DCT, then with
recirculation networks and finally with backpropagation net-
works. An interesting feature of this paper is that they show
the basis images for the neural networks, which allows one to
compare the underlying matrix transformations of the neural
networks to that of the DCT. Feng (1991) presents a VLSI
implementation of a neurovector quantization/codebook al-
gorithm. Kohno (1990) suggests the use of a nonlinear map-
ping function with parameters that are learned in order to
achieve better image compression in a standard backprop-
agation network. Namphol (1991) uses a backpropagation-
based nested training algorithm to compress. For images on
which the network has already been trained (which is not
specifically of practical use) the compression ratios and re-
sulting qualities are as follows: 8:1 (PSNR = 22.89 dB), 64:1
(PSNR = 15.15 dB) to 256:1 (PSNR = 10.44 dB). For previ-
ously “unseen” images, results are given with the following
ratios and qualities: 8:1 (PSNR = 18.13 dB) to 64:1 (PSNR
= 12.93 dB). Our own earlier results for the compression of
previously “unseen” still images provide substantially better
quality, especially at the lower compression ratios (8:1 and
16:1) (Gelenbe and Sungur 1984) where we obtain a PSNR
close to 30 db for a 16:1 ratio.

Motion detection and compensation are key issues when
one deals with moving images. Motion compensation pro-
vides for a great deal of the compression in the MPEG stan-
dard. By using motion compensation, MPEG can code the
blocks in a frame in terms of motion vectors for the blocks
in the previous and/or next frames. To compensate for mo-
tion, the motion must be estimated by block matching over
the area local to the block under consideration. Exhaustive
searches that consider all possible motion vectors yield good
results. However, for large ranges, the cost of such a search
becomes prohibitive, and heuristic searches must be used.
This also raises the problem that motion cannot be fully com-
pensated in real time since the future frame must be known in
advance. Partial motion compensation, in which blocks may
be encoded only in terms of blocks in the previous frame,
may be used. One should also note that the MPEG standard
does not specify the method of motion compensation to be
used, and a neural solution to the motion compensation prob-
lem in two dimensions has been examined. Courellis (1990)
presents a neural network for motion detection. However, it
only works for a 1D case, and the author states that prob-
lems arise when the approach is extended to 2D detection of
edge motion. It appears this approach would involve a great
deal of research before it could be usefully applied in mov-
ing picture compression. Chiang (1990) presents a neural
network method for motion estimation. Drawbacks include
the assumption that displacement is uniform in the area of
interest. This would be a problem in trying to estimate the
motion of a human being because the motion vectors differ
over subsets of the picture.

2 Moving image compression with the random network

One of the common neural approaches in image compression
is to train a network to encode and decode the input data
(Chiang 1990,) so that the resulting difference between input
and output images is minimized. The network consists of
an input layer and an output layer of equal sizes, with an
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Fig. 3. An arbitrarily large image compressed with a neural encoder/decoder

Fig. 4. Compression/decompression pair in a neural network

intermediate layer of smaller size in between. The ratio of
the size of the input layer to the size of the intermediate
layer is – of course – the compression ratio. More generally,
there can also be several intermediate layers. The network is
usually trained on one or more images so that it develops an
internal representation corresponding notto the image itself,
but rather to the relevant features of a class of images.

In the still image approach that Gelenbe and Sungur
(1994) describe, the input, intermediate, and output images
are subdivided into equally-sized blocks, and they are com-
pressed block by block (Fig. 3), as in JPEG and MPEG. This
has the desirable effect of reducing the learning time of the
neural network. It also achieves good generalization, since
the numerous blocks, which make up the test image used
for learning, are used as the training set. The amount of in-
formation representing the compression and decompression
algorithm (i.e., the “neural network weights”) is also sub-
stantially reduced in this manner. We use a random neural
network with a feed-forward encoder/decoder and with one
intermediate layer as shown in Fig. 4. The weights between
the input layer and the intermediate layer correspond to the
encoding orcompressionprocess, while the weights from the
intermediate to the output layer correspond to the decoding
or decompressionprocess.

Specifically, we use 8× 8 pixel boxes and encode the
8-bit gray-level values as real numbers between 0 and 1, i.e.,
we linearly map the [0, 255] interval into the [0, 1] interval
since the gray level of each image pixel is transformed into
a real-valued excitation level of a neuron (and vice versa).
This is done by simply dividing the pixel value by 255.0.
The network is trained so as to minimize the squared error
between the output and input values, thus maximizing the
SNR, with the proviso that the image SNR is measured for
quantized values in [0, 255] while the neural network learn-
ing uses the corresponding real-valued network parameters.
In all the results we report, both in this section and when

5

6

Fig. 5. Still image compressed at a 16:1 ratio(0.5 bits/pixel) with a random
neural network

Fig. 6. Original and reconstructed 101st frames in the Salesman sequence.
In the motion detection scheme,d = 1

we deal with moving images, our networks are trained with
the algorithm described by Gelenbe (1993) and with a sin-
gle image: the well-known 512× 512 8-bit Lena. Indeed,
we have found thatLena provides some of the best results
for training the network. The network is then tested for a
variety of images, and we have observed a reconstruction
quality ranging from PSNR=23 dB to more than 30 dB for
16:1 compression (0.5 bits/pixel). As an example, Fig. 5
shows our results with 16:1 compression for the 512× 512
8-bit Peppersimage (Gelenbe and Sungur 1984).

2.1 Motion detection

We deal with sequences of image frames representing a mov-
ing video sequence. Thus, very often, a substantial part of an
image, such as the background, basically does not move –
except for noise that may originate at various levels, includ-
ing the imaging devices. However, the objects in the image
do move relative to the background, but this displacement
may be quite small between any two successive frames. We
use this to detect motion.

Specifically, we examine the 8×8 boxes from successive
framesFi−1, Fi. Motion is sensed if the average grayscale
value of a box inFi differs from that of the corresponding
box in frameFi−1 by more than a certain amountd. We
have observed experimentally that the difference in the av-
erage grayscale value of a block that is perceptible to the
human eye is approximatelyd = 1. d Also affects the com-
pression ratio by determining how many blocks in a frame
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will be sent. Note that the box structure used throughout our
compression scheme makes this approach possible as long
as the box size is small enough. Indeed, a large box size
would either make it highly improbable that motion has not
occurred within any given box, or would render the detection
process insensitive if accompanied by a large value ofd. In
contrast, small blocks incur a larger overhead for transmis-
sion, but improve frame quality. Blocks of size 8× 8 were
chosen as a good compromise.

For the data we present, we use the gray-level image
sequencesMiss Americaand Salesmanto test our motion
detector. Each frame is of size 360× 288 pixels, yielding
1620 8× 8 boxes. To test the motion detector, we load the
first two frames into two arrays. Array 1 contains the frame
on the screen at the receiving end of the transmission, while
array 2 is the new frame. Each 8× 8 box in the frames
is tested for motion detection. If a box is classified as un-
changed, the box in Array 1 is replaced by the box in Array
2. Once all of the boxes are tested, the next frame is loaded
into array 2, and the process is repeated. Clearly, the pa-
rameterd will influence both the compression ratios and the
resulting image quality. In order to illustrate its effect on
compression, we have run a series of tests, summarized in
Table 1. In the tabulated information, the “total compression
ratio” is derived from the size of the whole video sequence
after motion detection, whereas the “steady state compres-
sion ratio” is the average compression ratio due to motion
detection over all the framesafter the complete first frame
has been transmitted. Both valuesdo includethe overhead
due to the additional two bytes to indicate thex andy indices
of each block in a frame.

Other results are presented in the form of the actual im-
ages before and after motion detection. Figure 6 shows the
original and the reconstructed 101st frame of the sequence
with d = 1. In Fig. 7a, the PSNR is plotted as a function of
frame number ford = 1. Similarly, Fig. 7b shows the num-
ber of bits transmitted as a function of frame number. From
these results and other experiments we have run, it appears
that a compression ratio of 6 or 7 can be obtained easily with
a value ofd close to or slightly above 1, with satisfactory
image quality, when only motion detection is used for com-
pression. In the next section this scheme is combined with
the actual neural compression of frames to achieve large
compression ratios and satisfactory image quality.

2.2 Compression for moving images

We now describe and evaluate the complete compression
scheme for video sequences of natural images. We use a
combination of the motion detection scheme described ear-
lier and our adaptive still block-by-block (Fig. 3) tech-
nique that includes compression/decompression with a ran-
dom neural network. Specifically, our compression scheme
uses threenetworks:

– The first network scans successive blocks in sequence,
and identifies those blocks where motion has taken place,
as already described. If a block is considered identical to
the same box in the previous frame, it is not compressed
or transmitted.

– The second network compresses the blocks that have
been identified by the first network. In fact, the sec-
ond network is a set of distinct neural compression net-
works C1, . . . , CL. Each network has been designed
and trained to compress blocks at a different compres-
sion level. Each of these networks compresses the box in
parallel. The compression level is selected by the third
network.

– The third network simulates the decompression and pro-
vides a measure of the “quality” of the compression-
decompression. In fact, it is composed ofL distinct de-
compression networksD1, . . . , DL, whereDi matches
Ci.

The pairCi,Di that yields the largest compression ratio
at a quality level ofQ or better, chosen to be acceptable for
the particular application, is selected and the compressed
block is transmitted. For gray-level images,Q is formulated
as a SNR value. Figure 8 shows the block diagram of the
adaptive, still image, compression network.

Note that, with the exception of the learning phase for
training all of these networks with an unseen image (in
our case the well-knownLena image), all the operations
that have been outlined are carried out “on-the-fly”, that is
in real time as each block leaves the sender, and as each
compressed block goes into the receiver and is decom-
pressed (Fig. 1). The relationship between any two com-
pression/decompression networksCi, Di is shown in Fig. 4.

Another refinement, which we have not tested, would be
to use the networkDi (which is stored both at the transmit-
ting end and at the receiving end) to train the networkCi
further in on-line mode. In this case,Di’s weights arenot
changed, and onlyCi’s weights are updated.

At the “receiving or decompression” end, if the trans-
mitter has indicated that the current block is identical to the
same block in the previous frame, then the previous frame’s
block is placed in the corresponding position of the output
image. Otherwise, the compressed block is received. Implic-
itly (through the block’s size) or explicitly (via a variablei
that accompanies the block) the compression level used is
known to the receiver. Therefore, the appropriate network
Di is used to decompress the block, which is then placed in
sequence in the output image.

3 Experimental results

The experimental results we now present were obtained with
three compression/decompression pairs (L = 4) with com-
pression ratios of 4:1, 8:1, 16:1 and 32:1. The target qual-
ity for the decompressed image is set to the SNR value of
Q = 30. The gray-level video sequences used in the tests are
Miss AmericaandSalesman, mentioned previously.

In Table 2 we summarize the experimental results for
various values of the motion detection thresholdd. In each
case,d is fixed, and the same video sequences are presented
as input to the compression/decompression software.

It can be seen in Table 2 and Figs. 9a and b that both
the compression ratio and the video quality are almost linear
functions ofd. This linearity will allow future implementa-
tions to adaptively control the trade-off between video qual-
ity and compression ratio in an informed manner. Current
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Table 1. Compression ratios obtainedonly by motion detection as a function of the sensitivity of the motion detectord

Miss America Salesman
d Compression ratio Frame SNR Compression ratio Frame SNR

Total Steady state Minimum Average Total Steady state Minimum Average
0.5 2.25 2.28 38.78 39.80 3.01 3.07 37.38 39.16
1.0 4.44 4.59 36.82 37.72 6.55 6.94 35.04 36.97
1.5 6.06 6.38 35.72 36.67 9.23 10.06 33.66 35.70
2.0 7.25 7.74 34.57 35.84 11.26 12.55 32.77 34.73
2.5 8.42 9.10 33.91 35.23 13.08 14.88 31.99 33.81
3.0 9.53 10.41 33.63 34.62 14.70 17.04 31.41 33.25
3.5 10.60 11.73 33.02 34.19 16.32 19.29 30.84 32.71
4.0 11.71 13.11 32.69 33.74 18.01 21.71 30.60 32.25
4.5 12.82 14.54 32.37 33.29 19.75 24.30 30.05 31.80
5.0 13.96 16.04 32.08 32.98 21.38 26.86 29.77 31.39

7a

9a

7b 8

9b

10

Fig. 7a,b. Experimental results for motion detection withd = 1:
a PSNR as a function of the frame number;b number of bits trans-
mitted as a function of the frame number

Fig. 8. Block diagram of the adaptive, still image, compression net-
work

Fig. 9. Steady state compression ratio as a function ofd; b Average
video pek signal-to-noise ratio (PSNR) as a function ofd

Fig. 10. Original and reconstructed 101st frames in the Miss America
sequence withd = 1.5 andQ = 30

video compression techniques are not linear in terms of their
compression parameters. This means that, while one could
adaptively control either the compression ratio or the video
quality in MPEG and H.261, the effects on the compression
ratio of adjusting the quality of the video sequence could
not be as easily predicted as in the adaptive neural video
compression (ANVC) scheme.

In Fig. 10 we show the original and the reconstructed
101st frame ofMiss Americausing the complete scheme
described withd = 1.5 andQ = 30. Figure 11 indicates
the variation of the compression ratio over time. Figure 12

shows the running average compression ratios and the run-
ning average bits per pixel for a run length of 1000, based
on theMiss Americasequence withd = 2 andQ = 30. In
Fig. 13a, the SNR is plotted as a function of frame number
for d = 2, Q = 30. Figure 13b shows the number of bits
transmitted as a function of frame number.

All of these results confirm the effectiveness of the
method we propose in obtaining relatively high compres-
sion ratios with good image quality. They also illustrate the
fact that our compression method will provide time-varying
traffic, and that it will strongly depend on the specific image
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Table 2. Compression ratios obtained by motion detection and compression with the image-quality levelQ = 30 as a
function of thresholdd

Miss America Salesman
d Compression ratio Frame SNR Compression ratio Frame SNR

Total Steady state Minimum Average Total Steady state Minimum Average
0.5 37.06 57.96 33.62 34.17 36.51 56.62 30.56 31.65
1.0 38.16 60.72 33.51 34.05 38.37 61.27 30.50 31.63
1.5 39.39 63.93 33.29 33.90 41.46 69.64 30.37 31.53
2.0 40.55 67.08 33.05 33.73 44.19 77.78 30.26 31.46
2.5 41.76 70.50 32.80 33.57 46.65 85.82 30.05 31.27
3.0 43.13 74.54 32.74 33.36 48.73 93.23 29.81 31.14
3.5 44.44 78.59 32.53 33.21 50.87 101.48 29.64 30.96
4.0 45.84 83.11 32.29 32.98 53.25 111.54 29.54 30.80
4.5 47.56 88.99 32.13 32.74 55.53 122.10 29.32 30.62
5.0 49.25 95.18 31.96 32.56 57.78 133.68 29.18 30.45
5.5 50.75 100.98 31.65 32.35 59.50 143.38 29.06 30.31
6.0 52.39 107.79 31.28 32.13 61.23 153.94 28.86 30.15
6.5 53.86 114.24 31.10 31.94 63.15 166.81 28.70 29.97
7.0 55.46 121.79 30.95 31.72 64.81 179.06 28.51 29.82
7.5 57.20 130.62 30.60 31.55 66.63 193.88 28.39 29.66
8.0 58.42 137.17 30.50 31.38 68.02 206.29 28.33 29.57
8.5 59.79 145.07 30.26 31.23 69.35 219.16 28.17 29.46
9.0 61.28 154.28 30.07 31.08 70.75 233.90 28.08 29.34
9.5 62.38 161.55 29.98 30.95 71.81 246.03 28.07 29.29

Fig. 11. Total average compression ratio as a function of the block number
with d = 2 andQ = 30

sequence being transmitted. Although we only report results
for two video sequences, we have also tested our method for
other well-known sequences (such as thePing-pong Player).

3.1 Simulating ATM traffic
from the compressed video sources

We now turn to a study of the traffic being generated by
our method. Since the video sequences produce images at
a rate of 30 frames/s, and because each transmitted frame
is composed either of compressed blocks or of positional
information concerning a block that does not need to be
transmitted, it is easy to translate the output of the compres-
sion system into either an instantaneous rate of bits or ATM
cells transmitted per time unit. In the case of ATM cells, we
assume that compressed blocks are placed into 48-byte pay-
load of ATM cells in such a way that any one block cannot
span two different cells.

Thus, on Fig. 14 we show the traffic rate in ATM cells/s
that is generated for theMiss Americavideo sequence in a
few seconds. We observe the highly unpredictable nature of
the traffic and its time-varying behavior. Figure 15 presents
the corresponding autocorrelation function of cell traffic gen-
erated by our compression method ford = 0.5 andd = 2,
indicating a linear decrease in a few seconds. These results
are presented for the same target image qualityQ = 30.

Much ATM traffic can be expected to travel over rela-
tively slow legacy networks for a number of years to come,
especially for portions of the network that are geographically
close to the user generating the video traffic. Therefore, we
also examine the behavior of a finite ATM buffer queue for
these traffic streams and measure the cell loss rate for var-
ious values ofd, different buffer sizes, and various speeds
at which the buffer is being emptied. These results are sum-
marized on Figs. 16 and 17 for theMiss Americasequence.
We have purposely chosen a slow legacy network speed of
64 kBytes/s to evaluate the losses observed on a link when
a link capacity that is currently quite realistic is used. We
see that choosing a larger value ofd can substantially reduce
the loss rate even for small buffers, and that the compression
scheme makes a very substantial difference in the cell loss
rate even when the network is slow and the buffer sizes are
small. In order to see what the effect of doubling the link
speed can be, on Fig. 18 we plot the ATM cell loss rate for
a 128 kByte/s with the same video sequence and withd = 3.
Clearly, by comparing results with Fig. 18, the cell loss can
be substantially reduced by doubling the link speeds, even
when they are relatively small.

4 Conclusions

In this paper we have described an adaptive neural technique
for video compression and have studied its traffic character-
istics. Our compression method is designed to meet qual-
ity requirements with respect to the decompressed image
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12a

13a

12b

14

13b

Fig. 12a,b.Experimental results for the Miss America sequence withd = 2
andQ = 30: a running average compression ratio as a function of the block
number;b running average bits per pixel as a function of block number

Fig. 13a,b. Experimental results withd = 2 andQ = 30: a peak signal-
to-noise ratio (PSNR) as a function of frame number;b number of bits
transmitted as a function of frame number

Fig. 14. Asynchronous transfer mode (ATM) traffic rate withd = 2

at the receiver. It can vary the traffic rate it generates into
the network by modifying a simple parameter that is used
to detect motion in successive frames. It can also do this
by modifying the image quality requirement. This method is
computationally inexpensive in that motion detection is used
in place of the motion estimation used by methods such as
H.261 and MPEG. Furthermore, each block is compressed
in O(n2) time. Timed results indicate that this method is
several times faster than the H.261 and MPEG compression
schemes. Figure 19 provides an experimental comparison of

the time required to compress each frame in ANVC and
H.261 for practical video sequences and shows that ANVC
is more than six times faster.

The presentation of these ideas and algorithms is com-
plemented by a substantial amount of experimental data
concerning effective compression ratios and resulting image
quality.

We also present experimental data concerning the ATM
traffic that our method will generate, including measurement
of cell traffic rates, autocorrelation of the traffic and buffer
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Fig. 15a,b.Autocorrelation function of ATM cell traffic witha d = 0.5 and
b d = 2

Fig. 16. Percentage of lost cells vs. buffer size for a 64 kByte/s link with
d = 3

Fig. 18. Percentage of lost cells vs. buffer size for a 128 kByte/s link with
d = 3

Fig. 17. Percentage of lost cells vs. buffer size for a 64 kByte/s link with
d = 5

Fig. 19. Time to compress each frame in ANVC and H.261 compression
schemes as a function of compression ratio
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overflow for ATM buffers of finite sizes. These results are
based on real-image sequences that are used to drive our
moving image compression method.

Many further improvements of the basic method inves-
tigated in this paper can be envisioned, and some are cer-
tainly worth further work. In particular, we can adaptively
vary the motion detection threshold in real time to meet a
combined image quality and effective bit-rate requirement.
We can also introduce on-line learning of certain parameters
at the transmitter to continuously improve the ability of the
system to compress moving images as image characteristics
change with time. Many of these improvements will lead
to greater computational complexity and/or the need to ex-
change more information between the sender and receiver,
so that any extension of the method needs to be carefully
evaluated in terms of the major trade-offs addressed.

5 Appendix: the random neural network model and its
learning algorithm

In this appendix we summarize the random neural network
model and of its learning algorithm. In the random neural
network model (Gelenbe 1989, 1990) signals in the form of
spikes of unit amplitude circulate among the neurons. Posi-
tive signals represent excitation and negative signals repre-
sent inhibition. Each neuron’s state is a non-negative inte-
ger called its potential, which increases when an excitation
signal reaches it, and decreases when an inhibition signal
arrives. Thus, an excitatory spike is interpreted as a “+1”
signal at a receiving neuron, while an inhibitory spike is in-
terpreted as a “−1” signal. Neural potential also decreases
when the neuron fires. Thus a neuroni emitting a spike,
whether an excitation or an inhibition spike, loses one unit
of potential, going from a state of valueki to the state of
valueki − 1.

The state of then-neuron network at timet is rep-
resented by the vector of non-negative integersk(t) =
(k1(t), . . . , kn(t)), whereki(t) is the potential or integer state
of neuroni. We denote byk andki arbitrary values of the
state vector and of theith neuron’s state.

Neuroni will “fire” (i.e., become excited and send out
spikes) if its potential ispositive. The spikes are sent out at
a rater(i), with independent, identically and exponentially
distributed interspike intervals. Spikes go out to some neu-
ron j with probability p+(i, j) as excitatory signals, or with
probabilityp−(i, j) as inhibitory signals. A neuron may also
send signals out of the network with a probabilityd(i), and
d(i) +

∑n
j=1[p+(i, j) + p−(i, j)] = 1. Let w+

ij = r(i)p+(i, j),

and w−ij = r(i)p−(i, j). Here the “w’s” play a role simi-
lar to that of the synaptic weights in connectionist models,
though they specifically represent rates of excitatory and in-
hibitory spike emission. They are non-negative. Exogenous
(i.e., those coming from the “outside world”) excitatory and
inhibitory signals also arrive at neuroni at ratesΛ(i) and
λ(i), respectively.

This is a “recurrent network” model; that is, it is allowed
to have feedback loops of arbitrary topology.

Computations related to this model are based on the
probability distribution of network statep(k, t) = Pr[k(t) =
k], or with the marginal probability that neuroni is excited

qi(t) = Pr[ki(t) > 0]. As a consequence, the time-dependent
behavior of the model is described by an infinite system
of Chapman-Kolmogorov equations for discrete state-space
continuous markovian systems.

Information in this model is carried by thefrequencyat
which spikes travel. Thus, neuronj, if it is excited, sends
spikes to neuroni at a frequencywij = w+

ij + w−ij . These
spikes are emitted at exponentially distributed random inter-
vals. In turn, each neuron behaves as a nonlinearfrequency
demodulator, since it transforms the incoming excitatory and
inhibitory spike trains’ rates into an “amplitude”, which is
qi(t), the probability that neuroni is excited at timet. In-
tuitively speaking, each neuron of this model is also a fre-
quency modulator, since neuroni sends out excitatory and
inhibitory spikes at rates (or frequencies)qi(t)r(i)p+(i, j),
qi(t)r(i)p−(i, j) to any neuronj.

The stationary probability distribution associated with
the model is the quantity used throughout the computations:

p(k) = lim
t→∞ p(k, t), qi = lim

t→∞ qi(t), i = 1, . . . , n. (3)

It is given by the following result:

Theorem 1. Let qi denote the quantity

qi = λ+(i)/[r(i) + λ−(i)] (4)

where theλ+(i), λ−(i) for i = 1, . . . , n satisfy the system of
nonlinear simultaneous equations:

λ+(i) =
∑
j

qjr(j)p+(j, i) +Λ(i) ,

λ−(i) =
∑
j

qjr(j)p−(j, i) + λ(i) . (5)

Let k(t) be the vector of neuron potentials at timet andk =
(k1, . . . , kn) be a particular value of the vector; letp(k)
denote the stationary probability distribution.

p(k) = lim
t→∞Prob[k(t) = k]

If a non-negative solution{λ+(i), λ−(i)} exists for Eqs. 4 and
5 such that eachqi < 1, then

p(k) =
n∏
i=1

[1− qi]q
ki
i . (6)

The quantities that are most useful for computational
purposes, that is, the probabilities that each neuron is excited,
are directly obtained from:

lim
t→∞Prob[ki(t) > 0] = qi = λ+(i)/[r(i) + λ−(i)] if qi < 1.

Let us now describe the learning algorithm we use in
this study. It is based on the algorithm described in (Gelenbe
1993).

The algorithm chooses the set of network parameters
W in order to learn a given set ofK input-output pairs
(ι, Y) where the set of successive inputs is denotedι =
{ι1, . . . , ιK}, and ιk = (Λk, λk) are pairs of positive and
negative signal flow rates entering each neuron:

Λk = [Λk(1), . . . , Λk(n)], λk = [λk(1), . . . , λk(n)]
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The successive desired outputs are the vectorsY
= {y1, . . . , yK}, where each vectoryk = (y1k, . . . , ynk),
whose elementsyikε[0, 1] correspond to the desired values
of each neuron. The network approximates the set of desired
output vectors in a manner that minimizes a cost function
Ek:

Ek =
1
2

n∑
i=1

ai(qi − yik)2, ai ≥ 0 .

If we wish to remove a neuronj from network output,
and hence from the error function, it suffices to setaj = 0.

Both of the n × n weight matricesW+
k = {w+

k(i, j)}
andW−

k = {w−k (i, j)} have to be learned after each input is
presented, by computing a new valueW+

k and W−
k of the

weight matrices for each inputιk = (Λk, λk). The computa-
tion uses gradient descent. Clearly, we seek only solutions
for which all these weights are positive.

Let w(u, v) denote any weight term, which would be ei-
therw(u, v) ≡ w−(u, v), orw(u, v) ≡ w+(u, v). The weights
are updated as follows:

wk(u, v) = wk−1(u, v)

− η
n∑
i=1

ai(qik − yik)[∂qi/∂w(u, v)]k (7)

whereη > 0 is a constant, and

1. qik Is calculated with the inputιk and w(u, v)
= wk−1(u, v), in Eq. 3.

2. [∂qi/∂w(u, v)]k Is evaluated at the valuesqi = qik and
w(u, v) = wk−1(u, v).

To compute [∂qi/∂w(u, v)]k, we turn to the Eq. 3, from
which we derive the following equation:

∂qi/∂w(u, v)

=
∑
j

∂qj/∂w(u, v)[w+(j, i)− w−(j, i)qi]/D(i)

− 1[u = i]qi/D(i)

+ 1[w(u, v) ≡ w+(u, i)]qu/D(i)

− 1[w(u, v) ≡ w−(u, i)]quqi/D(i)

Let q = (q1, . . . , qn), and define then× n matrix

W = {[w+(i, j)− w−(i, j)qj ]/D(j)} i, j = 1, . . . , n .

We can now write the vector equations:

∂q/∂w+(u, v) = ∂q/∂w+(u, v)W + γ+(u, v)qu
∂q/∂w−(u, v) = ∂q/∂w−(u, v)W + γ−(u, v)qu

where the elements of then-vectors

γ+(u, v) = [γ+
1 (u, v), . . . , γ+

n(u, v)] ,

γ−(u, v) = [γ−1 (u, v), . . . , γ−n (u, v)]

are

γ+
i (u, v) =

−1/D(i) if u = i, v /= i
+1/D(i) if u /= i, v = i
0 for all other values of (u, v)

γ−i (u, v) =


−(1 + qi)/D(i) if u = i, v = i
−1/D(i) if u = i, v /= i
−qi/D(i) if u /= i, v = i
0 for all other values of (u, v) .

Notice that

∂q/∂w+(u, v) = γ+(u, v)qu[I −W]−1

∂q/∂w−(u, v) = γ−(u, v)qu[I −W]−1 (8)

whereI denotes then × n identity matrix. Hence the main
computational work is to obtain [I − W]−1. This is of
time complexityO(n3), or O(mn2) if an m-step relaxation
method is used.

We now have the information to specify the complete
learning algorithm for the network. We first initialize the
matricesW+

0 andW−
0 in an appropriate manner. This initia-

tion will be made at random. Choose a value ofη, and then,
for each successive value ofk, starting withk = 1, proceed
as follows:

1. Set the input values toιk = (Λk, λk).
2. Solve the system of nonlinear Eqs. 3 with these values.
3. Solve the system of linear Eqs. 8 with the results of step

2.
4. Using Eq. 7 and the results of steps 2 and 3, update the

matricesW+
k and W−

k . Since we seek the “best” ma-
trices (in terms of gradient descent of the quadratic cost
function) that satisfy thenon-negativityconstraint, in any
stepk of the algorithm, if the iteration yields a negative
value of a term, we have two alternatives:
A. Set the term to zero, and stop the iteration for this

term in this stepk; in the next stopk+1 we iterate on
this term with the same rule starting from its current
null value.

B. Go back to the previous value of the term and iterate
with a smaller value ofη.

This general scheme can be specialized to feed-forward net-
works yielding a computational complexity ofO(n2), rather
thanO(n3), for each gradient iteration.
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