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Metrics for shot boundary detection in digital video sequences
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Abstract. The detection of shot boundaries in video se-
quences is an important task for generating indexed video
databases. This paper provides a comprehensive quantita-
tive comparison of the metrics that have been applied to
shot boundary detection. In addition, several standardized
statistical tests that have not been applied to this problem,
as well as three new metrics, are considered. A mathematical
framework for quantitatively comparing metrics is supplied.
Experimental results based on a video database containing
39,000 frames are included.
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1 Introduction

To generate indexed databases, video sequences are first
segmented into shots, a process that is referred to asshot
boundary detection, scene change detection, or digital video
segmentation. This is a necessary step for the identification
of key frames in the video, and the subsequent retrieval of
scene content. A shot is defined as one or more frames gen-
erated and recorded contiguously that represents a contin-
uous action in time or space [4]. Video-editing procedures
produce two general types of shot boundaries: abrupt and
gradual. An abrupt cut is the result of splicing two dissim-
ilar shots together, and this transition occurs over a single
frame. Gradual transitions occur over multiple frames and
are the product of effects such as fade- ins, fade-outs, wipes,
and dissolves. The inter-frame changes are often subtle, and
difficult to detect, during gradual transitions.

Many researchers have reported metrics for shot bound-
ary detection, but there is little quantitative evidence to indi-
cate which are the best. The work by Boreczky and Rowe [3]
provided a quantitative comparison of five detection tech-
niques: histograms (sum of absolute binwise differences),
region histograms, running histograms, a pixel difference
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algorithm, and discrete cosine transform (DCT) differences.
They concluded that region histogram techniques were the
best. However, they did not compare the efficacy of different
metrics to answer questions such as whether the histogram-
based sum of absolute binwise differences is superior to
the chi- square metric. In addition, many metrics, such as
statistic-based difference metrics, were not considered.

The objectives of this paper are: (1) to provide a math-
ematical framework for the comparison of metrics, (2) to
survey the metrics applied to this problem, and to present
several metrics that have not, and (3) to provide a quanti-
tative comparison of the metrics using grayscale and color-
coded images. Experimental results indicate that the new
metrics are effective for shot boundary detection.

The paper is organized as follows. Section 2 provides a
mathematical framework for comparing the metrics. Metrics
reported in the literature are surveyed, and the new metrics
are introduced in Sect. 3. Section 4 provides a quantitative
comparison of the metrics using both grayscale and color-
coded images. Section 5 provides a summary and conclu-
sions.

2 Test statistics and hypothesis testing

The method of comparing two consecutive images, or data
sets, in a video sequence is known as thestatistical method
of indirect proof. First, a test hypothesis is formed. In this
case, the hypothesis is that the data sets are from the same
source, and likewise belong to the same shot. A metric, also
known as a test statistic, is proposed for comparing the data
sets and a probability law for the metric determined. If it can
be shown that the metric value is improbable given the test
hypothesis, the hypothesis is rejected, and it is concluded that
the data sets are from different sources (a shot boundary has
occurred). Deriving a probability law for a metric requires
the assumption of a certain probability law on the inputs.
Determining the probability law is not important for this
application. It is important that a threshold can be selected
that adequately discriminates between the two hypotheses,
such that a correct decision is made a high percentage of the
time. This is summarized for a given metricζ as follows:

H0 = hypothesis images are from same shot,

H = hypothesis images are from different shots,
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Fig. 1. Probability distributions for the two hypotheses

if ζ ≥ T then decideH1 true,

if ζ < T then decideH0 true.

A decision based on the threshold,T , leads to three possible
outcomes:

1. a correct decision – decideH0 whenH0 is true, or decide
H1 whenH1 is true.

2. a false alarm (or false positive) – decideH1 whenH0 is
true.

3. a false negative – decideH0 whenH1 is true.

Example probability distributions for the two hypotheses are
shown in Fig. 1.

The probability of a false alarm ispfa = p(decideH1|H0
true) and the probability of a false negative ispfn =
p(decideH0|H1 true). These probabilities are shown graph-
ically by the shaded regions in Fig. 1. The probability of
detecting a shot boundary ispd = 1 − pfn. From the law
of total probability, the total probability of error for a given
thresholdT is

pe = pfa × p(H0 true) +pfn × p(H1 true). (1)

Intuition suggests thatT be selected to minimizepe.
However, the threshold value that minimizespe may pro-
duce unacceptably large false-alarm or false-negative prob-
abilities. In a typical database,p(H0 true) � p(H1 true),
and thereforepe is minimized by makingpfa small at the
expense ofpfn and pd. In our experiments, it is assumed
that p(H0 true) =p(H1 true).

Another way to measure the performance of a metric is
to consider a plot known as the Receiver Operating Char-
acteristic (ROC) [17]. The ROC is a plot of the false-alarm
and detection probabilities on thex andy axes, respectively,
as a function ofT . Example ROCs are shown in Fig. 2 for
two test metrics. This example shows that, asT increases
pd andpfa decrease, as expected from Fig. 1. Figure 2 also
indicates that test metricζ2 is superior toζ1. For any given
false-alarm rate,ζ2 has a higher detection probability. The
area above each curve,Aζ , provides a way to compare met-
rics. Aζ can take values in the range from 0 to 1, 1 being
the worst case, and 0 the best.Aζ takes into account all
threshold values, rather than the performance for a single
threshold.

3 Test metrics

Four classes of shot boundary detection metrics have been
reported. The first is based on comparisons of image inten-

Fig. 2. Example ROCs for two test metrics

sity histograms. The histograms are compared on a binwise
basis, and the differences integrated into a single metric. The
second is to compare images based on first- and second-order
intensity statistics. This is in the form of a likelihood ratio
or a standard statistical test, such as the Studentt-test. The
third approach is to compare images by pixel differences. A
simple technique is to subtract the images point for point,
and form the metric by summing the differences. The final
approach is to compare images by computing changes in
image structure, such as changes in edges [15] or by locat-
ing discontinuities in interframe motion vectors [1]. Motion
vector methods have high computational complexity relative
to the others, and were determined to be inferior in [3] to
histogram metrics. Therefore, they were omitted from this
comparison.

The remainder of this section surveys the metrics applied
to this problem, and describes several new ones included in
the comparison. The mathematical symbols employed to de-
scribe the metrics are summarized as follows:µ = mean
intensity value,σ = standard deviation of intensity values,
hj(•) = histogram of imagej, M = number of histogram
bins, I(x, y; j) = intensity value of point (x, y) of the jth
image in the video sequence, (j, k) = indices of two consec-
utive images in the sequence, andnj = number of pixels in
imagej.

3.1 Histogram test statistics

Nagasaka and Tanaka [10] experimented with histogram and
pixel difference metrics, and concluded that histogram met-
rics are the most effective. They concluded that the chi-
square test of significance [5] is the best histogram metric.
It is computed as follows:

χ2 =
M∑
i=1

{hj(i) − hk(i)}2

{hj(i) + hk(i)} , χ2 ≥ 0, (2)

and it can be shown to obey a chi-square probability law un-
der certain conditions. A 6-bit color-coded (M = 64) image
was employed using the two most significant bits from each
of the three color bands. The authors concluded that com-
parison based on 6- bit color-coded images was superior to
grayscale images.

A problem withχ2 is that it is not normalized, and there-
fore the threshold must be adjusted for different values ofn.
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It can be changed to a normalized measure by using the ex-
perimental probability density functions, instead of the his-
togram values, as follows:

χ2 =
M∑
i=1

{hj(i)/n− hk(i)/n}2

{hj(i)/n + hk(i)/n}

=
1
n

M∑
i=1

{hj(i) − hk(i)}2

{hj(i) + hk(i)} . (3)

The measure in Eq. 3 was utilized in our experiments due to
the various video image sizes.

Nagasaka and Tanaka [10] and Zhang et al. [16] both
computed the following metric using the 6-bit color code:

δ =

∑M
i=1 |hj(i) − hk(i)|

nj + nk
, 0 ≤ δ ≤ 1. (4)

Zhang et al. concluded thatδ is a better metric thanχ2. This
was based on the fact thatχ2 is more effective in emphasiz-
ing the differences between histograms, but is more likely
to generate false alarms. Our experiments indicate little dif-
ference in the discrimination power of the metrics.

A histogram comparison metric, referred to as histogram
intersection, was introduced in [13], where the objective was
to discriminate between color objects in an image database.
This measure is defined as

I = 1 −
∑M

i=1 min[hj(i), hk(i)]
nj

, 0 ≤ I ≤ 1. (5)

The numerator term identifies the number of intensity values
the images have in common, while the denominator is a nor-
malizing factor. This metric was applied for shot boundary
detection in [6], and its efficacy was tested under a variety
of color spaces. It is shown in Appendix A that the metric
I is equivalent toδ.

Nakajima et al. [11] proposed a metric based on the
inner product of chrominance histograms. The histograms
are treated as vectors of lengthM and projected onto each
other as follows:

α = 1 −
~hj • ~hk

‖~hj‖ ‖~hk‖
, 0 ≤ α ≤ 1. (6)

If the histograms are similar, the projection is large. (Note:
the measures in Eqs. 5 and 6 are subtracted from 1 to fol-
low the convention that large metric values indicate different
data sets.) This measure was used in conjunction with DCT
differences to detect shot boundaries in MPEG images.

Sethi and Patel [12] proposed the use of the Kolmogorov-
Smirnov test [9]. It is the maximum absolute value difference
between cumulative distribution functions (CDFs), and is
computed as

ks = maxi |CDFj(i) − CDFk(i)|, 0 ≤ ks ≤ 1. (7)

They applied this to DCT-coded images in an MPEG se-
quence and employed a histogram of the first DCT coeffi-
cient of each block (this is the DC gray-level value of each
8 × 8 block).

3.2 Statistic-based metrics

Considered next are metrics based on statistics derived from
the intensity data or histogram. First- and second-order
statistics are usually employed, since they are more stable
than those of higher order. Likelihood ratios are examined,
as well as the Studentt-test and Snedecor’sF -test. Thet-
test andF -test are well-known hypothesis tests, but their use
has not been reported for shot boundary detection. Finally,
two new metrics are considered.

A likelihood ratio test is a standard hypothesis test [17]
in which a ratio of probabilities is used as the test statistic.
The general form of this test is

λ =
p(~I|H1)

p(~I|H0)
, λ ≥ 1. (8)

p(~I|H1) is the probability that the data set~I = {~Ij , ~Ik}
occurred given thatH1 is true, andp(~I|H0) is the proba-
bility that ~I occurred given thatH0 is true. Expressions for
λ are typically found assuming that the data samples are
identically and independently distributed. IfH1 is true and
p(~I|H1) > p(~I|H0) andλ is large, while ifH0 is true and
p(~I|H1) = p(~I|H0) andλ is equal to 1.

Jain et al. [8] computed a likelihood ratio test based on
the assumption of uniform second-order statistics. Under this
assumption the likelihood ratio is

λu =

[
σj+σk

2 +
(

µj−µk

2

)2
]2

σjσk
. (9)

Under the assumption of a normal distribution, the likelihood
ratio is

λn =
σn1+n2

0

σn1
j ∗ σn2

k

, (10)

whereσ0 is the pooled variance of both data sets.λn is also
known as the Yakimovsky Likelihood Ratio and was applied
in [12].

The Studentt-test [5] tests the hypothesis that two data
sets have the same mean, and therefore arose from the
same cause, based on an observed difference in their sample
means. Thet statistic is

t =
µj − µk√
σ2

j + σ2
k

. (11)

This is a simplified expression fort, sincenj = nk. Under
certain assumptionst can be shown to obey Student’s prob-
ability law. Snedecor’sF - test [5] tests the hypothesis that
two data sets have the same variance, and therefore arose
from the same cause, based on an observed difference in
their sample variances. TheF statistic is

F =
σ2

j

σ2
k

, whereσj > σk andF ≥ 1. (12)

Under certain assumptions theF statistic can be shown to
obey Snedecor’sF -distribution.

None of the statistic-based metrics simultaneously em-
phasize both the difference between the mean and variance
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as intuition would suggest. This led us to two new metrics,
which were determined through intuition and trial and error.
The first metric is

λ1 =
|µj − µk| ∗ |σj − σk|

σjσk

(µj+µk

2

) , λ1 ≥ 0. (13)

The numerator term is the product of the mean and variance
differences, and the intent is to enhance the differences in
the two statistics. The denominator term provides a normal-
ization based on both the mean and variance. The second is
a variation of theF -test. Instead of a ratio of the standard
deviations squared, it is a ratio of the product of the mean
and standard deviations squared:

λ2 =

(
µjσj

µkσk

)2

, whereµj > µk, σj > σk andλ2 ≥ 1. (14)

3.3 Pixel differences

Pixel difference metrics compare images based on differ-
ences in the image intensity map. Nagasaka and Tanaka [10]
computed a pointwise sum of differences between image
pairs as

∆1 =
∑

x

∑
y

|I(x, y; j) − I(x, y; k)|. (15)

Jain et al. [8] and Zhang et al. [16] employed a similar
measure in which a difference picture (∆I) is computed as
follows:

∆I(x, y) =

{
1, if |I(x, y; j) − I(x, y; k)| > τ
0, otherwise , (16)

and the metric is computed as

∆2(τ ) =

∑
x

∑
y ∆I(x, y)

n
. (17)

This requires two thresholds in contrast to the other metrics
presented. Another pixel difference metric tested is the ab-
solute value of the sum of pixel differences. It is computed
as

∆3 =

∣∣∣∣∣
∑

x

∑
y

I(x, y; j) − I(x, y; k)

∣∣∣∣∣ . (18)

Images can be considered as one-dimensional vectors
of length n. One way to represent the similarity between
vectors is to project one vector onto the other, also known
as computing the inner product. This led us to use the inner
product for comparing image pairs,

γ = 1 −
~Ij • ~Ik

‖~Ij‖ ‖~Ik‖ , 0 ≤ γ ≤ 1. (19)

3.4 MPEG metrics

Recent attention has focused on the detection of shot bound-
aries in MPEG sequences due to the attractiveness of pro-
cessing the compressed data directly. Arman et al. [2] used a
measure similar to Eq. 19 using the coefficients of the DCT.
The metric computed was

ψ = 1 −
~Vj • ~Vk

‖~Vj‖ ‖~Vk‖ , (20)

where ~Vj and ~Vk are selected DCT coefficients from each
block for the two images. In our experiments,ψ was com-
puted using all of the non-quantized DCT coefficients.

Yeo and Liu [14] advocated the use of DC images for
shot boundary detection in MPEG sequences. They are im-
ages where each pixel represents the DC value (or 0th DCT
transform coefficient) of each 8× 8 block. This results in
a significant data reduction. They applied a combination of
histogram and pixel difference metrics to the DC images. In
this work, all of the aforementioned metrics are computed
for the DC image (non- quantized).

3.5 An edge-based metric

Zabih et al. [15] proposed a metric that relies on the num-
ber of edge pixels that change in a neighboring images. The
algorithm is fairly complex, as it requires computing edges,
registering the images, computing incoming and outgoing
edges, and finally computing an edge change fraction. Our
experiment utilized a much simpler edge comparison algo-
rithm. The edges were computed in each image using a 3×3
Sobel operator (x and y direction), and the total number of
edge pixels in each image was determined. The metric used
was the modulation of the number of edge pixels:

E =
#edges(Ij) − #edges(Ik)
#edges(Ij) + #edges(Ik)

. (21)

3.6 Intensity vs pixel difference metrics

Histogram- and statistic-based metrics are sensitive to light-
ing changes; for example, if the light flickers between frames
of the same shot. These variations alter the histogram shape,
and likewise the gray-level mean and variance. This pro-
duces large metric values and false positives. The advantage
of these metrics is that they are invariant to large changes in
object motion that do not significantly alter the light distri-
bution. The converse is true of pixel difference comparisons.
They are more robust with respect to lighting changes, and
are sensitive to large interframe changes due to motion and
camera zooming and panning.

The metrics may be computed globally (for the entire
image) or forO blocks of the image. The latter case com-
plicates the decision-making process, since the decision is
made from theO metric values. One approach is to apply a
threshold to each of theO values, and if a certain percent-
age exceeds the threshold decide that a change has occurred.
This is the method that is typically applied. We have found
that an effective approach is to compute an order statistic of
theO values and use it as the test metric. Experiments with
25, 50, and 75 percentile values indicate that the 75% value
works the best. This also reduces the number of thresholds
required from two to one.
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Table 1. Number of operations needed to compute each statistic for global
computation.N = number of image pixels andM = number of histogram
bins

Metric Global computation

Math operations Logical operations

χ2 5M + n M
δ 3M + n −
α 6M + n −
ks 2M + n M
All statistic-based 5M + n −
∆1 3n −
∆2 3n n
∆3 2n −
γ 6n −
E 36n −

3.7 Computational complexity

Table 1 summarizes the computational complexity required
to compute each metric. It was assumed that metric compu-
tation is optimized so that each histogram and statistic for a
given image is computed only once and stored for the sub-
sequent comparison. It was also assumed thatµ andσ are
computed directly from the histograms, and that n operations
are necessary to compute the histogram. Mathematical op-
erations include: +,−.∗, /, and| • |, while logical operations
include if statement comparisons to avoid divide-by-zero er-
rors. Extraneous operations that do not significantly add to
the computational complexity are omitted. Sincen � M ,
the histogram and statistic-based metrics have similar com-
putation complexity, and the global computations are rela-
tively higher. These results are all scaled upward for block
comparisons.

4 Quantitative comparison of metrics

The metrics were computed for a video database containing
a total of 38,858 frames. Of these, 36,288 image pairs were
representative of no shot boundary, 1581 were abrupt shot
boundaries, and 287 were gradual shot boundaries (each con-
taining multiple frames). The video clips were drawn mainly
from the Internet, and included MPEG-1, QuickTime, AVI,
and SGI movie formats. The videos were categorized as one
of the following: action, animation, comedy, commercial,
drama, news, and sports. All videos were decompressed be-
fore processing. The complete video database will be made
available upon request. The videos and their respective cat-
egories are in Appendix B. Many movie trailers were used,
which were challenging due to the large number of shot
boundaries, fast motion, and special effects. The frames were
digitized at frames rates varying from 5 frames per second
(fps) to 30 fps, and 8× 8 blocks were used.

Three comparison values were computed for each met-
ric, the first being the area above the ROC,Aζ . Second, a
thresholdT was selected to minimize the error probability,
pe, (assuming equal prior probabilities), and the minimum
value recorded. Third, the false alarm probability,pfa, was
determined for a fixed detection probability,pd = 0.9. This
provides a common point on the ROC for comparison, and
90% was selected as reasonable detection probability for a

Table 2. Performance of the test statistics applied to the grayscale image
database

Metric Global comparison Block comparison

Aε pe pfa@ Aε pe pfa@
min pd = 0.9 min pd = 0.9

Histogram
χ2 2.8 7.3 5.9 4.2 6.1 5.1
δ 2.9 7.3 5.7 4.1 6.1 4.8
α 7.0 12.4 16.9 4.8 6.2 5.1
ks 2.4 6.0 5.2 3.7 5.9 5.2
Statistic
t 4.6 10.0 10.2 3.3 6.2 5.2
F 6.2 11.8 14.3 2.1 4.8 3.4
λu 3.8 9.4 8.8 2.2 5.0 3.2
λn 3.1 7.4 6.9 2.3 4.6 3.5
λ1 3.6 8.6 8.3 2.3 4.5 3.5
λ2 3.1 7.1 7.0 2.4 4.5 3.7
Pixel difference
∆1 4.0 9.8 10.2 4.7 10.0 10.6
∆2 3.8 9.6 9.6 4.2 7.5 4.4
∆3 4.4 10.2 10.8 3.2 7.4 6.1
γ 3.1 7.7 6.8 4.4 8.2 9.5
DCT and Edge
ψ 5.8 10.5 11.2 − − −
E 9.4 16.0 25.4 − − −

Table 3. Performance of the test statistics applied to the color-coded image
database

Metric Global comparison Block comparison

Aε pe pfa@ Aε pe pfa@
min pd = 0.9 min pd = 0.9

Histogram
χ2 2.0 6.0 3.8 7.9 11.1 15.9
δ 3.5 8.0 6.7 8.3 11.0 17.3
α 5.8 11.6 14.0 9.3 12.0 27.1
ks 3.2 7.8 6.3 7.8 10.4 13.6
Statistic
t 4.5 10.1 10.5 6.8 9.8 10.5
F 6.6 12.5 15.2 8.1 9.5 9.4
λu 3.8 9.4 9.0 6.5 9.8 9.8
λn 3.5 8.5 7.7 5.4 7.3 5.3
λ1 3.6 8.9 8.1 7.9 9.3 9.0
λ2 3.4 8.2 7.4 5.8 8.1 6.5
Pixel difference
∆1 7.7 14.0 21.6 9.9 14.5 16.7
∆2 7.6 14.8 22.8 10.6 14.4 42.9
∆3 5.5 11.9 14.9 8.0 12.0 16.7
γ 3.6 8.0 6.7 8.5 15.4 20.8
DCT and Edge
ψ 10.7 17.0 27.8 − − −
E 17.7 19.8 66.1 − − −

useful system. (Results at the levelpd = 0.95 were consis-
tent.) The metrics were computed for grayscale and 6-bit
color-coded images.Aζ , pe, andpfa should be minimized
for a good metric.

4.1 Abrupt cuts

The results are summarized in Tables 2 and 3 for grayscale
(M = 256) and color-coded images (M = 64), respectively.
Only non-shot-boundary points and abrupt cuts were in-
cluded in these comparisons. First, consider the grayscale
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global comparisons. The histogram metrics are the best
global performers, and the Kolmogorov-Smirnov metric is
the best among these. There has been little reported use of
this metric [12], as opposed to the much more popularχ2

andδ metrics [6, 7, 10, 14, 16]. The results show little dif-
ference in the efficacy ofχ2 andδ. The best statistic-based
metrics areλ1, λ2, andλn, which are close in performance
to the histogram metrics. The best pixel difference metric is
the inner product,γ, which is on par withλ1, λ2, andλn.
The color-coded global metrics do not provide a significant
advantage over the grayscale, and in most cases are worse.
The notable exception isχ2 which is the best of all global
metrics, color-coded or grayscale.

Now consider the grayscale block comparisons. For the
histogram metrics, two of the three values used to compare
the metrics show improvement relative to the global case,
while Aε is surprisingly worse. Kolmogorov-Smirnov is the
best of the histogram-based metrics. There is a significant
increase in performance of the statistic-based metrics, the
best of these beingF , λu, λn, λ1, andλ2. The pixel differ-
ence metrics are generally worse for the block comparisons.
Among the block comparisons, the statistic-based metrics are
the best. For the color- coded images, the block comparisons
are generally worse than the global comparisons.

When comparing global and block results, it is apparent
that the block computations are superior for the histogram-
and statistic-based metrics and inferior for the pixel differ-
ence metrics. The overall best metrics are the block statistic-
based metricsF , λu, λn, λ1, and λ2. These are followed
by the block histogram metrics, the best of which is the
Kolmogorov-Smirnov. Finally, they are followed by the
global histogram metrics and the pixel difference metricγ.
The 6-bit color-coded images do not provide an advantage
over the grayscale images, the one exception being the global
χ2 metric.

The MPEG metric,ψ, using all non-quantized DCT co-
efficients does not perform particularly well, nor does our
edge-based metric. However, it is likely that more complex
edge-based algorithms would perform better, and it is pos-
sible that quantization of the coefficients would improveψ.

All of the metrics were applied to the DC image for
MPEG processing as proposed by Yeo and Liu [14] (how-
ever, the DC coefficients were not quantized as they would
be in a MPEG sequence). Only global comparisons were
computed, since the DC images are already a block-reduced
form of the original image. The results are in Table 4. The
histogram metrics all perform poorly relative to the grayscale
image case, except for the Kolmogorov-Smirnov test, which
performs about as well as before. The statistic-based met-
rics perform worse than their block grayscale performance.
The pixel difference measures∆1, ∆2, andγ perform sig-
nificantly better. The best overall DC image metric isγ. It
should be noted that this is equivalent toψ if only the DC
coefficients are utilized.

Although the performance appears to be good for many
of the metrics, it must be kept in mind that simple threshold-
ing produces a large number of false positives. For instance,
the block metricλu has the lowest recorded false-alarm rate
(3.2%) at a detection rate of 90%. This corresponds to 1161
false alarms for 1428 (of 1581) abrupt cuts detected! This
indicates that use of a single metric for shot boundary detec-

Table 4. Performance of the test metrics applied to the grayscale DC image
database

Aε pe pfa

min pd = 0.9

Histogram
χ2 6.6 13.9 19.6
δ 5.5 12.2 15.4
α 10.9 17.6 34.3
ks 2.4 5.9 5.1
Statistic
t 4.6 9.7 9.8
F 5.7 11.9 14.0
λu 3.6 9.1 8.4
λn 2.9 7.0 6.1
λ1 3.5 8.8 8.3
λ2 3.0 7.3 6.3
Pixel difference
∆1 2.7 7.6 6.7
∆2 2.5 7.4 6.1
∆3 4.6 9.8 9.9
γ 1.9 5.7 3.7

Table 5. Performance of the test metrics applied to the grayscale image
database, using gradual shot boundaries only

Aε pe pfa

min pd = 0.9

Histogram – Global
χ2 6.2 12.2 20.3
δ 7.9 12.5 26.2
α 15.1 19.1 67.7
ks 3.4 8.3 7.8
Statistic – Global
t 3.4 8.0 7.4
F 3.0 7.0 5.9
λu 3.5 7.7 7.1
λn 2.9 6.5 6.5
λ1 3.0 6.7 6.3
λ2 2.9 6.4 6.4
Pixel difference – Global
∆1 14.3 20.7 35.6
∆2 13.8 18.3 51.3
∆3 4.2 9.2 9.9
γ 12.1 20.0 31.9

tion is inadequate. The results for each video category are
summarized in Tables C.1–C.7 in Appendix C. The metrics
follow the same trends as observed for the overall database.

4.2 Gradual transitions

The metrics were compared for gradual transitions exactly
as done for abrupt cuts in Sect. 4.1. The database employed
contained only gradual transitions and non-transition frames.
Abrupt cuts were excluded. There were a total of 36,288
no-edit transitions, 145 fade transitions, and 142 dissolve
transitions. The results are in Table 5. The global compar-
isons, were much better than the block comparisons and
are the only ones shown. The results indicate that the per-
formance of the metrics is worse for gradual boundaries
than abrupt cuts. The statistic-based metrics are the best in
terms of performance for gradual boundaries, all of them per-
forming reasonably well. Among the histogram metrics, the
Kolmogorov-Smirnov is the best. The pixel difference met-
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Fig. 3. Test metric behavior during a “typical” gradual transition

Table 6. Comparison ratio for the detection of gradual transitions

ks t λu λn λ1 λ2 ∆3

r – fade-outs and fade-ins 75.2 87.8 96.5 94.9 94.3 91.4 84.8
r – dissolves 67.9 69.8 83.2 85.7 83.7 76.2 67.1

rics do not perform well, the exception being the summed
pixel difference,∆3.

Due to the difficulty in detecting gradual transitions,
more complex methods have been applied to detect them.
During a gradual transition, the metrics generally exhibit a
slight increase that is sustained over multiple frames, as il-
lustrated in Fig. 3. Zhang et al. [16] applied an approach
called twin- comparison to detect these changes. This was
accomplished by comparing the metricχ2 to a low threshold.
Then, if this threshold was exceeded, the values ofχ2 fol-
lowing it in the sequence were summed. If the accumulated
value exceeded a second threshold, the sequence was labeled
as a gradual transition. Any of the test metrics presented can
be applied in this manner.

Using the twin-comparison and related approaches, grad-
ual transitions are not detected based on an absolute thresh-
old, but by locating a sustained increase of the metric that
occurs during the transition. For reliable detection, the metric
values during the transition must be sufficiently large relative
to the values neighboring the transition. It was determined
which metric values exhibited the largest relative increase
during gradual transitions. This was accomplished by com-
puting the average metric value during each transition and
comparing it to the average value of the metric preceding
and following the transition (five samples directly preced-
ing and following each transition were used). The following
ratio was computed for each of the edits:

r =
ξd − ξba

ξd + ξba

. (22)

ξba andξd are the average values of the metric before/after
and during the edit, respectively. This ratio is large for met-
rics that are good for detecting gradual transitions.

All metrics were normalized for a fair comparison; met-
rics with a non-zero minimum value were normalized to
have a minimum value of 0. The average value of the ratio
r is shown in Table 6 for the best metrics. Global compar-
isons are used, because the block comparisons provided no
advantage. Seven metrics are shown, since they were clearly
the best. The statistic-based metrics are best for both fades
and dissolves. The summed pixel difference,∆3, performs
well, although it was not useful for identifying abrupt cuts.

5 Conclusions

This paper provided a quantitative comparison of metrics
for shot boundary detection in digital video sequences. The
results are somewhat surprising. The Kolmogorov-Smirnov
test is the best histogram metric; it performs better than the
more popular chi- square and histogram difference (inter-
section) metrics. Histogram metrics produce the best results
when computed for blocks, rather than globally. Among the
statistic-based metrics there are several good choices, likeli-
hood ratios and the two new metrics proposed. Again, these
are best computed at the block level. Pixel difference met-
rics produce the best results when computed globally, the
best being the inner product of images. In general, 6-bit
color- coded images did not improve the performance of the
metrics over the grayscale case. The overall best for abrupt
cut detection are the statistic-based metrics computed at the
block level.

The metrics were tested using DC images that are used in
MPEG sequences. The histogram- and statistic-based metrics
degrade in performance when applied to DC images, with
the exception of the Kolmogorov-Smirnov metric, and the
pixel difference metrics improve in performance.

To detect gradual shot boundaries the statistic-based met-
rics are clearly the best. A simple thresholding of these met-
rics produced a fairly low error probability. A relative com-
parison of the metrics before and during gradual transitions
indicates a good response of the metrics to fades and dis-
solves.

Appendix A

Proof
Show the equivalence of the metrics in Eqs. 4 and 5.

Show that

I = 1 −
∑M

i=1 min[hj(i), hk(i)]
nj

= δ

=

∑M
i=1 |hj(i) − hk(i)|

nj
. (A1)

I can be expressed as

I =
nj − ∑M

i=1 min[hj(i), hk(i)]
nj

. (A2)

The numerator of Eq. A2 is the total number of intensity val-
ues in the image minus the total number of intensity values
that are the same. This is equal to the total number that are
different, which can be written as

I =

∑M
i=1 |hj(i) − hk(i)|

nj
. (A3)

This is equivalent to Eq. 5.
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Appendix B Video database

Action

Video description Frames Shot boundaries

Airwolf 70 1
Barbwire movie trailer 726 175
Blade Runner 1112 21
Dune movie 296 22
Eraser movie trailer 997 115
Independence Day 2492 97
movie trailer
Star Trek movie 1507 40
Star Wars movie 602 23
Starwars movie trailer 318 29
Terminator 564 4

Animation

Video description Frames Shot boundaries

Anastasia movie trailer 1044 101
Comet Animation 524 0
Lion King movie 1390 22
Space animations 338 0
Space probe flight 1491 9
Starwars animation 424 7
Terminator animation 331 0
Winnie the Pooh 1206 12

Comedy

Video description Frames Shot boundaries

Friends sitcom 571 10
Ghostbusters movie 147 5
Mighty Aphrodite 1841 38
movie trailer
Rockey Horror movie 407 6
Spacejam movie trailer 1079 157

Commercial

Video description Frames Shot boundaries

Apple “1984” 722 27
Cartoon ad 95 3
Rice Krispies 81 5

Drama

Video description Frames Shot boundaries

A Few Good Men Movie 865 12
Alaska movie trailer 777 60
American President 1375 58
movie trailer
Bed Time for Bonzo 436 15
Chung King movie trailer 1225 72
Close Encounters movie 566 9
Crossinguard movie 3038 110
trailer
Crow movie trailer 1560 122
First Knight movie trailer 271 15
Jamaica 115 2
My Left Foot 449 14
movie trailer
Slingblade movie trailer 1704 101
Titanic movie 1067 14
Titanic movie trailer 1210 173
Truman movie trailer 166 8
Xfiles trailer 429 20

News

Video description Frames Shot boundaries

CNN news 169 7
Plane crash newsclip 96 0
Reuters newsclips 1126 11
Ron Brown’s funeral 631 24
San Jose news 1377 6
Singer news clip 350 0
Space shuttle disaster 1411 13
Space shuttle 1190 2
Endeavor astronauts
Space station Mir 588 5
Sunrise/sunset 286 2
Weather satellite clips 308 0
White House footage 131 5

Sports

Video description Frames Shot boundaries

Basketball 487 6
Hockey 205 11
Rodeo 146 3
Skateboarding 298 6
Sky surfing 74 0
Soccer 87 0

Note: In QuickTime movies, repeat frames were omitted.
Therefore, the total frames listed here is greater than that
included in results.

Appendix C

Video category results – Abrupt cut comparisons

Table C.1. Category: Action. Frames: 8767. Boundaries: 595

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 5.5 8.2 8.2
δ 5.4 8.3 7.9
α 6.0 8.2 8.7
ks 5.3 8.4 9.0
Statistic – Block
t 5.3 9.3 10.4
F 2.8 6.5 6.1
λu 3.6 7.6 7.4
λn 3.6 6.7 7.1
λ1 3.8 7.4 7.5
λ2 4.2 7.4 8.1
Pixel difference – Global
∆1 5.2 11.2 12.5
∆2 5.5 10.9 12.2
∆3 6.7 11.9 14.2
γ 5.2 10.9 12.0
Pixel difference – DC Image
γ 3.2 6.9 6.5
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Table C.2. Category: Animation. Frames: 6495. Boundaries: 133

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 2.6 2.9 4.4
δ 2.7 2.9 4.4
α 2.6 2.8 4.2
ks 2.9 3.2 4.5
Statistic – Block
t 2.3 3.0 4.1
F 1.2 2.8 2.9
λu 1.3 1.7 2.5
λn 2.0 3.0 3.5
λ1 1.1 1.8 1.7
λ2 1.1 2.1 2.2
Pixel difference – Global
∆1 1.2 4.0 3.6
∆2 0.9 2.9 1.7
∆3 4.2 10.0 10.7
γ 0.8 2.3 1.6
Pixel difference – DC Image
γ 0.8 2.1 1.4

Table C.3. Category: Comedy. Frames: 3400. Boundaries: 2

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 3.4 4.9 3.0
δ 3.2 4.8 2.9
α 5.0 4.9 3.1
ks 2.5 4.6 2.5
Statistic – Block
t 2.5 4.8 2.5
F 2.1 4.6 2.7
λu 1.9 3.3 1.7
λn 2.0 3.7 2.1
λ1 2.0 3.3 2.7
λ2 2.2 3.4 2.9
Pixel difference – Global
∆1 1.8 5.3 4.5
∆2 1.6 5.4 2.9
∆3 2.5 7.3 5.1
γ 1.7 5.4 3.2
Pixel difference – DC Image
γ 0.9 3.8 1.5

Table C.4. Category: Commercial. Frames: 844. Boundaries: 23

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 6.2 5.8 2.8
δ 6.1 6.2 2.8
α 5.7 5.7 2.8
ks 5.1 5.0 3.7
Statistic – Block
t 4.9 4.6 4.0
F 5.1 5.0 1.3
λu 4.8 5.8 2.9
λn 4.8 6.5 4.5
λ1 4.9 5.0 1.2
λ2 5.0 5.0 1.2
Pixel difference – Global
∆1 6.3 5.6 2.6
∆2 6.6 5.6 2.6
∆3 6.7 12.0 15.2
γ 4.5 3.7 3.0
Pixel difference – DC Image
γ 3.9 3.7 5.6

Table C.5. Category: Drama. Frames: 11321. Boundaries: 550

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 3.3 4.7 3.2
δ 3.2 4.7 3.1
α 3.9 4.7 3.0
ks 2.8 4.4 3.0
Statistic – Block
t 2.8 4.9 3.4
F 2.2 3.9 2.7
λu 2.0 4.0 2.3
λn 2.1 3.9 2.6
λ1 2.1 3.8 2.5
λ2 2.0 3.6 2.5
Pixel difference – Global
∆1 4.0 9.3 10.0
∆2 3.4 8.1 7.8
∆3 3.5 8.6 7.8
γ 2.4 6.1 4.3
Pixel difference – DC Image
γ 1.6 4.7 3.4

Table C.6. Category: News. Frames: 5106. Boundaries: 42

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 3.1 3.3 0.1
δ 3.1 3.5 0.1
α 3.1 3.9 0.1
ks 2.7 2.8 4.7
Statistic – Block
t 0.7 1.3 1.5
F 0.2 1.5 0.6
λu 0.1 0.3 0.3
λn 0.4 0.8 0.7
λ1 0.3 2.0 0.7
λ2 0.3 1.5 0.5
Pixel difference – Global
∆1 0.3 1.1 0.6
∆2 0.3 1.8 0.2
∆3 2.2 5.0 3.6
γ 0.5 1.1 1.1
Pixel difference – DC Image
γ 0.5 0.9 1.2

Table C.7. Category: Sports. Frames: 1375. Boundaries: 21

Aε pe pfa@
min pd = 0.9

Histogram – Block
χ2 1.3 4.2 1.5
δ 1.6 5.7 1.2
α 1.5 5.5 1.5
ks 1.4 5.5 2.0
Statistic – Block
t 1.1 4.0 2.0
F 3.3 7.3 5.2
λu 0.7 2.5 1.5
λn 1.8 5.7 1.8
λ1 3.2 5.2 5.1
λ2 3.4 5.3 5.5
Pixel difference – Global
∆1 3.6 10.0 17.6
∆2 1.1 2.9 1.9
∆3 6.2 11.1 22.6
γ 1.7 3.3 1.7
Pixel difference – DC Image
γ 0.9 3.5 2.0
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