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Metrics for shot boundary detection in digital video sequences
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Abstract. The detection of shot boundaries in video se-algorithm, and discrete cosine transform (DCT) differences.
guences is an important task for generating indexed vided@hey concluded that region histogram techniques were the
databases. This paper provides a comprehensive quantithest. However, they did not compare the efficacy of different
tive comparison of the metrics that have been applied tametrics to answer questions such as whether the histogram-
shot boundary detection. In addition, several standardizetbased sum of absolute binwise differences is superior to
statistical tests that have not been applied to this problemthe chi- square metric. In addition, many metrics, such as
as well as three new metrics, are considered. A mathematicaitatistic-based difference metrics, were not considered.
framework for quantitatively comparing metrics is supplied. = The objectives of this paper are: (1) to provide a math-
Experimental results based on a video database containingmatical framework for the comparison of metrics, (2) to
39,000 frames are included. survey the metrics applied to this problem, and to present

several metrics that have not, and (3) to provide a quanti-
Key words: Scene change detection — Shot boundary detectative comparison of the metrics using grayscale and color-
tion — Video indexing coded images. Experimental results indicate that the new
metrics are effective for shot boundary detection.

The paper is organized as follows. Section 2 provides a
mathematical framework for comparing the metrics. Metrics
reported in the literature are surveyed, and the new metrics
1 Introduction are introduced in Sect. 3. Section 4 provides a quantitative

comparison of the metrics using both grayscale and color-

To generate indexed databases, video sequences are fifgded images. Section 5 provides a summary and conclu-
segmented into shots, a process that is referred tshas  SIONS.

boundary detectigrscene change detectipor digital video

segmentationThis is a necessary step for the identification - _ )

of key frames in the video, and the subsequent retrieval of 1€St statistics and hypothesis testing

scene content. A shot is defined as one or more frames gens, thod of ing tw tive i dat
erated and recorded contiguously that represents a contin- € method of comparing two consecutive Images, or data
uous action in time or space [4]. Video-editing proceduressets’ in a video sequence is known asstatistical method

L2 f indirect proof First, a test hypothesis is formed. In this
roduce two general types of shot boundaries: abrupt and o
gradual. An a%rupt cutyiz the result of splicing two dispsim- case, the hypothesis is that the data sets are from the same

ilar shots together, and this transition occurs over a sing| source, and likewise belong to the same shot. A metric, also

frame. Gradual transitions occur over multiple frames an nown as a test statistic, is proposed_for comparing th_e data
ets and a probability law for the metric determined. If it can

are the product of effects such as fade- ins, fade-outs, Wipeg "\ that the metric value is improbable given the test
and dissolves. The inter-frame changes are often subtle, a . A P bie g
ypothesis, the hypothesis is rejected, and it is concluded that

difficult to detect, during gradual transitions. :
Many researchers have reported metrics for shot boun the data sets are from different sources (a shot boundary has

ary detection, but there is little quantitative evidence to indi-,?hceC u;;iﬂ)rh Dti%r;lwgfg aacperﬁgﬁb'"%dgmiior Igwmggrlfh;eci}# Irl?tz
cate which are the best. The work by Boreczky and Rowe [3]Determininp the probabilit Igw is no%/ important for ?his .
provided a quantitative comparison of five detection tech- rmining the p y p

application. It is important that a threshold can be selected

niques: histograms (sum of absolute binwise differences) L
region histograms, running histograms, a pixel differencethat adequately discriminates between the two hypotheses,
such that a correct decision is made a high percentage of the
* Currently with Intel Corporation, Sacramento, Calif. time. This is summarized for a given metgcas follows:

** Currently with IBM Corporation, Austin, Tex. _ s
*** Currently with Raytheon Corporation, Marlborough, Mass. Ho = hypOtheSIS Images are from same shot
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if ( < T then decideHj true

A decision based on the threshold, leads to three possible
outcomes:

sity histograms. The histograms are compared on a binwise
basis, and the differences integrated into a single metric. The
second is to compare images based on first- and second-order
1. acorrect decision — decidé, whenHy is true, or decide intensity statistics. This is in the form of a likelihood ratio

Hy when H, is true. or a standard statistical test, such as the Stutiéedt. The
2. afalse alarm (or false positive) — decitfe whenHo is  third approach is to compare images by pixel differences. A
true. simple technique is to subtract the images point for point,
3. a false negative — decidé, when H, is true. and form the metric by summing the differences. The final

approach is to compare images by computing changes in
image structure, such as changes in edges [15] or by locat-
The probability of a false alarm js;, = p(decideH: |Ho ing discontinuities in interframe motion vectors [1]. Motion
true) and the probability of a false negative jg, =  Vector methods have high computational complexity relative
p(decideHo|H, true). These probabilities are shown graph- {0 the others, and were determined to be inferior in [3] to
ically by the shaded regions in Fig.1. The probability of histogram metrics. Therefore, they were omitted from this

detecting a shot boundary js; = 1 — py,. From the law ~ comparison. . _ . _
of total probability, the total probability of error for a given ~ The remainder of this section surveys the metrics applied

Example probability distributions for the two hypotheses are
shown in Fig. 1.

thresholdT is to this problem, and describes several new ones included in
the comparison. The mathematical symbols employed to de-
Pe = pfa X p(Ho true) +psn x p(H; true) (1) scribe the metrics are summarized as follows= mean
Intuition suggests thaf’ be selected to minimize.. intensity value,c = standard deviation of intensity values,

However, the threshold value that minimizes may pro-  h;(e) = histogram of imagej, M = number of histogram
duce unacceptably large false-alarm or false-negative protRins, I(x,y;j) = intensity value of point,y) of the jth
abilities. In a typical database(H, true) > p(H, true),  image in the video sequencg, k) = indices of two consec-
and thereforey, is minimized by makingp;, small at the utive images in the sequence, amgd= number of pixels in
expense ofps, andp,. In our experiments, it is assumed Image;.
that p(Hop true) =p(H; true).

Another way to measure the performance of a metric is
to consider a plot known as the Receiver Operating Char3.1 Histogram test statistics
acteristic (ROC) [17]. The ROC is a plot of the false-alarm
and detection probabilities on theandy axes, respectively, Nagasaka and Tanaka [10] experimented with histogram and
as a function ofl’. Example ROCs are shown in Fig. 2 for Pixel difference metrics, and concluded that histogram met-
two test metrics. This example shows that,7asncreases fics are the most effective. They concluded that the chi-
Dd andpfa decrease, as expected from F|g 1. Figure 2 a|sd§q_uare test of Significance [5] is the best histogram metric.
indicates that test metri¢, is superior to(;. For any given It is computed as follows:
false-alarm rate¢, has a higher detection probability. The M _ ~12
area above each curvd,, provides a way to compare met- \2= Z My 2 >0,
rics. A; can take values in the range from 0 to 1, 1 being — {h;(@) +he(i)} -

the worst case, and O the best: takes into account all . . -

threshold values, rather than the performance for a singl@nd it can be shown to obey a chi-square probability law un-

threshold. der certain conditions. A 6-bit color-coded/(= 64) image
was employed using the two most significant bits from each
of the three color bands. The authors concluded that com-

3 Test metrics parison based on 6- bit color-coded images was superior to
grayscale images.

Four classes of shot boundary detection metrics have been A problem withy? is that it is not normalized, and there-

reported. The first is based on comparisons of image intenfore the threshold must be adjusted for different values.of

)
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It can be changed to a normalized measure by using the eX3.2 Statistic-based metrics
perimental probability density functions, instead of the his-

togram values, as follows: Considered next are metrics based on statistics derived from
the intensity data or histogram. First- and second-order

- M {h;()/n — hi(i)/n}? statistics are u;ually employ(_ad, _since thgy are more _stable
X = Z (h;())/n + hi@) /) than those of higher order. Likelihood ratios are examined,

=1 ! b as well as the Studernttest and Snedecor’s-test. Thet-

1 hy(i) — hi(i)}? test andF'-test are well-known hypothesis tests, but their use

= o Z m ) has not been reported for shot boundary detection. Finally,

i=1 J k two new metrics are considered.

A likelihood ratio test is a standard hypothesis test [17]
which a ratio of probabilities is used as the test statistic.
hThe general form of this test is

The measure in Eq. 3 was utilized in our experiments due o,
the various video image sizes.

Nagasaka and Tanaka [10] and Zhang et al. [16] bot
computed the following metric using the 6-bit color code: \ = p(ﬂHl)

. . I|Ho)’
2 ) — i) P o
nj +ny p(I|H1) is the probability that the data sét = {I;, I}

) i y o occurred given thatd; is true, andp(f|H0) is the proba-
Zhang et al. concluded thatis a better metric thag<. This bility that T occurred given thaf, is true. Expressions for

was based on the fact thgt is more effective in emphasiz- ) are typically found assuming that the data samples are

ing the differences between histograms, but is more IikeIyidentically and independently distributed. M, is true and

to generate false alarms. Our experiments indicate little dif- - - : L .
ference in the discrimination power of the metrics. p({‘Hl) > ngHO) and)\_ is large, while if o is true and
A histogram comparison metric, referred to as histogram?(!|H1) = p(I|Ho) and A is equal to 1. _
intersection, was introduced in [13], where the objective was ~ Jain et al. [8] computed a likelihood ratio test based on
to discriminate between color objects in an image databasdh€ assumption of uniform second-order statistics. Under this

A> 1 ®)

5= 0<5<1l 4)

)

This measure is defined as assumption the likelihood ratio is
M . s - oiton i — [ 2 2

Sl Zizlmln[h](z),hk(z)], —— - [ o 4 (uzlk) ]

nj >\u = (9)

00

The numerator term identifies the number of intensity value . T I
the images have in common, while the denominator is a noﬁ_rér;i%eirsthe assumption of a normal distribution, the likelihood
malizing factor. This metric was applied for shot boundary .
detection in [6], and its efficacy was tested under a variety, _ o' " (10)

of color spaces. It is shown in Appendix A that the metric "™ ~ oyt ko

I is equivalent to). , . .
Nakajima et al. [11] proposed a metric based on thewhereoy is the pooled variance of both data sets.is also

inner product of chrominance histograms. The histogram&nown as the Yakimovsky Likelihood Ratio and was applied
are treated as vectors of lengiif and projected onto each " [12].

other as follows: The Student-test [5] tests the hypothesis that two data
sets have the same mean, and therefore arose from the
_ h; e hy same cause, based on an observed difference in their sample
=l-="—=- 0O<acsl (6)  means. The statistic is
(1751 117 o
— Hj— HE (11)

If the histograms are similar, the projection is large. (Note:t B \/m
the measures in Egs.5 and 6 are subtracted from 1 to fol- ik
low the convention that large metric values indicate differenttpis is a simplified expression far sincen; = n;. Under

data sets.) This measure was used in conjunction with DCTertain assumptionscan be shown to obey Student's prob-
differences to detect shot boundaries in MPEG images.  gpjlity law. Snedecor's- test [5] tests the hypothesis that
Sethi and Patel [12] proposed the use of the Kolmogorovyyg data sets have the same variance, and therefore arose

computed as 5

o4
ks = max |CDF;(i) — CDFy(i)|, 0<ks<1 @ = ;% whereos; > oy andF' > 1. (12)

They applied this to DCT-coded images in an MPEG se-Under certain assumptions thfé statistic can be shown to
guence and employed a histogram of the first DCT coeffi-obey Snedecor’$-distribution.

cient of each block (this is the DC gray-level value of each  None of the statistic-based metrics simultaneously em-
8 x 8 block). phasize both the difference between the mean and variance
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as intuition would suggest. This led us to two new metrics, V#j oV
. . . " . =1- -———, (20)
which were determined through intuition and trial and error. ANRA
Vill IV

The first metric is

|1 — p| * o — ol
ajor (M)

The numerator term is the product of the mean and variancngeo and Liu [14] advocated the use of DC images for

differences, and the intent is to enhance the differences iR, boundary detection in MPEG sequences. They are im-

the two statistics. The denominator term provides a normal-a es where each pixel represents the DC value (oBCT

ization based on both the mean and variance. The second {5, storm coefficient) of each 8 8 block. This results in

a variation of ther'-test. Instead of a ratio of the standard , qigificant data reduction. They applied a combination of

deviations square_d, Itis a ratio of the product of the mearhistogram and pixel difference metrics to the DC images. In

and standard deviations squared: this work, all of the aforementioned metrics are computed

[0 2 for the DC image (non- quantized).
Ay = <MJ€U;> , wherep; > ug, o; > o, and, > 1. (14)

>0 (13) Wherer and V, are selected DCT coefficients from each
t=" block for the two images. In our experimenis,was com-
ed using all of the non-quantized DCT coefficients.

)\12

i i 3.5 An edge-based metric
3.3 Pixel differences

Pixel difference metrics compare images based on differZabih et al. [15] proposed a metric that relies on the num-
ences in the image intensity map. Nagasaka and Tanaka [1®jr of edge pixels that change in a neighboring images. The
computed a pointwise sum of differences between imagealgorithm is fairly complex, as it requires computing edges,

pairs as registering the images, computing incoming and outgoing

: . ) edges, and finally computing an edge change fraction. Our

Ay = Z Z [1(z,y:7) — (@, y: F)|- (15)  experiment utilized a much simpler edge comparison algo-
z oy

rithm. The edges were computed in each image using 8 3
Jain et al. [8] and Zhang et al. [16] employed a similar Sobel operator (x and y direction), and the total number of
measure in which a difference picturd]) is computed as edge pixels in each image was determined. The metric used

follows: was the modulation of the number of edge pixels:
_JLif [I(z,y;5) — L(z,y;K)| > 7 # 1) — # I
Al(w,y) = {O, otherwise ’ (16)  p o Hedges(l;) — Hedges(T) (21)
#Hedges(I;) + #Hedges(l})

and the metric is computed as

Do 2y Al(z, v) a7

n 3.6 Intensity vs pixel difference metrics

This requires two thresholds in contrast to the other metrics
presented. Another pixel difference metric tested is the abyyigiogram- and statistic-based metrics are sensitive to light-

solute value of the sum of pixel differences. It is computeding changes: for example, if the light flickers between frames
as of the same shot. These variations alter the histogram shape,
and likewise the gray-level mean and variance. This pro-
Az = Z Z I(z,y;7) — I(z,y; k)| - (18)  duces large metric values and false positives. The advantage
Ty of these metrics is that they are invariant to large changes in
|mages can be considered as one-dimensional Vecto@bject motion that do not Significantly alter the ||ght distri-
of length n. One way to represent the similarity between bution. The converse is true of pixel diffgarer)ce comparisons.
vectors is to project one vector onto the other, also knownThey are more robust with respect to lighting changes, and
as computing the inner product. This led us to use the innefre sensitive to large interframe changes due to motion and

Ap(7) =

product for comparing image pairs, camera zooming and panning. _
- L The metrics may be computed globally (for the entire
=1_ I; o Iy < (19) image) or forO blocks of the image. The latter case com-
7 ||fjH ||fk||’ U plicates the decision-making process, since the decision is

made from the) metric values. One approach is to apply a

threshold to each of th® values, and if a certain percent-
3.4 MPEG metrics age exceeds the threshold decide that a change has occurred.

This is the method that is typically applied. We have found
Recent attention has focused on the detection of shot boundhat an effective approach is to compute an order statistic of
aries in MPEG sequences due to the attractiveness of prahe O values and use it as the test metric. Experiments with
cessing the compressed data directly. Arman et al. [2] used &5, 50, and 75 percentile values indicate that the 75% value
measure similar to Eq. 19 using the coefficients of the DCT.works the best. This also reduces the number of thresholds
The metric computed was required from two to one.
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Table 1. Number of operations needed to compute each statistic for globalTable 2. Performance of the test statistics applied to the grayscale image
computation.N = number of image pixels andi/ = number of histogram  database

bins Metric Global comparison Block comparison
Metric Global computation
Ae Pe pfa@ Ae Pe pfa@
Math operations  Logical operations min  pg =0.9 min  pg =0.9
x? 5M +n M Histogram
5 3M +n - G 2.8 7.3 59 4.2 6.1 5.1
a 6M +n - ) 2.9 7.3 57 4.1 6.1 4.8
ks 2M +n M a 70 124 16.9 4.8 6.2 5.1
All statistic-based Bl +n - ks 2.4 6.0 52 37 5.9 5.2
A 3n — Statistic
A, 3n n t 46 100 102 33 6.2 5.2
Az 2n - F 6.2 118 143 21 4.8 34
v 6n - Au 3.8 9.4 88 22 5.0 3.2
E 36n - An 3.1 7.4 69 23 4.6 35
A1 3.6 8.6 83 23 45 35
A2 3.1 7.1 70 24 45 3.7
3.7 Computational complexity Pixel difference
Aq 4.0 9.8 102 47 100 10.6
Table 1 summarizes the computational complexity required 22 2'2 13'3 1%‘2 ‘,1;22 ;‘Z ‘é‘i
to compute each metric. It was assumed that metric compu- 31 77 6.8 44 82 95

tation is optimized so that each histogram and statistic for a pcT and Edge

given image is computed only once and stored for the sub- ¢ 58 105 1.2 — - -
sequent comparison. It was also assumed thahd o are E 94 16.0 254 — - -
computed directly from the histograms, and that n operations - _ ,
are necessary to compute the histogram. Mathematical Opgz?;);s.:erformance of the test statistics applied to the color-coded image
erations include: ;~.x, /, and| e |, while logical operations

include if statement comparisons to avoid divide-by-zero er- Metric Global comparison Block comparison

rors. Extraneous operations that do not significantly add to
the computational complexity are omitted. Since> M,

Ac Pe pfa@ Ae Pe pfa@

: M - < min  pg =09 min  pg = 0.9
the histogram and statistic-based metrics have similar com—
putation complexity, and the global computations are rela- Histogram
tively higher. These results are all scaled upward for block X 20 60 38 79 11l 159
y higher. p 5 35 80 67 83 110 173
comparisons. @ 58 11.6 140 93 120 27.1
ks 32 78 63 7.8 104 13.6
Statistic
4 Quantitative comparison of metrics t 45 101 105 68 98 105
F 6.6 125 152 81 95 9.4
. : - _ 4 . . . :
The metrics were computed for a video database containing i“ g g g 5 3 (7) 2451 3 g g g
; ; n . : : . ) .
a total of 38,858 frames. Of these, 36,288 image pairs were ) 36 89 81 79 93 9.0
representative of no shot boundary, 1581 were abrupt shot, 34 82 74 58 81 6.5
boundaries, and 287 were gradual shot boundaries (each conpixel difference
taining multiple frames). The video clips were drawn mainly 41 77140 216 99 145 16.7
from the Internet, and included MPEG-1, QuickTime, AVI, 42 76 148 228 106 144 42.9
! ; ; Az 55 11.9 149 80 120 16.7
and SGI movie formats. The videos were categorized as one 36 80 67 85 154 20.8
of the following: action, animation, comedy, commercial, pcr and Edge
drama, news, and sports. All videos were decompressed be-y 10.7 17.0 278 - - -
fore processing. The complete video database will be made E 17.7 198 66.1 — - -

available upon request. The videos and their respective cat-
egories are in Appendix B. Many movie trailers were used, i
which were challenging due to the large number of shotUSeful system. (Results at the leyel = 0.95 were consis-
boundaries, fast motion, and special effects. The frames wer€nt.) The metrics were computed for grayscale and 6-bit
digitized at frames rates varying from 5 frames per second0lor-coded imagesdc, p., andpy, should be minimized
(fps) to 30 fps, and & 8 blocks were used. for a good metric.

Three comparison values were computed for each met-
ric, the first being the area above the RQE;. Second, a
thresholdT” was selected to minimize the error probability, 4.1 Abrupt cuts
Pe, (@ssuming equal prior probabilities), and the minimum
value recorded. Third, the false alarm probability,, was  The results are summarized in Tables 2 and 3 for grayscale
determined for a fixed detection probability; = 0.9. This (M = 256) and color-coded images/(= 64), respectively.
provides a common point on the ROC for comparison, andOnly non-shot-boundary points and abrupt cuts were in-
90% was selected as reasonable detection probability for aluded in these comparisons. First, consider the grayscale
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global comparisons. The histogram metrics are the besgable 4. Performance of the test metrics applied to the grayscale DC image
’ . . . database
global performers, and the Kolmogorov-Smirnov metric is

the best among these. There has been little reported use of Ae Pe Pfa
this metric [12], as opposed to the much more popuwfar min  pg =09
andé metrics [6, 7, 10, 14, 16]. The results show little dif-  istogram
ference in the efficacy of? andé. The best statistic-based 2 66 13.9 19.6
metrics are\;, Ay, and\,,, which are close in performance § 55 122 15.4
to the histogram metrics. The best pixel difference metricis « 109 176 34.3
the inner product;y, which is on par withA;, A, and A,,. ks 24 59 51
The color-coded global metrics do not provide a significant ftat'St'°4 6 o7 08
advantage over the grayscale, and in most cases are worseg 57 119 14.0
The notable exception ig? which is the best of all global A 36 91 8.4
metrics, color-coded or grayscale. A 29 70 6.1
Now consider the grayscale block comparisons. For the 2 35 838 8.3
histogram metrics, two of the three values used to compare?2 30 73 6.3
the metrics show improvement relative to the global case, ZTEI d'fzfe;ence7 6 67
while A is surprisingly worse. Kolmogorov-Smirnov is the 4, 25 74 6.1
best of the histogram-based metrics. There is a significantaA;, 46 98 9.9
increase in performance of the statistic-based metrics, they 1.9 5.7 3.7

best of these being’, \,, A, A1, and\,. The pixel differ- ] ) ]
Table 5. Performance of the test metrics applied to the grayscale image

ence metrics are generally worse for the block comparisons ) .
. . . database, using gradual shot boundaries only
Among the block comparisons, the statistic-based metrics are

the best. For the color- coded images, the block comparisons A. Pe Pra

are generally worse than the global comparisons. min  pg = 0.9
When comparing glo_bal and block _results, it is apparent Histogram — Global

that the block computations are superior for the histogram- \2 6.2 122 203

and statistic-based metrics and inferior for the pixel differ- s 79 125 26.2

ence metrics. The overall best metrics are the block statistic- 151  19.1 67.7

based metricg’, Ay, A\, A1, and \,. These are followed ks 34 83 7.8

by the block histogram metrics, the best of which is the Statis“"g‘f"’bas'o 4
Kolmogorov-Smirnov. Finally, they are followed by the : : '

. : : . . 30 70 5.9
global histogram metrics and the pixel difference metric 35 77 71
The 6-bit color-coded images do not provide an advantage n, 29 65 6.5
over the grayscale images, the one exception being the globalx;, 3.0 6.7 6.3
X2 metric. X2 29 64 6.4

The MPEG metricg), using all non-quantized DCT co-  Pixel difference — Global

efficients does not perform particularly well, nor does our A; E'S ig'; gig
edge-based metric. However, it is likely that more complex »; 42 92 9.9
edge-based algorithms would perform better, and it is pos- 4 121 20.0 31.9

sible that quantization of the coefficients would impraye
All of the metrics were applied to the DC image for
MPEG processing as proposed by Yeo and Liu [14] (how-tion is inadequate. The results for each video category are
ever, the DC coefficients were not quantized as they wouldsummarized in Tables C.1-C.7 in Appendix C. The metrics
be in a MPEG sequence). Only global comparisons werdollow the same trends as observed for the overall database.
computed, since the DC images are already a block-reduced
form of the original image. The results are in Table 4. The
histogram metrics all perform poorly relative to the grayscale4.2 Gradual transitions
image case, except for the Kolmogorov-Smirnov test, which
performs about as well as before. The statistic-based metfhe metrics were compared for gradual transitions exactly
rics perform worse than their block grayscale performanceas done for abrupt cuts in Sect.4.1. The database employed
The pixel difference measured;, A, and~ perform sig-  contained only gradual transitions and non-transition frames.
nificantly better. The best overall DC image metricyislt Abrupt cuts were excluded. There were a total of 36,288
should be noted that this is equivalentstaif only the DC  no-edit transitions, 145 fade transitions, and 142 dissolve
coefficients are utilized. transitions. The results are in Table 5. The global compar-
Although the performance appears to be good for manyisons, were much better than the block comparisons and
of the metrics, it must be kept in mind that simple threshold-are the only ones shown. The results indicate that the per-
ing produces a large number of false positives. For instancefprmance of the metrics is worse for gradual boundaries
the block metric,, has the lowest recorded false-alarm ratethan abrupt cuts. The statistic-based metrics are the best in
(3.2%) at a detection rate of 90%. This corresponds to 116terms of performance for gradual boundaries, all of them per-
false alarms for 1428 (of 1581) abrupt cuts detected! Thisforming reasonably well. Among the histogram metrics, the
indicates that use of a single metric for shot boundary deteckolmogorov-Smirnov is the best. The pixel difference met-
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& 5 Conclusions

This paper provided a quantitative comparison of metrics
for shot boundary detection in digital video sequences. The
results are somewhat surprising. The Kolmogorov-Smirnov
I l | ] . test is the best histogram metric; it performs better than the

— more popular chi- square and histogram difference (inter-
gradual section) metrics. Histogram metrics produce the best results

Fig. 3. Test metric behavior during a “typical” gradual transition when computed for blocks, rather than globally. Among the
statistic-based metrics there are several good choices, likeli-
Table 6. Comparison ratio for the detection of gradual transitions hood ratios and the two new metrics proposed. Again, these

are best computed at the block level. Pixel difference met-
rics produce the best results when computed globally, the
r — fade-outs and fade-ins 75.2 87.8 96.5 94.9 943 91.4 848 best being the inner product of images. In general, 6-bit
r — dissolves 67.9 69.8 832 857 837 76.2 67.1 color-coded images did not improve the performance of the
metrics over the grayscale case. The overall best for abrupt
cut detection are the statistic-based metrics computed at the
rics do not perform well, the exception being the summedblock level. - . _ .
pixel difference,As. The metrics were tested using DC images that are used in

Due to the difficulty in detecting gradual transitions, MPEG sequences. The histogram- and statistic-based metrics
more complex methods have been applied to detect thenflegrade in performance when applied to DC images, with
During a gradual transition, the metrics generally exhibit athe exception of the Kolmogorov-Smirnov metric, and the
slight increase that is sustained over multiple frames, as ilPixel difference metrics improve in performance.
lustrated in Fig.3. Zhang et al. [16] applied an approach  To detect gradual shot boundaries the statistic-based met-
called twin- comparison to detect these changes. This wa§Cs are clearly the best. A simple thresholding of these met-
accomplished by comparing the metxi¢to a low threshold. ~ fics produced a fairly low error probability. A relative com-
Then, if this threshold was exceeded, the values®fol- parison of the metrics before and during gradual transitions
lowing it in the sequence were summed. If the accumulatedndicates a good response of the metrics to fades and dis-
value exceeded a second threshold, the sequence was labeR@IVes.
as a gradual transition. Any of the test metrics presented can
be applied in this manner. )

Using the twin-comparison and related approaches, gradppendix A
ual transitions are not detected based on an absolute thresh-
old, but by locating a sustained increase of the metric thaf’roof
occurs during the transition. For reliable detection, the metricShow the equivalence of the metrics in Egs. 4 and 5.
values during the transition must be sufficiently large relative
to the values neighboring the transition. It was determinedShOW that
which metric values exhibited the largest relative increase S min[h; (i), by, (0)]
during gradual transitions. This was accomplished by comd =1— == , =9
puting the average metric value during each transition and M
comparing it to the average value of the metric preceding _ 2_i=1 /(@) — hi(9)]

ks t A A A A2 Az

N

and following the transition (five samples directly preced- n; (AL)
ing and following each transition were used). The following T can be expressed as
ratio was computed for each of the edits:

- [ = M i minlhy (@), he@] 2)
r=te= S (22) "

€4 % &ba The numerator of Eq. A2 is the total number of intensity val-

_ B ues in the image minus the total number of intensity values
&, @and&, are the average values of the metric before/afterthat are the same. This is equal to the total number that are
and during the edit, respectively. This ratio is large for met-different, which can be written as
rics that are good for detecting gradual transitions. M ] )

All metrics were normalized for a fair comparison; met- j - > iz 1y (@) — hk(l)|' (A3)
rics with a non-zero minimum value were normalized to n;
have a minimum value of 0. The average value of the ratioT
r is shown in Table 6 for the best metrics. Global compar-
isons are used, because the block comparisons provided no
advantage. Seven metrics are shown, since they were clearly
the best. The statistic-based metrics are best for both fades
and dissolves. The summed pixel differenck, performs
well, although it was not useful for identifying abrupt cuts.

his is equivalent to Eq. 5.
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Appendix B Video database News
. Video description Frames  Shot boundaries
Action
- - CNN news 169 7

Video description Frames  Shot boundaries Plane crash newsclip 96 0

Airwolf 70 1 Reuters neyvsclips 1126 11

Barbwire movie trailer 726 175 Ron Brown’s funeral 631 24

Blade Runner 1112 21 San Jose news 1377 6

Dune movie 206 22 Singer news clip 350 0

Eraser movie trailer 997 115 Space shuttle disaster 1411 13

Independence Day 2492 97 Space shuttle . 2

movie trailer Endeavor astronauts

Star Trek movie 1507 40 Space station Mir 588 S

Star Wars movie 602 23 Sunrise/sunset 286 2

Starwars movie trailer 318 29 Weather satellite clips 308 0

Terminator 564 4 White House footage 131 5
Animation Sports

Video description Frames  Shot boundaries Video description ~ Frames  Shot boundaries

Anastasia movie trailer 1044 101 Basketball 487 6

Comet Animation 524 0 Hockey 205 11

Lion King movie 1390 22 Rodeo 146 3

Space animations 338 0 Skateboarding 208 6

Space probe flight 1491 9 Sky surfing 74 0

Starwars animation 424 7 Soccer 87 0

Terminator animation 331 0

Winnie the Pooh 1206 12

Note: In QuickTime movies, repeat frames were omitted.

Comedy Therefore, the total frames listed here is greater than that

Video description Frames  Shot boundaries included in results.

Friends sitcom 571 10

Ghostbusters movie 147 5

Mighty Aphrodite 1841 38 .

movie trailer Appendix C

Rockey Horror movie 407 6 ) )

Spacejam movie trailer 1079 157 Video category results — Abrupt cut comparisons
Commercial

- — - Table C.1. Category: Action. Frames: 8767. Boundaries: 595
Video description  Frames  Shot boundaries

Apple “1984” 722 27 Ae e pdp 7 ‘6@;
Cartoon ad 95 3 .
Rice Krispies 81 5 Histogram — Block
x2 55 8.2 8.2
Drama 5 5.4 8.3 7.9
- - - e 6.0 8.2 8.7
Video description Frames  Shot boundaries ks 53 8.4 9.0
A Few Good Men Movie 865 12 Statistic — Block
Alaska movie trailer 777 60 t 5.3 9.3 10.4
American President 1375 58 F 2.8 6.5 6.1
movie trailer Ay 3.6 7.6 7.4
Bed Time for Bonzo 436 15 An 3.6 6.7 7.1
Chung King movie trailer 1225 72 A1 38 7.4 7.5
Close Encounters movie 566 9 A2 42 7.4 8.1
Crossinguard movie 3038 110 Pixel difference — Global
trailer Ay 52 112 125
Crow movie trailer 1560 122 A, 55 109 12.2
First Knight movie trailer 271 15 Az 6.7 119 14.2
Jamaica 115 2 vy 52 109 12.0
My Left Foot 449 14 Pixel difference — DC Image
movie trailer ¥ 3.2 6.9 6.5
Slingblade movie trailer 1704 101
Titanic movie 1067 14
Titanic movie trailer 1210 173
Truman movie trailer 166 8

Xfiles trailer 429 20
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Table C.2. Category: Animation. Frames: 6495. Boundaries: 133

Ae Pe pfa@
min  pg = 0.9

Histogram — Block

X2 26 2.9 4.4
19 2.7 2.9 4.4
«a 2.6 2.8 4.2
ks 2.9 3.2 4.5
Statistic — Block

t 2.3 3.0 4.1
F 1.2 2.8 2.9
Au 1.3 1.7 2.5
An 2.0 3.0 3.5
A1 1.1 1.8 1.7
A2 1.1 2.1 2.2
Pixel difference — Global

A 12 4.0 3.6
A, 09 2.9 1.7
Az 4.2 10.0 10.7
ot 0.8 2.3 1.6
Pixel difference — DC Image
o 0.8 2.1 1.4

Table C.3. Category: Comedy. Frames: 3400. Boundaries: 2

Ae Pe pfa@
min  pg =09

Histogram — Block

X2 34 4.9 3.0
1) 32 4.8 29
o 5.0 49 3.1
ks 25 4.6 25
Statistic — Block

t 25 4.8 25
F 2.1 4.6 2.7
Avw 1.9 3.3 1.7
An 2.0 3.7 21
A1 20 3.3 2.7
Ao 22 34 29
Pixel difference — Global

A; 18 5.3 4.5
A, 16 5.4 2.9
Az 25 7.3 5.1
vy 1.7 5.4 3.2
Pixel difference — DC Image
v 0.9 3.8 15

Table C.4.Category: Commercial. Frames: 844. Boundaries: 23

Ae Pe pfa@
min  pg =09

Histogram — Block

X2 6.2 5.8 2.8
6 6.1 6.2 2.8
o 5.7 5.7 2.8
ks 5.1 5.0 3.7
Statistic — Block

t 4.9 4.6 4.0
F 5.1 5.0 1.3
Auw 4.8 5.8 2.9
An 4.8 6.5 4.5
A1 49 5.0 1.2
A2 5.0 5.0 1.2
Pixel difference — Global

A; 63 5.6 2.6
A, 6.6 5.6 2.6
Az 67 120 15.2
vy 45 3.7 3.0
Pixel difference — DC Image
y 3.9 3.7 5.6

Table C.5. Category: Drama. Frames: 11321. Boundaries: 550

Ac Pe Pfa @
min  pg = 0.9

Histogram — Block

X2 33 4.7 3.2
1) 3.2 4.7 3.1
a 3.9 4.7 3.0
ks 2.8 4.4 3.0
Statistic — Block

t 2.8 4.9 3.4
F 2.2 3.9 2.7
A 2.0 4.0 2.3
An 2.1 3.9 2.6
A1 2.1 3.8 2.5
A2 2.0 3.6 25
Pixel difference — Global

A 4.0 9.3 10.0
A, 3.4 8.1 7.8
Az 35 8.6 7.8
~ 2.4 6.1 4.3
Pixel difference — DC Image
~ 1.6 4.7 3.4

Table C.6. Category: News. Frames: 5106. Boundaries: 42

Ac Pe pfa@
min  pg = 0.9

Histogram — Block

X2 31 3.3 0.1
1) 3.1 3.5 0.1
«a 3.1 3.9 0.1
ks 27 2.8 4.7
Statistic — Block

t 0.7 1.3 1.5
F 0.2 1.5 0.6
Ay 01 0.3 0.3
A 04 0.8 0.7
A1 03 2.0 0.7
A2 03 15 0.5
Pixel difference — Global

A1 03 1.1 0.6
A, 03 1.8 0.2
Az 2.2 5.0 3.6
v 05 11 1.1
Pixel difference — DC Image
~ 0.5 0.9 1.2

Table C.7.Category: Sports. Frames: 1375. Boundaries: 21

Ae Pe Pfa @
min  pg =0.9

Histogram — Block

X2 13 4.2 15
1) 1.6 5.7 1.2
«a 1.5 5.5 15
ks 1.4 5.5 2.0
Statistic — Block

t 1.1 4.0 2.0
F 3.3 7.3 5.2
A 07 25 15
An 1.8 5.7 1.8
A1 3.2 5.2 5.1
Ao 3.4 5.3 5.5
Pixel difference — Global

A, 3.6 100 17.6
A, 1.1 2.9 1.9
Az 6.2 111 22.6
5 1.7 3.3 1.7

Pixel difference — DC Image
~ 0.9 35 2.0

45
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