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Abstract
Compared to generalized object detection, research on small object detection has been slow, mainly due to the need to learn 
appropriate features from limited information about small objects. This is coupled with difficulties such as information loss 
during the forward propagation of neural networks. In order to solve this problem, this paper proposes an object detector 
named PS-YOLO with a model: (1) Reconstructs the C2f module to reduce the weakening or loss of small object features 
during the deep superposition of the backbone network. (2) Optimizes the neck feature fusion using the PD module, which 
fuses features at different levels and sizes to improve the model’s feature fusion capability at multiple scales. (3) Design 
the multi-channel aggregate receptive field module (MCARF) for downsampling to extend the image receptive field and 
recognize more local information. The experimental results of this method on three public datasets show that the algorithm 
achieves satisfactory accuracy, prediction, and recall.

Keywords Small object detection · Multi-scale feature fusion · Downsampling

1 Introduction

Cameras have been among the most widely used devices 
in various industries and households, such as surveillance, 
transportation, medicine, drones, and autopilot. With the 
rapid development of science and technology, more and 
more picture materials for UAV aerial photography are 
available, which stimulates the development of UAV aerial 
photography image processing. However, the large scale, 
dense, overlapping small targets and uneven distribution of 
variable targets in UAV aerial images bring more difficul-
ties and challenges to UAV image detection. Nowadays, 
the combination of object detection and deep learning 
techniques [1, 2] for UAV aerial images has become a 

hot research direction. Since object detection entered the 
deep learning era, the development of CNNS-based algo-
rithms has mainly been in two directions: two-stage and 
one-stage algorithms. Common two-stage algorithms such 
as R-CNN (region-based convolutional neural network) 
[3], Fast R-CNN series [4], Faster R-CNN series [5], etc. 
The R-CNN network predicts the feature maps in the last 
layer of the neural network. Due to the lack of fine-grained 
feature information in a single feature map, the standard 
R-CNN that outputs a single feature map is less effective 
in small object detection as the number of network layers 
deepens. To find a representation of multi-scale feature 
maps, Wang et al. [6] utilized the residual connection 
autoencoder multi-scale structure to address different scale 
targets. Based on the existing Faster R-CNN, Jakaria Rabbi 
et al. [7] used a dense residual block (RRDB) for image 
enhancement of multi-scale feature maps to achieve good 
small object detection. Due to the limitations of single-
scale features, multi-scale feature fusion is getting more 
and more attention from academia and industry, and it 
has been proven effective in small object detection. These 
multi-scale feature fusion algorithms are also widely used 
in one-stage algorithms. Common one stage algorithms 
include SSD [8], YOLO [9], YOLOv3 [10], etc. SSD net-
work uses a multi-scale feature mapping map to process 
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feature information at different scales and Single Shot 
Detection to encapsulate localization and detection in the 
network’s forward operation to increase the operation’s 
speed.YOLOv3 combines FPN [11] proposed a real-time 
object detector, and the network better retains the infor-
mation of various scale objects by the form of a feature 
pyramid. To summarize, the two-stage algorithm first 
needs to generate a candidate bounding box with a neural 
network to reduce the number of regions to be detected. 
Then, it performs the detection, which has high accuracy 
but is unsuitable for mobile deployment due to the slow 
detection speed. One-stage algorithms aim to simplify the 
detection task by extracting features directly in the net-
work to predict the classification and location of objects. 
Although early one-stage algorithms did not have the same 
detection accuracy as two-stage algorithms, they are more 
suitable for mobile deployment due to their faster detec-
tion speed and ease of training. However, with the rapid 
development of one-stage algorithms, more breakthroughs 
in detection accuracy have occurred. Especially based on 
the improvement of the YOLO algorithm, the one-stage 
algorithm is comparable to the two-stage algorithm in 
terms of precision, recall, and other indicators.

The most popular YOLO series algorithm is the recently 
released YOLOv8 [12]. YOLOv8 consists of three main 
parts: the backbone, the neck, and the head parts. The back-
bone part is mainly used for feature extraction, the neck is 
used to enhance the feature information, and the head is 
used for detection. The algorithm comprehensively improves 
the detection accuracy of all sizes in general-purpose target 
detection. Furthermore, YOLOv8’s feature fusion at the neck 
is improved by FPN and PANet [13], which enhances the 
information at different scales by continuous up-sampling 
and down-sampling. However, the model has obvious draw-
backs for small object detection: (1) the shallow information 
it extracts at the backbone is not significant enough. The 
feature information is easily lost after the backbone part is 
computed. It is not enough to participate in and support the 
calculation of the neck part, especially for small objects in 
complex scenes, repetitive overlapping, and other problems, 
which makes it particularly difficult to extract features. (2) 
Although the neck part can enhance the information of dif-
ferent scales, it lacks the multi-level fusion of information 
in cross-scale feature fusion and does not sufficiently fuse 
cross-level information. The lack of mutual learning between 
shallow semantic information and high-level semantics is 
one of the reasons why YOLOv8 is not effective in small 
object detection. Therefore, we are inspired by GENERAL-
IZED-FPN to introduce log_2n-link between backbone and 
neck. It aims to enhance the learning between shallow and 
advanced semantic information. This method can effectively 
solve the problem of YOLOv8 lacking cross-scale informa-
tion fusion.

In order to solve the above problems, we propose a detec-
tor named PS-YOLO, a model that can better extract small 
object feature information, fully integrate cross-scale fea-
ture information, and improve the efficiency of small object 
detection. The main contributions of this paper are sum-
marized as follows:

• The traditional C2f module is reconstructed to reduce 
the redundant computation to efficiently extract spa-
tial features and reduce the loss of shallow information 
extracted by the backbone.

• Optimized the traditional feature extraction method by 
globally fusing multi-level features, fusing and extracting 
feature information across space. The fused information 
is injected to a higher level, enriching each scale map’s 
feature information. It effectively solves the problem of 
losing low-level semantic details through a series of con-
volutions, causing the small object information features 
to be lost and decreasing detection accuracy.

• Multi-channel aggregated receptive field module 
(MCARF) is designed, a new downsampling module that 
replaces the traditional Conv module (CBS). MCARF 
aggregates the receptive fields of multiple channels to 
enhance the mutual learning between convolution and 
expand the image’s receptive field.

• The present method has been experimentally validated 
several times on the publicly available and authoritative 
small object datasets VisDrone and TinyPerson. On the 
VisDrone dataset, ViSDrone (PS-YOLO-N) improves 
4.1% and 2.5% on mAp50 and mAp50-95, respectively, 
compared to the baseline model (YOLOv8-N). On the 
TinyPerson dataset, it improved by 1.16% and 0.48% in 
the same comparison, respectively. In addition, to vali-
date the model’s generalization performance, we also 
conducted experiments on PASCAL VOC, a publicly 
available dataset containing various scales. We improved 
by 1.4% and 1.8% in the same comparison. Finally, we 
also provided five models N/S/M/L/X for different real-
world scenarios and introduced GradCAM visualization 
to explain the present method’s effectiveness.

2  Related work

2.1  Deep learning‑based small object detection 
algorithms

The definition of a small object in the COCO dataset is an 
object of 32 × 32 pixels, which is the absolute definition. 
However, in practice, other datasets have their definitions, 
such as objects occupying 5–10% of the image size. Small 
object detection is usually missed or misdirected because 
of the limited information provided in the input image, the 
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tendency to lose information after overlaying the network 
depth, and the limited information on the fused features. 
In recent years, many researchers in the field of small 
object detection have attempted to introduce deep learning 
techniques into small object detection tasks and have con-
ducted many related studies. For example, researchers have 
improved the efficiency of small object detection by study-
ing backbone networks: CNNs [14–16] structures, Trans-
former [17, 18] structures (e.g., ViT and derivative algo-
rithms), CNNs combined with Transformer structures [19, 
20], etc. The emergence of Transformers and their excellent 
performance in computer vision has gradually motivated 
researchers to move from CNN-based or hybrid systems to 
vision systems based entirely on Transformers. The emer-
gence of Transformers and their outstanding performance 
in computer vision has gradually motivated researchers to 
move from CNN-based or hybrid systems to vision systems 
based entirely on Transformers, which are capable of captur-
ing long-term dependencies in the data, with the advantage 
of being virtually free of inductive bias to make the mod-
els more flexible and adaptable to large amounts of data. 
Researchers have applied Transformer and various variant 
architectures to small object detection tasks, i.e., ViT and 
derived algorithms [21, 22], and have also achieved excel-
lent performance. However, they still fall short compared to 
one-stage models based on CNNs. With the prevalence of 
one-stage models for object detection and inspired by other 
tasks in computer vision [23–26], models such as YOLOv5, 
YOLOv6, MAF-YOLO, YOLO-World, and Q-YOLO have 
been successively proposed [27–31]. Small object detection 
models based on one-stage architectures usually accomplish 
detection in a single forward propagation, which is more 
suitable for mobile deployment due to their relatively sim-
ple design and easier training process. The emergence of 
DETR [32] and DINO [33] has also motivated more CNNs 
to incorporate the Transformer structure. In this aspect of 
the research, these models first use CNN to extract the base 
features, flatten and then add positional encoding to get the 
sequence features, and then feed into the Transformer to do 
relationship modeling, and finally use the bipartite graph 
matching algorithm (Hungarian algorithm) to calculate the 
relationship between the prediction and the ground truth 
for the best match between prediction and ground truth. 
Although the performance of CNNs like DETR and DINO 
combined with the transformer structure is remarkable, the 
discrete type of Hungarian algorithm and the randomness 
of model training lead to the computation of ground-truth 
matching becoming an unstable process. This model type 
has a significant disadvantage: (1) Generally, it takes longer 
training time to reach convergence. (2) Regarding perfor-
mance, DETR is compared to faster rcnn YOLO detection. 
Although it can achieve better detection of large objects, 
its performance is unsuitable for small object detection. In 

contrast, researchers widely use and study one-stage model 
detectors for their excellent performance.

2.2  Evolution of the feature pyramid

PANet enhances the entire feature hierarchy by augmenting 
bottom-up path features with accurate localization informa-
tion in the lower layers. This structure shortens the infor-
mation path between lower and higher-level features. It has 
been shown to enhance feature propagation and encourage 
information reuse, thus improving the expressiveness of the 
feature pyramid. Since its introduction to address the prob-
lem of hierarchical feature fusion in convolutional neural 
(CNNs), FPN has effectively enhanced problems in object 
detection tasks, enhancing the ability to detect objects at dif-
ferent scales. However, as the FPN structure loses too much 
information when transmitting information, YOLOv5 and 
YOLOv8 are inspired by both and combined into the FPN-
PANet structure for multi-scale feature fusion at the neck, 
which enhances the fusion and mutual utilization of feature 
information at different scales. Researchers have extensively 
studied various efficient feature fusions in the past few years. 
Bidirectional FPN (BiFPN) [34] proposes a weighted bi-
directional feature pyramid network and a hybrid scaling 
method that learns the importance of different feature maps 
by introducing learnable weights, which is a simple and effi-
cient weighted bi-directional pyramid network. GENERAL-
IZED-FPN [35] observed that previous FPN structures only 
focus on feature fusion and lack internal links. Therefore, a 
new path fusion, including jump layers and cross-space scale 
features, is proposed, reducing the gradient vanishing at the 
neck of the CNNs structure. Inspired by GENERALIZED-
FPN, we introduce the log2n − link method to improve the 
feature fusion in the neck of YOLOv8. The purpose is to 
allow more features to learn from each other and improve the 
multi-scale feature fusion capability of the model.

3  Method

As shown in Fig. 1, we optimize and improve the YOLOv8 
network to obtain a high-mAP network named PS-YOLO, 
which: (1) Reconstructs the C2f module to enrich the gradi-
ent flow of the model. It enhances the ability to express fea-
tures through dense and residual structures and mitigates the 
problem of small object features weakening or disappearing 
with frequent downsampling. (2) Feature fusion is applied to 
the neck part using the log_2n-link method, which can learn 
more shallow semantic information compared to YOLOv8 
by skipping the layer-linking feature information collection 
and, at the same time, enhance the relationship between the 
low-level semantic information and high-level semantic 
information. (3) The C2f module is reconstructed to enrich 
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the gradient flow of the model. Information and high-level 
semantic information. This method can effectively reduce 
the heavy "giraffe" neck gradient disappearance in the previ-
ous YOLO series detectors. (4) A multi-channel aggregated 
receptive field module (MCARF) is proposed, which forms 
a new backbone with the reconstructed C2f module. This 
module can effectively aggregate the feature information of 
multiple channels and enhance the mutual learning between 
multiple-channel convolutions. It recognizes more effective 
local information and substantially improves the model’s 
understanding of complex scenes.

3.1  Enrichment of gradient flow: introduction 
of the PD module

Compared with YOLOv5, YOLOv8 replaces the C3 mod-
ule of v5 with the C2f module in the backbone part based 
on the CSPNet idea. However, we found that the C2f 
(shortcut) module is ineffective in enriching the gradient 

flow information with the stacking of backbone network 
depth in the case of limited image resolution. The speed 
of extracting features is restricted due to frequent memory 
accesses. To address this problem, we combine partial con-
volution (PConv) [36] and distribution shifting convolution 
(DSConv) [37], named power detection (PD) module, as 
shown in Fig. 2, in an attempt to reduce redundant compu-
tations while speeding up feature extraction and enriching 
the gradient flow of the model. Because the feature maps 
have high similarity across channels, PConv applies the 
regular Conv module to a portion of the input channel for 
spatial feature extraction. For successive memory accesses, 
it computes the first or last Cp channel to represent the entire 
feature map while keeping the remaining channels constant. 
DSConv reduces memory usage through variable quantized 
kernel (VQK) and distribution shifts VQK. VQK is a quan-
tized component of DSConv that allows faster multiplica-
tions to be performed. Our proposed PD module, which tries 
to mimic the original convolutional kernel’s distribution, 

Fig. 1  Optimization techniques used in the PS-YOLO structure. 
Instead of the original backbone, a new feature extraction network 
is constructed to capture effective feature information and output 
it by utilizing the multi-channel aggregate receptive field module 

(MCARF) and power detect (PD) module. The log2n − link method 
(red arrow in the neck part) is introduced to construct a new feature 
fusion network instead of the original neck layer. The blue circled 
module is the original structure (color figure online)
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can perform faster and memory-efficient multiplications. It 
is also able to reduce redundant computations and allow 
feature information to flow through all channels, enriching 
the gradient flow of the model. The expression for the PD is 
calculated by the following formula:

where the input is Fin , we process the input first through 
PConv2d and then using DSConv (including DSConv2d, 
BatchNorm2d, SiLU). Then, we use the PD module to 
replace the Conv module (CBS) in the Bottenneck module, 
called the Bottleneck Power Detect module(Bottleneck_PD ), 
as shown in Fig. 3. The following formula calculates the 
expression for the Bottleneck_PD:

where we use a 3 × 3 convolutional kernel with a step size 
of 1 for the PD module to process Fin twice consecutively, 
and finally use residual connections to connect Fin and enrich 
the gradient flow. Finally, we use the PD module to replace 
the Conv module (CBS) in C2f, called CSPDarkNet Power 
Detect Module(C2f_PD (shortcut)), as shown in Fig. 3. C2f_
PD (shortcut) can perform faster multiplication via VQK, 
enriching the gradient flow and mitigating the loss of feature 

(1)DSConv = SiLU(BatchNorm2d(DSConv2d(Fin)))

(2)PD = DSConv(PConv2d(Fin))

(3)Bottleneck_PD = Fin + PD3×3(PD3×3(Fin)),

information. The expression for the C2f_PD is calculated by 
the following formula:

where the input image Fin is processed by the PD module 
of the 1 × 1 convolution kernel, split into the duplicate three 
copies, and the outputs are A, B, K0 . A and B are received 
directly through the Concat, and K0 is processed recur-
sively through N Bottleneck_PDs(N ∈ (1, 2,…) ), and each 
time it is processed, it is added to the Concat. Finally, it 
is processed using the PD module of the 1 × 1 convolution 
kernel. It is processed to output. Assuming the number of 
original input channels is E, the total number of channels 
after production is 0.5 × (n + 2) × E . Compared with C2f 
(shortcut), C2f_PD (shortcut) reduces redundant computa-
tion and frequent memory interrogation, enhances the ability 
to express features through dense and residual structures, 
and enriches the gradient flow of the model by linking more 
cross-layer branches, alleviating the problem of small object 
features that are weakened or disappeared with frequent 
downsampling.

(4)A,B,K0 = Split(PD1×1(Fin))

(5)KN = Bottleneck_PD(KN−1)

(6)C2f_PD = PD1×1(Concat(A,B,D1,D2,… ,DN))

Fig. 2  Architecture used by the 
PD module. Where the inputs 
reduce sequential memory 
accesses through PConv and 
allow feature information to 
flow through all channels. 
Finally DSConv is used to 
perform faster multiplication 
and enrich the gradient flow of 
the model

Fig. 3  C2f_PD’s structure. Inputs speed up feature extraction by using the Power Detect module. Separation enhances the characterization 
through dense and residual structures that are able to enrich the gradient flow of the model
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3.2  Multi‑scale head‑based feature fusion 
optimization

Multi-scale head detection is used in YOLOv8, as in Fig. 4a, 
which is capable of detecting images of various sizes. It 
extracts features by collecting important information from 
each previous layer. However, we observed that YOLOv8 does 
not capture feature information of small objects well when col-
lecting large-scale feature maps. It is less efficient in dealing 
with the neck region because it cannot effectively deal with 
high-level and low-level information, leading to easy gradient 
vanishing problems, especially in the collection of cross-scale 
feature information. For example, Fig. 4a, layer C1 collects 
features from L4 . But if layer C1 wants to use the features of 
layer L3 , layer C1 can only call the feature information of layer 
L4 recursively. Similarly, if the C4 layer wants to use the feature 
information of C1 and L4 , it can only call the feature infor-
mation of other layers. This invocation may lead to the loss 
of information during the computation process and does not 
fully fuse the low-level semantic information, so the overall 
effectiveness of information fusion is relatively inefficient. In 
order to effectively achieve the goal of sufficient multi-scale 
information exchange, we are inspired by GENERALIZED-
FPN and introduce log_2n-link to improve the feature fusion 
method, as shown in Fig. 4b. The use of the log2n − link fea-
ture fusion method reduces the gradient vanishing from the tra-
ditional “giraffe” neck. It can meet the challenge in large-scale 
change scenarios with small object datasets, ensuring that the 
model can effectively exchange high-level and low-level infor-
mation. We use the PD module to capture the feature informa-
tion of layer Li and layer C1 in Fig. 4b, and the expression for 
the Li is calculated by the following formula:

(7)Li = C2f (Conv3×3(Li−1)) (i = 2, 3, 4)

where Li represents the ith downsampled backbone layer in 
Fig. 4. Then, we fuse the information features of different 
layers and the same scale. We fuse the feature information 
of SPPF, L4 layer, and L3 layer processed by the PD module 
in C1 layer.The expression for the C1 is calculated by the fol-
lowing formula:

where SPPF is the original structure of YOLOv8,Ci denotes 
the Concat layer(i ∈ (1, 2, 3, 4) ). We processed the L3 layer 
using a 3 × 3 convolutional kernel with a PD of step size 2. 
The feature information of the L3 layer is halved in height 
and width and added to the concat layer along with SPPF, 
L4 . Then we fuse the feature information of C1 , L3 layer, and 
L2 layer processed by the PD module in the C2 layer. The 
expression for the C2 is calculated by the following formula:

We use a 3 × 3 convolutional kernel with a step size of 2 for 
PD to capture the feature information of the L2 layer. Then, 
we fuse the feature information of layer C3 , SPPF, layer L4 
processed by the PD module, and layer C1 processed by the 
PD module at layer C4.The expression for the C4 is calculated 
by the following formula:

Finally, the C1 , C3 , and C4 layers are sent to the detec-
tion head for detection. The improved feature fusion path 
can effectively accept feature information at more scales.
Moreover, the dense information is shared at different spatial 
scales and non-adjacent latent semantic levels and fused for 
mutual learning. It allows the model to have shallow spatial 
information and high-level semantic information of the same 

(8)C1 = Concat(SPPF, L4,PD3×3(L3))

(9)C2 = Concat(C1, L3,PD3×3(L2)).

(10)C4 = Concat(C3, SPPF,PD3×3(L4),PD3×3(C1))

Fig. 4  (a) The traditional skeleton and neck feature fusion path 
of YOLOv8, where SPPF is the original structure of YOLOv8. 
(b) is the improved skeleton and neck feature fusion path, where 
the orange module is the power detect (k = 3, s = 2) module. The 
improved feature fusion path can effectively accept feature informa-

tion at more scales and improve the learnability and stability of the 
network. Where (a), (b) in the figure Li denotes the downsampling 
layer,i ∈ (1, 2, 3, 4, 5) , and Ci denotes the Concat layer, i ∈ (1, 2, 3, 4) 
(color figure online)
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importance at the neck, effectively solving the problem of 
low-level semantic information being lost through a series of 
convolutions resulting in the loss of small object information 
features. At last, it also ensures the feature information of 
normal-sized objects, thus avoiding the problem of informa-
tion loss and improving the learnability and stability of the 
network.

3.3  Multi‑channel aggregate receptive field module

In recognition of small objects in complex scenes, small objects 
are prone to overlap each other, occlusion, dark environment, 
and other problems. It is challenging to gather information from 
multiple channels so that we can learn from each other during 
the training process. More obvious feature deviations lead to 
more difficulty recognizing partial information. In order to solve 
the above problems, we designed the multi-channel aggregated 
receptive field module (MCARF), as shown in Fig. 5, to replace 
the traditional Conv module (CBS). Based on guaranteeing the 
detection effect of the baseline, it can effectively aggregate the 
feature maps of over channels to learn from each other and solve 
the feature bias problem. Depthwise over-parameterized con-
volutional (DOConv) [38] uses multi-layer composite linear 
operation that can be collapsed into a compact single-layer rep-
resentation after the training stage, which not only accelerates 
the training of the model but also continuously improves the 
performance of the converged model. We, therefore, perform 
additional pooling on the feature maps of DSConv, PConv, and 
DOConv by retaining their processed feature maps, respectively. 
The receptive fields of each channel are enhanced as much as 
possible in different degrees, and finally, the number of chan-
nels is merged. First, we split the dimension of the input image 
into thirds and assume that the number of channels is all E1 , 

respectively input1 , input2 , input3 , which is calculated by the 
following formula:

The input1 is passed through DSConv, then PConv is used 
to reduce the redundancy calculation, and then Maxpool is 
used to increase the receptive field. The number of output 
channels is output1 of E2 , which is calculated by the follow-
ing formula:

The input2 is processed using a 1 × 1 DOConv to add learn-
able parameters. Then, the redundant computation is reduced 
by PConv processing. Finally, the fully connected layer is 
replaced by AdaptiveAvgPool processing. The number of 
output channels is output2 of E2 , which is calculated by the 
following formula:

The input3 input is processed using a 3 × 3 convolution kernel 
with a step size 2 for DSConv. The number of output channels 
is E2 for output3, which is calculated by the following formula:

Concentrating more attention on large-scale feature maps 
further reduces the loss of feature information. Finally, the 
features extracted from the three outputs are concatenated 
and used in Conv (CBS module). The number of converted 
channels is E2 , the output output, which is calculated by the 
following formula:

(11)input1, input2, input3 = Split(input).

(12)
output1 = MAXPOOL

(

PConv2d
(

DSConv1×1(input1)
))

.

(13)
output2 = ADAPTIVEAVGPOOL

(PConv(DOConv1×1(input2))).

(14)output3 = DSConv3×3(input3).

Fig. 5  Structure of multi-channel aggregate receptive field module 
(MCARF). We process the input through three different convolutions 
of three channels to get three outputs with the same aspect and num-

ber of channels. Then the three outputs are merged, and finally the 
number of channels is changed to one-third of the original merged 
output by the CBS (Conv) module
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We use the Conv module (CBS) to convert the number of feature 
channels. The number of channels before conversion is 3 × E2 , 
and the number after conversion is E2 . The advantage of doing 
so is that it gathers feature information from multiple channels 
and enhances mutual learning between numerous channel con-
volutions. Resolve the feature bias in the fusion process and 
recognize more local information. This helps to improve the 
model’s ability to understand complex scenes.

4  Experiments

4.1  Datasets

In this study, the detection performance of the proposed 
model is evaluated on two public UAV datasets and a pub-
licly available generalized object detection dataset. The 

(15)output = Conv1×1
(

Concat(output1, output2, output3)
)

. proposed method is compared with existing classical object 
detection algorithms to demonstrate its superiority.

• The VisDrone2019 [39] dataset is collected by the 
AISKYEYE team at the Machine Learning and Data 
Mining Laboratory of Tianjin University. where the 
target size ranges from 12–4002 pixels, with an une-
ven distribution of target sizes at different scales. The 
dataset includes over 250 video clips, 25,000 frames, 
and 1000 still images. It covers a wide range of sce-
narios, including complex environments (from urban 
and rural areas), different locations (from 14 different 
cities in China), and so on. The dataset contains ten 
classes (pedestrians, people, cars, vans, buses, trucks, 
automobiles, bicycles, shade tricycles, tricycles). 
Some critical attributes, including scene visibility, 
object class, and occlusion, are also provided for bet-
ter data utilization.

Table 2  Comparison of 
detection performances of 
different methods on the 
TinyPerson dataset

Bold values highlight the performance of PS-YOLO across five different real-world scenarios: N, S, M, L, 
and X. PS-YOLO demonstrates superior performance metrics, such as mA50 and mAP50-95, compared to 
other models within the same scenarios

Method Backbone mAP50 (%) mAP50-95 (%) P R

YOLOv3-Tiny DarkNet53 10.07 3.87 27.54 10.25
YOLOv3-Spp DarkNet53 19.30 6.93 40.30 18.60
YOLOv3 DarkNet53 18.80 7.04 37.40 18.60
YOLOv5-N CSPDarkNet 14.70 5.18 30.20 16.70
YOLOv5-S CSPDarkNet 17.80 6.42 37.20 18.20
YOLOv5-M CSPDarkNet 19.20 6.95 35.10 20.10
YOLOv5-L CSPDarkNet 18.40 6.59 34.70 18.90
YOLOv5-X CSPDarkNet 18.70 6.77 36.30 19.40
YOLOv6-N EfficientRep 14.78 5.28 31.43 17.00
YOLOv6-S EfficientRep 16.30 5.80 33.60 17.50
YOLOv6-M EfficientRep 13.60 4.72 27.50 16.00
YOLOv6-L EfficientRep – – – –
YOLOv6-X EfficientRep 10.80 3.99 25.10 14.70
YOLOv8-N CSPDarkNet(C2f) 16.74 5.95 29.34 19.91
YOLOv8-S CSPDarkNet(C2f) 17.50 6.19 35.60 18.30
YOLOv8-M CSPDarkNet(C2f) 19.20 6.73 32.10 20.70
YOLOv8-L CSPDarkNet(C2f) 18.50 6.59 35.70 19.30
YOLOv8-X CSPDarkNet(C2f) 19.20 6.69 34.30 20.30
PS-YOLO-N (Ours) 17.90 6.43 33.40 19.60
PS-YOLO-S (Ours) 17.70 6.40 33.10 18.70
PS-YOLO-M (Ours) 19.60 7.30 38.20 19.70
PS-YOLO-L (Ours) 19.70 7.19 40.60 19.10
PS-YOLO-X (Ours) 19.60 7.06 36.90 20.10
YOLOv10-N – 15.20 5.26 29.60 18.70
YOLOv10-S – 17.20 6.03 34.90 19.60
YOLOv10-M – 17.70 6.33 34.00 19.90
YOLOv10-L – 16.80 5.86 33.90 19.00
YOLOv10-X – 18.00 6.28 36.80 19.60
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• TinyPerson [40] is a tiny object detection dataset pro-
posed in the context of rapid rescue. The average abso-
lute size of a person in TinyPerson is around 18 pix-
els. It can better reflect the characters in long-distance 
video surveillance scenes. Regarding the labeling rules 
of the data, TinyPerson divides people into two catego-
ries: sea person and earth person. A person in a boat, 
lying in the water, or with more than half of his body 
in the water is defined as a sea person, and the rest as 
an earth person.

• The PASCAL VOC [41, 42] dataset is used in tasks 
including, but not limited to, classification, detection, 
segmentation, action recognition, etc. PASCAL VOC 
mainly consists of two datasets, PASCAL VOC 2007 
and PASCAL VOC 2012. The pixel dimensions of its 
images vary in size, but the horizontal image is around 
500 × 375, and the vertical image is around 375 × 500, 
basically not deviating by more than 100. PASCAL VOC 
2007 contains about 2500 images in the training set, 2500 
images in the validation set, and 5000 images in the test 
set, while PASCAL VOC 2012 contains about 6000 
images in the training set and 6000 images in the valida-
tion set. We use a ratio of 13:2:5 to divide the training, 
validation, and test sets.

4.2  Implementation details

We use a batch size of 16, a total epoch of 500, a warm-up epoch 
of 3, a base learning rate of 0.01, stochastic gradient descent with 
momentum of 0.937, an SGD optimizer, and a weight decay of 
5e−4. The operating system used in this paper is Ubuntu version 
20.04.1. The system’s hardware facilities are a sheet of 24 GB 
of RAM and an NVIDIA A30 GPU. The software platform and 
version are torch 1.12.1, Python3.9.17, Anaconda, and Ultralyt-
ics 8.0.125.

4.3  Evaluation metric

The evaluation metrics used in this paper include P, R, and 
mAP (include mAP@50, mAP@[50:95]). Where P is Preci-
sion, R is Recall, and mAP is averaging the AP values for all 
categories. where these formulas can be shown as:

where APi is the AP in the ith class, and N is the total num-
ber of classes being evaluated.

4.4  Comparison with state‑of‑the‑art methods

We focus on evaluating the P, R, and mAP of our model 
on the VisDrone, TinyPerson, and PASCAL VOC datasets. 
Additionally, we uniformly do not use pre-training weights 
for a fair comparison. To test and compare metrics in the 
same environment, we use batch size = 1 for the evaluation 
of four metrics on the test set.

Table 1. shows the results of PS-YOLO in VisDrone 
compared to other state-of-the-art single- and two-stage 
object detectors. Our PS-YOLO-N achieves 4.1%, 5.6%, 
4.9%, and 12.3% improvement in mAP50 compared to the 
mAP50 of the same type of YOLO detectors, YOLOv8-N, 
YOLOv6-N, YOLOv5-N, and YOLOv3-Tiny, respectively. 
Compared with the mAP50 of the one-stage detector SSD, 
there is a substantial improvement in detection accuracy. 

(16)Precision =
TP

TP + FP

(17)Recall =
TP

TP + FN

(18)mAP =
1

N

N
∑

i=1

APi

Fig. 6  Comparing the training 
set on VisDrone with the train-
ing set of N models of other 
YOLO detectors with respect to 
the change curve of mAP50, our 
model far exceeds the N models 
of other YOLO detectors
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PS-YOLO-N achieves 11.1%, 6.1%, and 3.3% improvement 
compared with the mAP50 of the two-stage detectors Effi-
cientDet, Retinanet, and Centernet, respectively. In addition 
to this, we also compared it with the state-of-the-art detec-
tor—YOLOv10 [43]. mAP50 of PS-YOLO-N is improved 
by 5.2% compared to YOLOv10-N. Our S/M/L models 
for different practice scenarios also achieve different lev-
els of improvement. Furthermore, we also compared the 
previously described metrics and FPS and Latency of all 

single-stage detectors in this dataset. Although the FPS and 
Latency of PS-YOLO showed a small decrease compared 
to baseline, the mAP50 of PS-YOLO-X was 1.8%, 2.9%, 
1.7%, and 2.0% higher than that of the same-type YOLO 
detectors YOLOv8-X, YOLOv6-X, YOLOv5-X, YOLOv3 
by 1.8%, 2.9%, 1.7%, and 2.2%, and the evaluation indexes 
P and R of PS-YOLO-X were superior to other YOLO detec-
tors of the same type, and PS-YOLO-X achieved a 3.4% 
improvement in the mAP50 compared to the mAP50 of the 

Table 3  Comparison with other 
YOLO detectors on PASCAL 
VOC

Bold values highlight the performance of PS-YOLO across five different real-world scenarios: N, S, M, L, 
and X. PS-YOLO demonstrates superior performance metrics, such as mA50 and mAP50-95, compared to 
other models within the same scenarios

Method Backbone mAP50 (%) mAP50-95 (%) P R

v3-Tiny DarkNet53 70.8 45.0 73.0 65.2
v3-Spp DarkNet53 84.9 66.8 82.2 78.6
v3 DarkNet53 84.5 66.1 83.0 77.8
YOLOv5-N CSPDarkNet 76.9 55.6 78.4 69.4
YOLOv5-S CSPDarkNet 81.3 60.4 80.9 74.2
YOLOv5-M CSPDarkNet 83.6 64.6 81.0 78.6
YOLOv5-L CSPDarkNet 85.1 66.8 82.6 78.8
YOLOv5-X CSPDarkNet 85.4 67.8 83.1 78.8
YOLOv6-N EfficientRep 79.4 59.7 80.7 71.0
YOLOv6-S EfficientRep 82.5 63.4 81.2 75.6
YOLOv6-M EfficientRep 83.0 64.3 82.9 75.0
YOLOv6-L EfficientRep 76.5 58.0 75.6 68.7
YOLOv6-X EfficientRep 78.0 59.5 78.3 69.6
YOLOv8-N CSPDarkNet(C2f) 78.9 58.4 79.3 72.1
YOLOv8-S CSPDarkNet(C2f) 82.0 61.8 81.4 73.3
YOLOv8-M CSPDarkNet(C2f) 82.9 65.1 81.4 77.1
YOLOv8-L CSPDarkNet(C2f) 85.1 67.6 82.9 78.9
YOLOv8-X CSPDarkNet(C2f) 85.9 68.2 83.4 78.8
PS-YOLO-N (Ours) 80.3 60.2 81.0 73.1
PS-YOLO-S (Ours) 83.5 64.1 81.3 77.8
PS-YOLO-M (Ours) 84.8 67.1 83.5 77.8
PS-YOLO-L (Ours) 85.8 68.2 83.2 79.6
PS-YOLO-X (Ours) 86.4 68.9 83.7 79.2
YOLOv10-N – 78.8 58.7 80.3 70.4
YOLOv10-S – 82.2 62.7 81.8 74.7
YOLOv10-M – 83.8 65.2 83.5 75.4
YOLOv10-L – 84.6 66.2 82.5 78.4
YOLOv10-X – 84.5 66.0 82.8 78.0

Table 4  Ablation study of 
PS-YOLOv8. The test baseline 
is the A30 assessment of 
YOLOv8-N

A B C mAP50 mAP50-95 P R

✓ 28.7 16.2 40.8 30.7
✓ 29.7 16.9 41.8 31.8

✓ 31.0 17.7 44.4 32.2
✓ ✓ 31.3 17.8 44.3 32.9
✓ ✓ ✓ 32.3 18.5 45.4 33.9
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two-stage detector, Faster-RCN. Besides, the experimental 
results show that PS-YOLO-X outperforms YOLOv10-X in 
mAP50 and mAP50-95 by 5.2%, 3.4%, and also achieves 
lower latency and higher FPS. The experimental results 
demonstrate the superior performance of the model we pro-
vide. This reflects that PS-YOLO can effectively enhance the 
sharing of dense information at different spatial scales and 
non-adjacent latent semantic levels and fuse them for mutual 
learning. Figure 6 shows the training set variation curves 
of PS-YOLO-N with YOLOv8-N, YOLOv6-N, YOLOv5-
N, and YOLOv3-tiny, and the performance of our model 
PS-YOLO-N is far superior to other detectors of the same 
type.

The results of PS-YOLO in TinyPerson compared to other 
state-of-the-art single-stage object detectors are shown in 
Table 2. Our PS-YOLO-N achieves 1.16%, 3.12%, 4.32%, 
7.83%, and 2.7% improvement in mAP50 compared to the 
mAP50 of the same type of YOLO detectors, YOLOv8-N, 
YOLOv6-N, YOLOv5-N, YOLOv3-Tiny, and YOLOv10-
N, respectively, and the PS-YOLO N’s evaluation indexes 
P and R are better than other YOLO detectors of the same 
type. Through the data in the table, we can find that the per-
formance of each series of models of PS-YOLO, YOLOv8, 
YOLOv6, YOLOv3, and YOLOv10 fluctuates on this dataset 
to a different degree. The reason is that most of the objects 
in the images of this dataset are much smaller than the 
VisDrone so that many of the detectors under-perform on 
this dataset. However, Our N/S/M/L/X models for different 
practice scenarios outperform the same type of detectors 
in all evaluation metrics. And PS-YOLO-L achieves 0.5%, 
3.4%, 0.5%, 0.4%,1.9% improvement over the mAP50 of 
the best performing YOLOv8-X, YOLOv6-S, YOLOv5-M, 
YOLOv3-Spp,YOLOv10-X, respectively. This demonstrates 

that PS-YOLO can efficiently aggregate feature information 
from multiple channels, learn from each other about them, 
and improve the model’s understanding of extreme scenes.

Besides, to test the generalization of our model, we vali-
date the generalization performance of our model on the 
generic object detection dataset PASCAL VOC 2007+2012. 
This dataset contains images of various scales, and the vari-
ous sizes of objects contained in the images are sufficient 
to test the generalization ability of our proposed model, as 
shown in Table 3. Table 3 shows the results of PS-YOLO on 
PASCAL VOC in comparison with other state-of-the-art sin-
gle-stage object detectors. By looking at the data in the table, 
we can see that our PS-YOLO-N achieves 1.4%, 0.9%, 3.4%, 
9.5%, 1.5% improvement in mAP50 compared to the mAP50 
of the same type of YOLO detectors, YOLOv8-N, YOLOv6-
N, YOLOv5-N, YOLOv3-Tiny, and YOLOv10-N, respec-
tively and the evaluation indexes P and R of PS-YOLO-N 
are better than other YOLO detectors of the same type. Our 
S/M/L models for different practice scenarios also achieve 
different degrees of improvement in all evaluation metrics. 
In addition, PS-YOLO-X achieves 0.5%, 8.4%, 1%, 1.9%, 
1.9% improvement in mAP50 with the same type of YOLO 
detectors YOLOv8-X, YOLOv6-X, YOLOv5-X, YOLOv3, 
and YOLOv10-X. The experimental results fully verify that 
PS-YOLO can improve the stability of complex scene detec-
tion with excellent generalization ability.

In conclusion, the above three experimental results show 
that PS-YOLO has the ability to far outperform the above 
object detection algorithms in terms of detection accuracy 
compared to the two-stage detector as well as other YOLO 
series detectors.

Fig. 7  Sample detection results from YOLOv3, YOLOv5-X, YOLOv6-X, YOLOv8-X and PS-YOLO-X. a VisDrone. b TinyPerson
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4.5  Ablation study

In order to validate the effectiveness of the improved 
methods, this paper conducts ablation experiments at each 
improvement on the test set in the ViSDrone dataset. To 
ensure fairness, all experiments in this paper do not use 
pre-trained weights and compare them with YOLOv8-N. In 
order to be able to systematically analyze the performance 
improvement of each unit model, we sequentially define 
the improvement model A ( C2f_PD ), the improvement 
model B ( featurefusion_PD ), and the improvement model 
C (MCARF). To ensure the authenticity of the experi-
ments, the accuracy (P), recall (R), and average precision 
(AP) are used as the evaluation metrics in this experiment. 
The test results are shown in Table 4. Improved model 
A shows that by replacing the Conv(CBS) module with 
the PD module, we can reduce the weakening or loss of 
the feature information with the depth of the network by 

enriching the flow of the information gradient. The prob-
lem of feature information being weakened or lost as the 
network depth is superimposed. Improvement model B 
indicates that the feature bias problem in the fusion pro-
cess can be effectively solved by improving the feature 
fusion part of the NECK, which improves 1.5% and 0.7% 
compared to the baseline mAP50 and mAP50-95, respec-
tively. Improvement model C marked that the improvement 
can effectively gather information features from multiple 
channels and extract more local feature information more 
effectively. The results of both Improved Model A+B are 
better than Improved Model A and Improved Model B, 
indicating that the fusion of the two modules is effec-
tive. The four evaluation indexes of the improved model 
A+B+C are all better than the improved model A+B, 
respectively. The experimental results prove the effective-
ness of each improvement measure.

Fig. 8  Neck CAM visualization
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4.6  Visualization

First of all, as shown in Fig. 7, we select the sample detec-
tion results of YOLOv3, YOLOv5-X, YOLOv6-X, and 
YOLOv8-X to compare with PS-YOLO-X. We note that 
the other detectors have different degrees of misdetection 
omission of small-size targets in small object images. Our 
method is able to reduce the false detection rate while 
improving the accuracy. The improved performance is 
mainly due to the fact that in this paper, we use the C2f 
Power Detect module, log2n − link method, and multi-
channel aggregated sensory field module, which better 
balance the feature information of different scales. It not 
only recognizes more local information but also reduces 
the possibility of interference for the target and improves 
the model’s ability to understand the complex scene.

Secondly, below are the results of CAM visualization 
of the necks of YOLOv3, YOLOv5, YOLOv6, YOLOv8, 
and our PS-YOLOv8 on the VisDrone, TinyPerson, and 
PASCAL VOC datasets as shown in Fig. 8. Our model 
assigns higher weights to the detected regions of the 
object and has fewer false detections for the background. 
We can observe that the sensitivity of the feature maps of 
the other models to object locations is gradually reduced 
or lost as the depth of the network increases and the infor-
mation interaction between different levels increases. And 

the sensitivity to non-objects is accompanied by different 
degrees of increase. Our proposed PS-YOLO-N model is 
more sensitive to object locations and does not pay much 
attention to non-objects in the region.

Finally, we provide some visual analysis of the failed 
samples of our model to guide future research. As shown 
in Fig. 9, most of the targets can be detected correctly, 
and a small number of targets are missed. This may be 
because the targets are occluded (e.g., one row and four 
columns, three rows and four columns in the figure), 
including wall occlusion, character occlusion, boundary 
occlusion, etc., so that the occluded features are lost in 
the processing. Moreover, the target pixels are too small 
or blurred, and the contextual information around these 
smaller targets is not obvious enough (e.g., four rows and 
four columns in the figure) to make the model difficult 
to understand, which is also a possible cause of missed 
detection.

5  Conclusion

In this paper, we propose a new small object detector 
called PS-YOLO for small object detection. The architec-
ture improves the C2f module, named C2f_PD , based on 
YOLOv8, proposes a new downsampling module, MCARF, 

Fig. 9  Visual analysis of PS-YOLO’s failed samples on VisDrone. Where green boxes are correct detections, red boxes are missed detections, 
and blue boxes are false detections (color figure online)
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and optimizes the traditional feature fusion method of 
YOLOv8, which is designed in such a way that the network 
can improve the model to capture the feature information of 
the small objects, fully fuses the shallow semantic informa-
tion with the high-level semantic information, and learns 
the feature information from each other. The model is not 
only suitable for small object detection but also has some 
generalization ability in publicly available comprehensive 
object detection datasets. In the future, we will construct 
models with strong robustness and generalization based on 
more aspects (e.g., loss reduction use of excellent IOUs).
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