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Abstract
An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, 
including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: 
color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is 
achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance 
visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve 
image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater 
images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its 
effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality 
of our approach.

Keywords  Weighted guided filter image fusion · Underwater image enhancement · Color correction · Local contrast 
enhancement

1  Introduction

The underwater environment differs significantly from the 
terrestrial environment, presenting complex and hazard-
ous conditions that pose considerable challenges to human 
exploration of the oceans. To deeply explore and effectively 
develop marine resources, people often rely on advanced 

underwater detection technologies, especially the application 
of underwater robots. These technologies are mainly based 
on image analysis and processing, enabling the robots to 
sense their underwater environment and accurately analyze 
and identify the target objects [1]. Underwater image pro-
cessing is an indispensable technology for people to explore 
the ocean and understand the marine environment [2]. The 
acquisition of underwater images faces many challenges, 
mainly due to the absorption and scattering of light by 
suspended particles, which results in lower-quality images 
acquired by underwater imaging equipment. On the one 
hand, the different wavelengths of light absorbed by water 
cause red and yellow wavelengths to be attenuated rapidly, 
while blue and green wavelengths travel farther, resulting 
in a blue-green tint in underwater images [3]. In addition, 
the absorption and scattering of light underwater can lead 
to degradation of image quality, including blurriness, low 
contrast, and loss of detail.

There are three main research directions for improving 
underwater image visualization: enhancement-based, resto-
ration-based, and deep learning-based methods. Enhance-
ment-based methods start from pixel intensity to improve the 
image and enhance contrast. However, serious artifacts and 
noise often exist since the specific environment underwater 
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is not considered. Recovery-based methods usually require a 
large amount of parameter estimation to construct a physical 
model of the underwater image and accurately estimate the 
parameters to achieve the effect of recovering the image. 
This process is too cumbersome and computationally inten-
sive for complex and dynamic underwater environments. 
Deep learning-based methods usually utilize an "end-to-end" 
approach to train the network to achieve image enhance-
ment. However, this method requires a large amount of data 
support and also needs to be tailored to the specific under-
water scene to design the network. Otherwise, the features 
extracted by the network will not be accurate enough.

This study aims to develop an effective underwater image 
enhancement technique for color distortion, low contrast and 
detail loss caused by underwater optical conditions. Exist-
ing underwater image enhancement methods often struggle 
to achieve both color correction and contrast enhancement 
during processing, resulting in unsatisfactory results. Spe-
cifically, many existing methods focus on optimizing one 
aspect, such as color correction or contrast enhancement, 
without considering overall image quality. In addition, some 
methods perform inconsistently when processing different 
types of underwater images, making it difficult to adapt to 
the variable underwater optical environment. Our method 
overcomes these limitations through a weighted guided filter 
image fusion strategy that enables efficient color correction 
and contrast enhancement while preserving image detail, 
resulting in higher quality underwater images.

Motivated by the aforementioned challenges, we propose a 
method based on weighted guided filter image fusion. The pro-
cess is divided into three steps: color correction, local contrast 
enhancement, and guided filter image fusion strategy. In the 
color correction stage, we first obtain the initial color correction 
results by compensating the three color channels. Secondly, 
according to the histogram distribution characteristics, we con-
struct the saturation factor for pixel redistribution to achieve the 
effect of color balance. In the local contrast enhancement stage, 
we first convert the RGB channels to CIE-LAB channels, use 
the box filter on the L channel for local contrast enhancement, 
and then use the variational model to construct the penalty 
term, which further improves the local contrast as well as the 
color saturation of the image. Finally, we use the guided filter 
for multi-scale decomposition to obtain a weighted fusion of 
the detail and base layers, which results in a high-quality image 
with rich details and colors.

In the paper, our contributions are as follows: 

(1) 	 We propose a color correction method based on atten-
uated color channel compensation with interval pixel 
reconstruction(ACPR). The method considers the char-
acteristics of underwater attenuated color channels and 
histogram distribution characteristics to solve the prob-
lem of underwater color distortion.

(2)	 We propose a local contrast enhancement method based 
on box filtering with variational modeling(BFVM). The 
method aims to improve local contrast and saturation 
by taking into account the spatial information between 
the color space and the image.

(3)	  We propose a weighted guided filter image fusion 
technique(WGIF). The method considers the effect 
of fusion layer number on metrics and computational 
efficiency and introduces gradient weights to prevent 
excessive image smoothing.

The remaining sections of this paper are structured as fol-
lows: Sect. 2 summarizes relevant methods for underwater 
image enhancement. Section 3 offers a detailed overview of 
the procedures involved in our method. Section 4 discusses 
the superiority of our method across different datasets. 
Finally, Section 5 presents the conclusion of this paper and 
outlines future work.

2 � Related work

Current underwater image enhancement techniques can be 
broadly classified into three categories: Non-physical-based 
model methods, Physical-based model methods, and deep-
learning-based methods. A detailed introduction is given below.

Physical-based model methods: Recovery-based techniques 
must rely on optical imaging models. Typically based on an 
understanding of and assumptions about the factors and con-
ditions involved in the underwater imaging process. These 
methods leverage prior knowledge to estimate and solve for 
the key parameters that affect the quality of the image. The 
Dark Channel Prior Algorithm (DCP) [4] is a typical defogging 
algorithm for dealing with this type of image, leveraging local 
features and prior knowledge of the image for simplicity and 
effectiveness. DCP effectively removes fog and improves image 
clarity. J. Y. Chiang [5] proposed that the WCID method, which 
analyzes the color information in underwater images, estimates 
the underwater scattering models, and corrects the color distor-
tion by considering artificial light effects and selective light 
absorption. Drews [6] proposed the UDCP method to address, 
introducing an underwater dark channel before analyzing illu-
mination and scattering in underwater images. Adrian Galdran 
[7] proposed RDCP, leveraging different color channel proper-
ties in underwater environments to effectively compensate for 
underwater image enhancement. Berman [8] proposed a new 
recovery method that considers spectral profiles in different 
environments. Zhou [9] utilizes Channel Intensity Prior (CIP) 
and Adaptive Dark Pixel (ADP) techniques combined with 
unsupervised learning and, ultimately, color and channel bal-
ancing processes to generate high-quality artifact-free images. 
Although physical-based model methods take into account the 
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underwater imaging model, the inability to control the unknown 
variables in the underwater environment makes it difficult to 
accurately estimate the model parameters, resulting in restored 
results that do not meet people's expectations.

Non-physical-based model methods: By simply changing the 
gray values of the image in the spatial or transform domain, 
enhancement-based methods can improve the contrast and 
color of an image. The main ones are: fusion-based [10, 11] 
[12], retinex-based [13], histogram-based [14, 15]. Ancuti [16] 
proposed an image pyramid fusion strategy, which improves 
exposure and edge sharpening in darker regions. Bai [17] pro-
posed a strategy combining histogram and image fusion to 
improve the contrast of the image. Mishra [18] proposed a 
retinex-based method that decomposes the input image into 
reflective and luminance layers, processing the different layers 
accordingly, and then fusing these layers to obtain an enhanced 
image. Nurullah Öztürk [19] by converting RGB to HSI color 
space, the underexposed areas in low-light environments are 
refined and enhanced. It avoids excessive contrast enhance-
ment and achieves natural and effective image enhancement. 
Ghani [20] proposed a histogram-based correction method to 
correct color distortion in underwater images. The method uses 
rayleigh distribution to convert the image into HSV space and 
correct it for saturation and brightness. Zhou [21] proposes a 
Retinex variational model to address image clarity degrada-
tion due to particle scattering and light absorption in seawa-
ter. Huang[22] proposed a relative global histogram stretching 
method to improve underwater visibility, enhance contrast, and 
correct color in LAB space. Non-physical-based model meth-
ods for underwater image enhancement often achieve enhance-
ment by modeling images in specific scenes, resulting in good 
performance only in those scenes but poor generalizability 
across different scenarios. Many of these methods rely on his-
togram stretching in color space to enhance images, which can 
easily lead to over-enhancement and image distortion.

Deep learning-based model methods: Deep-learning image 
enhancement methods are a data-driven, end-to-end learning 
approach designed to capture the distributional character-
istics of elements in the input data. Key methods include: 
Convolutional Neural Networks (CNN): [23–25]. Generative 
Adversarial Networks(GAN) [26, 27]. Li [28] constructed 
a benchmark dataset of underwater images and constructed 
Water-Net based on CNN on the dataset yielding promis-
ing outcomes. Li [29] proposed a lightweight UWCNN 
network architecture to advance the field of underwater 
video enhancement. Fu [30] proposed a new two-branch 
architecture, which is designed to effectively compensate 
for the problems of image color loss and contrast degrada-
tion, and to optimize the quality of the images generated 
by the network using histogram equalization techniques. 

Sun [31] has recently proposed UMGAN, a network that 
can effectively improve image clarity without needing pairs 
of samples. Zong [32] improved CycleGAN by fusing the 
local discriminator with the global discriminator, signifi-
cantly improving the network's robustness and global dis-
criminative properties. Cai [33] proposed a network called 
CURE-Net, which progressively improves the problem of 
low contrast and color deviation due to light absorption and 
scattering in a coarse-to-fine manner through three cascaded 
sub-networks. Although the current deep learning-based 
methods excel in low-illumination image enhancement, they 
often struggle to achieve optimal results when enhancing 
non-uniform low-illumination underwater images, they often 
fail to achieve the ideal enhancement effect and lose more 
detailed information.

In underwater image enhancement research, the physical 
model method is based on the physical laws of light propaga-
tion underwater, aiming to improve image quality and visual 
effects. Non-physical model methods utilize statistical and 
heuristic techniques such as contrast enhancement and color 
correction to enhance image clarity without requiring in-depth 
understanding of the physical processes. Deep learning-based 
approaches, on the other hand, employ deep neural networks to 
learn complex underwater imaging features, effectively enhanc-
ing the visual quality and detail representation of underwater 
images.

3 � Method

The flow of our proposed method, illustrated in Fig. 1, 
begins with initial color correction using ACPR to obtain 
the corrected image Im1 . This step addresses issues such as 
color distortion caused by underwater optical effects. Fol-
lowing color correction, the next stage focuses on enhancing 
contrast in the image Im2 . This is achieved through a local 
integration approach based on a variational model, leverag-
ing the enhanced Im1 . Subsequently, our method employs a 
weighted guided filtering image fusion technique. Initially, 
the two source images are mutually guided filtered to derive 
a base layer, which encapsulates fundamental image char-
acteristics. From the base layer, a detail layer is extracted 
to preserve intricate details present in the original images. 
Finally, the high-quality underwater image is synthesized by 
effectively combining the base and detail layers. This meth-
odology optimally utilizes complementary information from 
both source images, ensuring that the final enhanced result 
achieves superior visual quality. The approach is designed 
to mitigate the inherent challenges of underwater imaging, 
enhancing color fidelity, contrast, and detail retention for 
enhanced perceptual clarity. The pseudo-code of the pro-
posed algorithm is presented in Algorithm 1.
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Algorithm 1   The pseudo-code of the proposed algorithm

Underwater Image Enhancement Based on Weighted Guided Filter Image Fusion

1 Input Raw(raw image) 
2 Output Final(clear image) 
3
4 Function main(image) 
5    im1  ACPR(Raw)     //Color correction 
7    im2  BFVM(im1)     //Contrast enhancement 
8    Final  GF-fusion(im1,im2) 
9  end function 
10
11:  Function ACPR(Raw) 
12:    Calculate the average gray value of the three RGB channels by using Eq.(5) 
13:    Calculate scaled images by using Eq.(1)-(7) 
14:    Calculating saturation parameters by using Eq.(8) 
15:    Obtain pixel reconstructed image by using Eq.(9) 
16:    Histogram stretching by using Eq.(10) 
17:    return  im1 
18:  end function 
19:   
20:  Function BFVM(im1) 
21:     Obtaining the grayscale value of a local block of an image by using Eq.(11) 
22:     Perform local block contrast enhancement by using Eq.(12) 
23:     Using SLVC to improve image saturation by using Eq.(13)-(16) 
24:     return im2 
25:  end function 
26:      
27:  Function GF-fusion(im1,im2) 
28:      Use Guided filtering to get the base and detail layers by using Eq.(17)-(21) 
29:      Calculate the weights of the detail layers by using Eq.(22)-(24) 
30:      Weighted fusion of detail and base layers by using Eq.(25)-(27) 
31:      return Final 
32:  end function 

3.1 � Color correction

Underwater color distortion is caused by the process of light 
propagation and absorption in the underwater environment, 
resulting in color shifts and distortions. Therefore, color 
correction becomes an essential part of underwater image 
enhancement. To solve such problems, this paper proposes 
a color correction method based on attenuated color channel 
compensation with interval pixel reconstruction, inspired by 
[34]. Firstly, the attenuation characteristics of color chan-
nels in underwater images are analyzed, and a compensation 
model based on these channel characteristics is constructed 
to perform channel compensation on the images, achiev-
ing preliminary color correction. Secondly, the pixels in the 
histogram are processed, and color deviation is eliminated 
by constructing saturation parameters and reconstructing 
the histogram pixels. As shown in Fig. 2, the main steps of 
this algorithm are: (1) Perform attenuation color channel 
compensation. (2) Conduct interval pixel reconstruction. In 

this method, color correction is performed in the RGB color 
space. This is because RGB color space directly represents 
the three primary colors of light (red, green, blue), mak-
ing the correction process more intuitive, especially when 
dealing with color distortions. Color distortions primarily 
manifest as changes in these three basic color channels, thus 
correcting them in the RGB space is more straightforward 
and effective.

Attenuation Color Channel Compensation: In terms of color 
channel compensation, some methods, such as [35] have been 
widely applied and shown promising results in color correction 
for underwater images. Therefore, to achieve a preliminary 
color correction, we perform channel compensation for under-
water images based on the compensation method [36]. The 
method starts with a color channel whose formula is shown 
below:

(1)
Im1(x) = Imc(x) +

(
MImg −MImc

)(
1 − Imc(x)

)
Img(x), c�(R,G,B)



Underwater image enhancement based on weighted guided filter image fusion﻿	 Page 5 of 19    240 

where Imc denotes the input image, MIm denotes the average 
value of the image channel, Im1 is the compensated image 
and Im2 is the output image. xmax and xmin represent the 

(2)Im2 =
(
Im1(x) − xlow

)( xmax − xmin

xhigh − xlow

)
+ xmin

maximum and minimum pixel values of the compensated 
image. xhigh and xlow represent the maximum and minimum 
thresholds for the current channel. Based on the assumption 
of a grayscale world, we proceed to construct a color channel 
compensation model. The formula is as follows:

Fig. 1   Flowchart of the proposed approaches

Fig. 2   Based on attenuated color channel compensation with interval pixel reconstruction
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where Imgv is the RGB three-channel gray value, Im3 is the 
scaled image, and Imresult is the final color-compensated 
image.

Figure 3(c) demonstrates the color compensation results 
of the above method, which we found to be roughly restored 
in terms of color, but the effect is less satisfactory. Inspired 
by [34], we use the interval pixel reconstruction method for 
color matching, which can adapt to the characteristics of dif-
ferent images. This approach ensures that the distribution of 
pixel values adaptively matches the saturation range, thereby 
achieving a better display of the image.

Interval Pixel Reconstruction: Firstly, the method calculates 
the gray level mean of the image using Eq. (3), and then the 
gray level mean is used to scale the RGB three channels in 

(3)cImgv =
Mean(RGB)

3

(4)Im3 =
Imgv∑m

i=1

∑n

j=1
Im2(i, j)

∗ Im2

(5)Imresult =

⎧
⎪⎨⎪⎩

1, Im3 > 1

Im3, 0 ≤ Im3 ≤ 1

0, Im3 < 0

a reasonable way. Finally, the histogram distribution range 
is readjusted for pixel reconstruction. The formula is shown 
below:

Where �c is the saturation parameter used to dynami-
cally adjust the saturation level of each channel of the 
image, Max() is to take the grayscale value of the largest 
channel. ϵ is the color balance factor, which is empirically 
valued up to � = 0.02(It influences the extent to which 
color distortions caused by underwater optical effects 
are compensated. Adjusting � fine-tunes color balance, 
ensuring that the corrected image maintains natural 
colors without introducing unnatural color shifts). P() is 
the quantile function, and Ir is the pixel-reconstructed 
underwater image. Finally, the pixel-reconstructed image 
is substituted into Eq. (2):

(6)�c = � ∗
Max(Imggv)

Mean(R,G,B)
, c�{R,G,B}

(7)Ir =

{
P
(
𝜕c, Iraw

)
, Iraw < P

(
𝜕c, Iraw

)
P
(
1 − 𝜕c, Iraw

)
, Iraw > P

(
1 − 𝜕c, Iraw

)

(8)Ifinal =
255 ∗

(
Ir − P

(
�c, Iraw

))

P
(
�c, Iraw

)
− P

(
1 − �c, Iraw

)

(a) (b) (c) (d)

Fig. 3   Color correction on the UIEB dataset. a Raw image; b CBAF; c Attenuated color channel compensation; d ACPR
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Where Ifinal is the image that gets color corrected.
In order to verify the ability of our algorithm to correct 

color, three images with different hues were selected on 
the UIEB dataset. For comparing color methods, we chose 
white balance [37], ACC [36], and our color correction 
method (ACPR). As shown in Figs. 3 and 4, comparing 
these two methods, our method is better in detail and 
color results (Fig. 4).

3.2 � Local contrast enhancement

Underwater images are typically characterized by low con-
trast and loss of detail due to light attenuation and scattering 
effects, which are used to improve the image's visual quality 
and enhance the details. Inspired by [38], we propose a local 
contrast enhancement algorithm based on a box filter with 
the variational model. The algorithm first converts the image 
from RGB space to CIE LAB space and operates on the L 
channel for contrast enhancement. This choice is motivated by 
the fact that the L channel primarily contains grayscale infor-
mation, making it ideal for describing differences in image 
intensity. By focusing contrast enhancement exclusively on 

the L channel, we avoid unintended shifts in color informa-
tion present in the AB channels. This approach ensures that 
the enhancement process targets only the image's grayscale 
characteristics, preserving its original color integrity.

where 
∑m+W−1

y=m

∑n+H−1

x=n
MB(x, y) represents the local pixel 

matrix after the box filter and GB is denoted as the mean 
value of the grayscale of the local region. The image con-
trast can be effectively improved by using the mean value of 
the local block region applied to the luminance channel. In 
image processing tasks, the low-frequency component often 
corresponds to the smooth part of the image, and the high-
frequency component corresponds to the edges and related 
details. Therefore, we assume that GB is the low-frequency 
component, thus separating it to get the high-frequency com-
ponent. The following formula is used for localized blocks 
for contrast enhancement:

(9)GB =

∑m+W−1

y=m

∑n+H−1

x=n
MB(x, y)

H ∗ W

(10)BC = GB + � ∗
(
MB(x, y) − GB

)

Fig. 4   Comparison of histograms corresponding to the algorithm in Fig. 3
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where BC is the local block for contrast enhancement, (
MB(x, y) − GB

)
 is the high frequency details of the image, 

and the coefficient α is the scale factor to avoid over-
enhancement, in this paper α = 2.1. As can be seen from 
Fig. 5(c), the image achieves the contrast enhancement 
effect, but we use the SLVC method of [39] to further 
achieve higher saturation. This also introduces subtle arti-
facts and over-enhancement, which result from the complex 
characteristics of underwater images. The scattering and 
attenuation of light underwater can make weak details and 
color variations more significant, potentially misinterpret-
ing these characteristics as signals of contrast enhancement 
during the image enhancement process, leading to unnatu-
ral artifacts and over-enhancement effects. The algorithm 
consists of a data term and a canonical term. The data term 
reduces the difference between the recovered and original 
colors to ensure that the output image matches the original 
image. Then, the regular term is used to amplify the differ-
ence between the R, G, and B channels to enhance satura-
tion. The formula is shown below:

where A represents the data term, and B represents the 
canonical term. uc(k) represents the enhanced image. It is 
obtained by gradient descent method with Euler–Lagrange 
derivative:

where 0 < Δt ≤ 1∕(1 − 2𝜃) , uck+1 is the image with enhanced 
saturation. As shown in Fig. 5(d), we can see that the image 
saturation is further improved to enhance the vividness and 
richness of the color.

(11)E
(
uc
)
= A − B

(12)A =
1

2

∑
k

(
uc(k) − BC

)2

(13)B =
�

2

∑
k

(
uc(k) − uc+1(k)

)2
+
(
uc(k) − uc+2(k)

)2

(14)
uc

k+1 = Δt
(
BC − �uc+1

k+1 − �uc+2
k+1

)
+ uc

k(1 − Δt(1 − 2�))

Fig. 5   Our proposed contrast enhancement method is tested on the UIEB dataset. a Raw image; b Color correct; c Local contrast enhancement; 
d BFVM
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3.3 � Multi‑scale weighted guided filter image fusion

The image fusion achieves excellent results. Inspired by [40], 
we propose a weighted guided filtering image fusion strategy. 
This is because the traditional image pyramid fusion has some 
limitations. The traditional image pyramid fusion methods 
[37] usually lead to the loss of image details, especially when 
the image scale varies greatly or when there are fine structures 
such as edges in the image. This is attributed to the simple 
smoothing operation between images at different scales, which 
does not effectively preserve fine image details, thus affect-
ing the quality and realism of the fusion result. In contrast, 
guided filtering, as an image processing technique based on 
local features, produces better image fusion results. Guided 
filtering is able to fuse images of different scales according to 
local features in the image, thus better preserving the details 
and structural information of the image. With guided filter-
ing, we can maintain the image's clarity and realism more 
effectively during the fusion process. Therefore, we choose to 
utilize guided filtering for image fusion to solve the limitations 
of the traditional image pyramid fusion methods, aiming to 
obtain a better fusion effect and image quality.

3.3.1 � Calculation of detail and foundation layers 

Guided filtering is a filtering technique based on local region 
features, which weights and smoothes the target image by 
using the guided image. We use guided filtering to compute 
the base layer to decompose the image at multiple scales 
so that features at different scales can be analyzed and pro-
cessed. For the coarse-scale base layer, the global structure 
and main features can be preserved. And the detail layer, 
which can capture finer textures and local features. The for-
mula for its guided filtering is shown below:

when the center of the window is located at m , pj and qj are 
the coefficients of this linear combination, GFm is the output 
of the guided filter, and Im is the input image. Next pj and qj 
are calculated as:

where pj is the mean value of the unfiltered image p in win-
dow nj , and pm = Im when the guided image is the input 
image itself for edge filtering operation. |n| is the total num-
ber of pixels in the number of windows, �2

j
 is the variance of 

(15)GFm = pjIm + qj

(16)pj =

1

�n�
∑

m�nj
Impm − �jpj

�2
j
+ Θ

(17)qj = pk − pj�k

the window, and Θ is a control factor that controls the visi-
bility of the filtering effect.

This paper has two input images, one for color correction 
and the other for contrast enhancement. We get the base 
layer by using these two input images as guided images 
for each other (if the base layer is calculated for color cor-
rection, then the contrast enhancement is used as a guided 
image for smoothing and vice versa). The formula for calcu-
lating its base layer and detail layer is shown below:

where B is the base layer, and D is the detail layer, 
GF

(
im1, im2

)
 means that im1 is the input image and im2 is 

the guiding map for guiding filtering.

3.3.2 � Calculation of weights and image fusion

Since this fusion is mainly based on the guided filter for 
decomposition, we consider the guided filter decomposi-
tion image will exist between the two images' smooth tran-
sition and denoising problem. Therefore, we add the idea of 
weighted gradient weighting, which is formulated as shown 
below:

where wx is the gradient value of the Sobel operator in the 
horizontal direction and wy is the gradient value in the verti-
cal direction. Secondly, since the saliency weights can help 
determine which regions of the image are most salient, it 
is possible to focus more on these regions. The formula for 
calculating the saliency weights is as follows:

where Si is the computed significance, W  is the significance 
weight, and n is the number of layers of guided filtering. The 
formula for the final fusion is shown below:

(18)B = GF
(
im1, im2

)

(19)D = I − B

(20)Gw =
√

w2
x
+ w2

y

(21)Si =
1

i

n∑
i=1

|||I − GF
(
im1, im2

)|||

(22)W =
Si(

Si + Si+1
)

(23)B =
B1end

+ B2end

2

(24)Dfusion = D1i ∗ wSi
+ D2i ∗ wSi

+ D2i ∗ qGi
+ D2i ∗ qGi

(25)Im = B + Di
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where B1end
 and B2end

 are the final base layers obtained by 
guided filter decomposition of the two input images, and B 
is the weighted base layer, and Dfusion stands for the ith fused 
detail layer, D1i represents the first detail layer of layer i and 
D2i represents the second detail layer of layer i . wSi and qGi 
are the significance weight and gradient weight, respectively, 
Im is the fused final image.

3.3.3 � Parameter optimization of layers

Before proceeding to the fusion step, we optimize the num-
ber of fused layer parameters to achieve the optimal fusion 
effect. We selected from the following two perspectives: 
(1) Qualitative and quantitative evaluation of images. We 
selected three generalized metrics for evaluating the quality 
of underwater images, and the impact of the metrics as the 
number of layers increases. (2) Computational efficiency. 
As the scale increases, the computation of guided filtering 
increases. Therefore, when selecting the optimal layer, the 
factor of computational efficiency needs to be considered, 
and the layer that can meet the fusion quality requirements 
while maintaining high computational efficiency is selected. 
As shown in Table 1, as the number of layers decreases, time 
also appears to decrease. However, we observe changes in 
the three metrics with an increase in the number of layers. 
Interestingly, the metrics for the fourth layer demonstrate 
relatively favorable results. Consequently, we opted to select 
the fourth layer for fusion.

4 � Experimentation and analysis

In this section, we will further validate the effectiveness of 
our proposed algorithm. Firstly, we select six current state-
of-the-art algorithms for underwater image enhancement 
and compare them with our proposed method. These six 

algorithms contain: four methods based on non-physical 
models and two methods based on physical models. Then, 
we validate the state-of-the-art of the algorithms in terms 
of color, contrast, and detail on each of the two datasets. 
Finally, we performed application and ablation experiments 
to verify the generalizability of the algorithms and the effec-
tiveness of each component.

Comparison of algorithms: The six algorithms we 
selected include non-physical model-based methods: ACDC 
[41], Retinex [42], MW-GF [43], B-Retinex [44] and SPDF 
[45]. Physical model-based methods: TIP [46], ACCE-D 
[47]. Deep learning-based model methods: HCLR-Net [48].

Evaluation metrics: In this paper, the following seven 
evaluation metrics are used: IE(Information entropy) [49], 
AG(Average Gradient) [49], UCIQE(Underwater color 
image quality evaluation) [50], UIQM(Underwater image 
quality metric) [50], PCQI(Patch-based contrast quality 
index) [51], PSNR(Peak Signal-to-Noise Ratio) [52] and 
SSIM(Structural Similarity Index)[3]. IE is a kind of index 
used to evaluate the information richness of an image. The 
larger the IE, the better the visualization effect and the richer 
the details. AG is a kind of index used to evaluate the clarity 
of the fused image. The larger the AG, the more prominent 
the edges and details of the image, and the better the fusion 
effect. UCIQE is a comprehensive index based on image 
color information and contrast. The larger the UCIQE, the 
better the color quality of the underwater image. UIQM 
is used to quantify the overall quality of the underwater 
image. The larger the UIQM, the better the overall quality 
of the underwater image. PCQI evaluates the distortion of 
the image. The larger the PCQI, the better the image is in 
terms of color fidelity and overall quality. PSNR is based on 
the Mean Squared Error (MSE) between the original image 
and the distorted image, while SSIM takes into account the 
structural information and brightness contrast of the image. 

Table 1   Layer selection on the UIEB dataset

Layer 2 3 4 5 6 7 

Fusion 
image

UCIQE 0.683 0.6843 0.686 0.685 0.688 0.687 

AG 10.672 10.809 10.813 10.789 10.76 10.7296 

IE 7.852 7.8404 7.829 7.818 7.809 7.801 

Time 4.54 4.55 4.77 5.16 6.09 6.95 

Fusion 
image

UCIQE 0.700 0.701 0.705 0.705 0.706 0.707 

AG 10.346 10.509 10.511 10.473 10.432 10.384 

IE 7.76 7.771 7.788 7.793 7.794 7.800 

Time 7.026 9.570 13.906 15.995 16.499 19.768 
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Higher PSNR and SSIM means less distortion and better 
brightness and contrast of the image.

Datasets: We use the UCCS [44] and UIEB [25] datasets 
in this paper. The UCCS dataset contains three shades of 
blue, green, and blue-green, which is used to verify the color 
correction ability of different shades, and the UIEB dataset 
contains 950 underwater degraded images of various scenes, 
which is used to evaluate the contrast and detail enhance-
ment effect of the UIEB dataset (Fig. 6).

4.1 � Evaluation on the UIEB Dataset

Qualitative evaluation: To further verify our method's 
comprehensive capability, we selected seven different types 
of degraded images from the UIEB dataset, as shown in 
Figs. 7, 8. ACCE-D achieves color correction on each image, 
but the effect on details and color saturation is unsatisfac-
tory. MW-GF improves detail but fails to color correct on 
yellowish-green images when processing yellowish images. 
Retinex has better texture and details compared to B-Retinex, 
but the overall appearance of both is locally dark, resulting 
in a less clear image. ACDC has an overall greyish tint with 
poor color correction. TIP introduces an additional reddish 
appearance, resulting in the image undergoing a color bias. 

SPDF introduces a yellow hue, and the enhanced image 
deviates from the original hue. HCLR-Net effectively cor-
rects colors, but it does not enhance contrast as much. Our 
method, on the other hand, has de-blurring and better detail 
and color saturation compared to the above five methods.

Quantitative evaluation: Table 2 shows the evaluation 
indexes of our method and the comparison method in UIEB. 
Table 2 shows that our method's AG, IE, PCQI, and UCIQE 
are better than the other six algorithms, while the UIQM is 
slightly lower than that of ACDC. Although our PSNR and 
SSIM metrics are not highest, but our methods have richer 
color information and detail information. By combining 
qualitative and quantitative evaluations, it can be concluded 
that our method is capable of dealing with different degraded 
images in the UIEB dataset. 

4.2 � Evaluation on the UCCS Dataset

Qualitative evaluation: In order to verify the color cor-
rection capability of our methods, we selected two images, 
each blue, blue-green, and green, from the UCCS dataset, 
as shown in Figs. 9 and 10. Color correction is the most 
important capability of all the methods. ACCE-D introduces 
red artifacts when processing blue images, which leads to 

Fig. 6   Comparison of histograms corresponding to the algorithm in Fig. 5
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Fig. 7   Qualitative evaluation of our method versus comparative methods on the UIEB dataset. a Raw; b ACCE-D; c MW-GF; d B-Retinex; e 
Retinex; f ACDC; g TIP; h SPDF; i HCLR-Net; j Our
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unsatisfactory image results. MW-GF lacks contrast and 
color saturation when processing green images. B-Retinex 
and Retinex have similar results when processing blue 
images, and the overall image shows dark areas. ACDC has 
better overall image details when processing this dataset, 
the overall image has better details, but the overall image 
shows grayish tones. TIP in processing the blue-green region 
introduces a slight yellow color, localized areas are darker, 
and details are lost. SPDF and HCLR-Net failed to correct 
the color. Our method shows better color correction on this 
dataset and the best saturation of colors.

Quantitative evaluation: Table 3 shows the evaluation 
metrics of our method and the comparison method in UCCS. 
Our method has the highest quantitative evaluation scores 
for AG, IE, PCQI, and UCIQE. However, in the SSIM and 
PSNR full-reference evaluations, our scores are lower than 
HCLR-Net. This is because HCLR-Net can learn the features 
of the reference images. On the other hand, most Non-phys-
ical-based model methods, including ours, enhance images 
by adjusting histograms and pixels. Therefore, our scores 
are higher than HCLR-Net in the no-reference metrics. 

Combining the quantitative and qualitative evaluations, our 
method has superior color correction ability in the UCCS 
dataset.

4.3 � Detailed experiments

In many image processing and computer vision tasks, detail-
rich images can provide more accurate features and informa-
tion, thus improving image analysis and processing results. 
Therefore, to verify the detailed effects of our algorithms, we 
compare the six algorithms quantitatively and qualitatively 
on the UIEB dataset.

Qualitative evaluation: As shown in Fig. 11, the red 
boxes in Fig. 11 represent the observed details. The ACCE-
D and MW-GF have better details, but the image is darker 
in the area of the face of the person in the image, and the 
details of the face are lost. The B-Retinex, Retinex, and TIP 
details are blurred and visually unimpressive. The ACCE-
D has noticeable details in the gray image, but the visual 
perception is not good. HCLR-Net and SPDF also suffer 
from a lack of detail, with much of the detail in the image 

Fig. 8   Comparison of histograms corresponding to the algorithm in Fig. 7

Table 2   Quantitative evaluation 
of our method with comparative 
algorithms on the UIEB dataset

Bold font represents optimality

Method AG Entropy PCQI UIQM UCIQE PSNR SSIM

ACCE-D 15.494 7.832 1.117 4.488 0.640 17.90 0.623
MW-GF 16.368 7.847 1.225 4.381 0.632 16.63 0.571
B-Retinex 14.165 7.627 1.162 4.768 0.562 17.44 0.554
Retinex 9.986 7.618 0.991 4.485 0.579 20.65 0.822
ACDC 14.488 7.727 1.249 4.857 0.553 22.99 0.709
TIP 11.498 7.856 1.135 4.278 0.655 18.184 0.743
SPDF 10.071 7.471 1.007 4.5389 0.552 20.893 0.865
HCLR-Net 14.546 7.737 1.172 4.7376 0.612 26.651 0.948
Our 23.096 7.861 1.254 4.781 0.677 21.274 0.826
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Fig. 9   Qualitative evaluation of our method versus comparative methods on the UCCS dataset. a Raw; b ACCE-D; c MW-GF; d B-Retinex; e 
Retinex; f ACDC; g TIP; h SPDF; i HCLR-Net; j Our
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being over-smoothed, affecting the overall visual effect. Our 
images have good overall and localized details.

Quantitative evaluation: Table 4 shows the scores of 
our method with the comparative algorithms on the UIEB 
dataset. The AG and PCQI evaluation metrics measure the 
clarity and richness of the image, and our method ranks first 
among both evaluation metrics. In this way, we can prove the 
superiority of our method in terms of details.

4.4 � Ablation experiments

To assess the importance or contribution of each component 
in a complex system, we gradually remove several algorith-
mic components through ablation experiments to observe the 
effect of these changes on overall algorithm performance. 
Therefore, we perform ablation experiments in UCCS and 
UIEB datasets, respectively. a) Input image; b)-w/o ACPR 
is only our color correction method; c)-w/o BFVM is only 
our contrast enhancement method; d) Our complete method.

Qualitative evaluation: From Fig. 12, we can see the 
results of each component in both datasets. From the subjec-
tive evaluation of the images, we can observe that: b)-w/o 
ACPR improves the color distortion of the original image 
and improves the global contrast, but the local details are a 
bit blurred. c)-w/o BFVM improves the local details of the 
image. However, it lacks performance in color correction. d) 
Our complete model can achieve a satisfactory visual result 
for another one.

Quantitative evaluation: As can be seen in Table 5, our 
complete model has the best score profile. By ablation analy-
sis, and combining qualitative and quantitative evaluation, 
each of our components is favorable for the complete model.

4.5 � Running time comparison

Calculating algorithmic time is critical for evaluating per-
formance and efficiency. By quantifying the execution time, 
we can objectively evaluate and optimize the algorithms. 
Therefore, we perform time comparison experiments in 
this subsection. Our experiments are performed on Matlab 
and Python respectively (Intel Core i5-12,500 (3.00 GHz), 
GPU:3050ti). As shown in Table 6 records the average 
time required to run 100 graphics at each of the 256*256, 
512*512, and 1024*1024 resolutions.

4.6 � Application experiments

Key-point detection aims to identify unique and stable local 
features in an image automatically. From Fig. 13, we can 
see that the key-points of our method grow exponentially. 
It can be shown that there are more unique and significant 
local features in the enhanced image with rich information 
structure.

Fig. 10   Comparison of histograms corresponding to the algorithm in Fig. 9

Table 3   Quantitative evaluation of our method with comparative 
algorithms on the UCCS dataset

Bold font represents optimality

Method AG Entropy PCQI UIQM UCIQE

ACCE-D 12.558 7.802 1.243 4.477 0.607
MW-GF 15.719 7.828 1.305 4.252 0.600
B-Retinex 13.319 7.691 1.289 4.684 0.547
Retinex 9.337 7.739 1.175 4.393 0.564
ACDC 13.157 7.663 1.281 4.689 0.523
TIP 11.139 7.831 1.279 4.061 0.634
SPDF 10.781 7.504 1.133 4.372 0.509
HCLR-Net 8.544 7.45 1.129 4.340 0.530
Our 19.525 7.841 1.324 4.405 0.642
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Saliency detection aims to identify the image's most 
prominent and important regions, the visually attractive and 
salient parts. As can be seen from (e) and (f) in Fig. 13, the 
enhanced image accurately highlights targets and structures, 
and the general shape of the image can be accurately recog-
nized. Thus, our saliency and keypoint detection have good 
performance and may be widely used in image processing, 
computer vision, and so on.

5 � Conclusion and future work

In this paper, we propose an underwater image enhancement 
technique based on weighted guided filter image fusion. Our 
approach aims to solve the problems of low contrast, loss of 
details, and color distortion in underwater images. The pro-
posed includes color correction, local contrast enhancement, 

(a)Raw (b)ACCE-D (c)MW-GF (d)B-Retinex (e)Retinex

(f)ACDC (g)TIP (g)SPDF` (h)HCLR-Net (h)Our

Fig. 11   Detail enhancement experiments on the UIEB dataset

Table 4   Quantitative evaluation 
of our method with comparative 
algorithms on the UIEB dataset

Bold font represents optimality

Method AG Entropy PCQI UIQM UCIQE PSNR SSIM

ACCE-D 4.518 7.854 0.918 4.309 0.618 17.90 0.623
MW-GF 8.677 7.861 1.292 4.354 0.637 16.63 0.571
B-Retinex 5.301 7.648 0.644 4.522 0.557 17.44 0.554
Retinex 3.314 7.687 0.990 4.160 0.563 20.65 0.822
ACDC 6.871 7.658 1.251 4.563 0.502 22.99 0.709
TIP 3.756 7.891 1.110 4.219 0.651 18.184 0.743
SPDF 5.455 7.442 0.932 4.342 0.541 20.893 0.835
HCLR-Net 6.342 7.733 1.066 4.217 0.592 26.651 0.928
Our 9.964 7.92 1.316 4.357 0.677 21.274 0.826
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Fig. 12   Ablation results for each component on the UCCS and UIEB dataset

Table 5   Scores of each 
component of our algorithm in 
UCCS and UIEB datasets

Method UIEB UCCS

AG IE PCQI UIQM UCIQE AG IE PCQI UIQM UCIQE

-w/o ACPR 5.81 7.69 1.03 3.72 0.66 11.85 7.75 1.21 4.34 0.60
-w/o BFVM 8.24 7.42 1.16 3.12 0.66 13.05 7.52 1.27 4.06 0.57
Full method 12.89 7.84 1.21 4.28 0.68 25.11 7.62 1.29 4.54 0.65

Table 6   Comparison of running 
time of different algorithms

Image size ACCE-D MW-MGF B-Retinex Retinex ACDC TIP SPDF HCLR-Net Our

256 × 256 6.683 0.841 0.68 0.043 0.832 0.447 0.548 1.83 0.67
512 × 512 6.934 1.214 0.757 0.044 2.745 0.793 1.49 1.87 2.19
1024 × 1024 24.672 2.596 2.198 0.065 6.046 2.633 5.27 1.944 5.23

Fig. 13   Key-point detection and significance detection on the UIEB dataset. (a) and (b) are the original and enhanced images; (c) and (d) are the 
key-point detection for the original and enhanced images; (e) and (f) are the significance detection for the original and enhanced images
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and weighted guided filter image fusion. Leveraging infor-
mation from the source image, both information from color 
correction and local contrast enhancement guide each other's 
filters. The decomposed detail layer is weighted and fused 
with the base layer, resulting in a high-quality underwater 
image that combines the advantages of the two images. 
While our method yields favorable output images compared 
to state-of-the-art techniques, we acknowledge that excessive 
contrast enhancement may occur. In future work, we aim to 
mitigate this issue to further enhance the performance of 
our method.
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